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Abstract—In this paper, we consider a K-server threshold-based queuing system with hysteresis in which the number of active
servers is governed by a forward threshold vector F = (Fy, F, ..., Fx_1) (Where F; < Fy<---< Fi_1) and a reverse threshold vector
R = (Ry1,Rs,...,Rk-1) (Where R <Ry <---< Rp_1). There are many applications where a threshold-based queuing system can be of
great use. The main motivation for using a threshold-based approach in such applications is that they incur significant server setup,
usage, and removal costs. As in most practical situations, an important concern is not only the system performance, but rather its cost/
performance ratio. The motivation for use of hysteresis is to control the cost during momentary fluctuations in workload. An important
and distinguishing characteristic of our work is that, in our model, we consider the time to add a server to be nonnegligible. This is a
more accurate model, for many applications, than previously considered in other works. Our goal in this work is to develop an efficient
method for computing the steady state probabilities of a multiserver threshold-based queuing system with hysteresis, which will, in

turn, allow computation of various performance measures. We also illustrate how to apply this methodology in evaluation of the
performance of a Video-on-Demand (VOD) storage server which dynamically manages its I/O resources.

Index Terms—Threshold-based systems, Markov chains, error bounds, matrix-geometric, video-on-demand systems.

1 INTRODUCTION

IN this paper, we consider a K-server threshold-based
queuing system with hysteresis in which the number of
servers, employed for serving customers, is governed by a
forward threshold vector F = (F,F,...,Fx_1) (where
Fi<Fy<---<Fk_1) and a reverse threshold vector R =
(R1, Ra,...,Rk_1) (where Ry <Ry <---<Rg_1). This multi-
server queuing system behaves as follows: A customer
arriving to an empty system is served by a single server. A
new arrival to a system with F; customers already there
forces a noninstantaneous activation of one additional server.
A departure from a system which leaves R; customers
behind forces a removal of one server.

The main motivation for using a threshold-based
approach is that many systems incur significant server
setup, usage, and removal costs. As in most practical
situations, an important concern of a system designer is not
only the system performance but rather its cost/perfor-
mance ratio. More specifically, under light loads, it is not
desirable to unnecessarily operate many servers due to the
incurred setup and usage costs. On the other hand, it is also
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not desirable for a system to exhibit very long delays, which
can result due to lack of servers under heavy loads. One
approach to improving the cost/performance ratio of a
system is to react to changes in workload through the use of
thresholds. For instance, one can maintain the expected job
response time in a system at an acceptable level and, at the
same time, maintain an acceptable cost for operating that
system by dynamically adding or removing servers,
depending on the system load.

There are many applications where a threshold-based
queuing system can be of great use, e.g., in transport
protocols of communication networks [15], where several
transport-layer connections are multiplexed onto a single
network layer connection. Whenever the traffic exceeds a
certain threshold in the network-layer connection, another
network-layer connection can be created to serve the
incoming traffic from the transport layer. Using such a
control mechanism, severe degradations in throughput and
delay can be avoided. At the same time, operational costs
can be kept at an acceptable level. Another example
application is a system providing information query service
via the Internet. As the number of queries increases, the
number of servers needed to maintain certain (acceptable)
system response time characteristics is also increased. Since
the cost of setting up server connections can be significant,’
the use of a threshold-based approach can result in a cost-
controlled creation and deletion of these connections

1. For instance, it may be necessary to broadcast information about the
newly added server to the already active servers in the system.
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according to the changes in the workload. Finally, another
application is a Video-On-Demand (VOD) system, where
one approach to addressing skews in data access is
replication of popular objects [34]. In order to have better
load balancing characteristics in the system, the number of
replicas of each object should change as the object access
patterns change. Since the cost of altering the number of
replicas is significant, the use of a threshold-based approach
can result in a cost-controlled creation and deletion of these
replicas according to the changes in the access patterns.
Thus, the model presented in this paper and its solution will
be beneficial for many systems and applications which
manage their resources dynamically in order to control the
cost/performance ratio. In this work, we use the VOD
system as an example (see Section 7 for details).

As in the case of electronic circuits that are prone to
oscillation effects, a “simple” threshold-based system may
not suffice. In a computer system, one reason for
avoiding oscillations are the above-mentioned server
setup and removal costs, i.e., oscillations coupled with
nonnegligible server setup and removal costs can result in
a poor cost/performance ratio of a system. More
specifically, it is desirable to add servers only when a
system is moving toward a heavily loaded operation
region and it is desirable to remove servers only when a
system is moving toward a lightly loaded operation
region. It is not desirable to alter the number of servers
during “momentary” changes in the workload. Such
oscillation regions can be avoided (as in electronic
circuits) by adding a hysteresis to the system—hence,
the motivation for looking for efficient analysis techniques
of threshold-based queuing systems with hysteresis.

A threshold-based queuing system with hysteresis is
defined by the forward and reverse threshold vectors (see
Section 2 for details). The actual values, or, rather, what are
“good” values for these vectors, are a function of many
factors, such as the values of server setup, usage, and
removal costs as well as the characteristics of the arrival
process and the service rates. Although the question of
optimal or “good” values for the threshold vectors is an
very interesting one, it is outside the scope of this paper and
is the topic of future work. However, our solution method,
due to its intuitive nature, should facilitate accessible
experimentation techniques for investigating the “good-
ness” of various threshold values.

In this paper, we present an efficient technique for
computing tight performance bounds for a Markov chain
model of a threshold-based queuing system with hysteresis
as well as illustrate its application to performance evalua-
tion of a Video-on-Demand system. We begin with a very
brief survey of the published literature on the threshold-
based queuing problem. A two-server system is considered
in [17], [20], and [27]. An approximate solution for solving a
degenerate form of this problem (where all thresholds are
set to zero) is presented in [10], [12]; an approximate
solution for a system that employs (nonzero) thresholds is
presented in [29] (but without hysteresis). In [11], the
authors solve a limited form of the multiserver threshold-
based queuing system with hysteresis using the Green's
function method [8], [13], [14]. They give a closed-form
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solution for a K-server system, when the servers are
homogeneous, and, for a 2-server system, when the servers
are heterogeneous. The authors experience difficulties in
extending the Green’s function method beyond two hetero-
geneous servers. In [23] we give exact solutions, using
stochastic complementation [26], for the K-server homo-
geneous, heterogeneous, and bulk arrival variations of the
multiserver threshold-based queuing system with hyster-
esis—no restrictions are placed on the number of servers or
the bulk sizes or the size of the waiting room. We believe
that stochastic complementation is a more intuitive and a
more easily extensible method and it is exploited in this
work as well.

Specifically, we consider and solve a homogeneous
multiserver threshold-based queuing system with hyster-
esis. We place no restrictions on the size of the waiting room or on
the number of servers. The contributions of this work are as
follows: To the best of our knowledge, none of the works
described above consider the time to activate a server. Since,
for many applications, this time is nonnegligible, we
consider it an important and distinguishing characteristic
of our work. We first introduced the noninstantaneous
server activation model in [6]. This model has an exact
solution for computing the steady state probabilities using
the matrix geometric method [30]. However, the exact
solution of this problem, obtained using the matrix-
geometric approach, is computationally prohibitive for
moderate to large numbers of servers. Thus, the main
contribution of our work is an efficient solution of a
threshold-based queuing system with hysteresis obtained
through a computation of tight and provable performance
bounds. More specifically, we compute the steady state
probabilities of the bounding models using a combination
of stochastic complementation [26] and the matrix geo-
metric [30] methods. Given the steady state probabilities,
we can compute tight bounds on various performance
measures of interest. The ease with which we are able to
obtain these bounds demonstrates the extensibility of our
method. In this paper, we extend these results in [6] by:
1) deriving a proof for the fact that these models indeed
results in bounds on several performance measures of
interest, 2) deriving alternative approaches to constructing
bounding models, and 3) illustrate how to apply our
methodology to a dynamic resource management problem
for Video-on-Demand systems.

The remainder of this paper is organized as follows: In
Section 2, we give a detailed description of our model. In
Section 3, we present background information which is
useful in solving the model of Section 2. Our general
approach to solving the model is given in Section 4. Due to
the complexity of the solution, it is desirable to consider
more cost efficient approaches to obtaining performance
measures. This is done through bounding techniques,
which are presented in Sections 5 and 6. In Section 7, we
apply our modeling technique to evaluating the perfor-
mance of a Video-on-Demand (VOD) storage server. The
goodness of the bounds and numerical results are discussed
in Section 8, where we use the VOD system as an example
application. Finally, our conclusions are given in Section 9.
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Fig. 1. State transition diagram for K = 3.

2 MoDEL

In this section, we describe our model, which is illustrated
in Fig. 1. Specifically, we consider a multiserver threshold-
based queuing system with hysteresis that can be defined as
follows: There are K homogeneous servers in the system,
where K is unrestricted, each with an exponential service
rate p. The customer arrival process is Poisson with rate .
Addition and removal of servers in this queuing system is
governed by the forward and the reserve threshold vectors
F= (1‘7’],1‘7'27 ey FK,1) and R= (R],Rz, ey RKfl), where
i<F<---<Fg_1, and Ri<Ry<---<Rg_1, and R; < F;
for all 3. There are multiple ways to create a total order
between the Fjs and the R;s; for clarity and ease of
presentation, in the remainder of this paper (unless
otherwise stated), we assume that R;;; < F;Vi. However,
our solution technique can be easily extended to all other
cases as well. Note that, unlike in [11], [23], the addition of a
server is not instantaneous, but is governed by a Poisson
process with a rate o (refer to Fig. 1). This is motivated by
the fact that in many applications addition of a new server
takes a nonnegligible amount of time (for instance, as in the
case of the VOD application discussed in Section 7). The use
of a threshold-based approach can result in a cost-
controlled addition and removal of servers.

§F2+I, 3 35 EF2+2, 3 3%
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Given a K-server threshold-based queuing system with
hysteresis, we can construct a corresponding Markov
process M with the following state space S:

S={(N,N,,L) | N >0,

N, e€{0,1,2,...,K},L €{0,1,2,...,K}},
where N is the number of customers in the queuing system,
N, is the number of activated servers, and L is the level to
which the state belongs. Specifically, all states at level L
correspond to the state of the system where, according to
the threshold vectors, L servers “should be” active but may
not be since server activation is not instantaneous in our
model. (The “level” part of the state description is some-
what artificial at this point, but will become useful later in
constructing a solution to this model.) We also use the
convention that an empty system is in state (0,0,0). Fig. 1
illustrates the state transition diagram where K = 3 (the S;
notation in the figure will be defined in Section 4). Formally,
the transition structure of M with K homogeneous servers,

where K is unrestricted, can be specified as follows:



4
(0,0,0) — (1,1,1)
A
(i,3,1) — (i+1,5,01+1)
M{(i=F, e F)A(l=k)}
(4,4,1) — (i+1,410)
A{ (i ¢ F)V(i=F, € F)
NI # k)}
(4,5,1) — (,j+1,0)
El—%al{(!—j) >0}
1,7, —
(i = 1, min(j,l — 1), - 1) (1)
jul{(i—1= R, € R)
Al=k+1)}
(Zajvl) - (1_17.750
Jp{(i > 1A (3, 4,0) # (1,1, 1))
AN(i—1¢€R)V
(i —1=R; € R)
ANl#k+1))}
(1,1,1) — (0,0,0)
s

where 1{z} is an indicator function of x and the last column
above indicates the rate at which the corresponding
transition occurs.

3 BACKGROUND

In this section, we briefly describe background information
used in the remainder of the paper. In Section 3.1, we
describe the matrix geometric approach, which is the
technique we use to compute an exact solution for the
model of Section 2. In Section 3.2, we describe the stochastic
complement approach which is used in solving the upper
and lower bound models.

3.1 Matrix Geometric Approach

A Markov process, G, has a quasi birth-death version of the
matrix geometric form [30] if the state space of G can be
partitioned into disjoint sets B;, i € {0,1,- -}, such that the
generator matrix of G has the following form:

Boo Byg O 0 0
Bl,O A, A 0 0
Q=| 0 A A Ay 0O | (2)

0 0 A, A A

where By represents transition rates for states in By, By
represents transition rates from states in B, to states in B,
B, represents transition rates from states in B; to states in
By, A, represents transition rates for states in B; (where
1> 1), Ay represents transition rates from states in B; to
states in B;y; (where i > 1), and A, represents transition
rates from states in B; to states in B;_; (where i > 2). The
solution of this system can be obtained by solving the
following matrix equation:

Ay +RA;| + R2A2 =0,

where the matrix R can be computed using the following
iterative procedure:
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R(0) =0 (3)

R(n+1) = —AA"R*(n)AA7' n=0,1,.... (4

Let m; be the steady state probability vector for states in

the set B;, where 7 > 0. Then,
m =mR! i=2,3,.... (5)

For the states in B, and B;, we have the following
relationship:

mBoo +m By =0

6
moBo1 + mA; + mAy =0, (©)
which can be written in matrix form as
Bo,o By, _
(mo, m1) By Ai+RA;| 0, (™)

where we substitute my = m R in (5) to obtain the submatrix
in the lower righthand corner of (7). To determine the
steady state probabilities of all states, we need the following
normalization constraint:

0 .

1l=me+m Z R/ e = me + m (I — R)fle7

J=1
where e is the column vector with all entries equal to 1. We
can then determine 7; by solving the following system of
linear equations:

*
e BU,O BO,l

(7['()771'1) (I— R)716 Byio A1 + RA2 = [170]7 (8)

where M*
removed.

is the matrix M but with its first column

3.2 Stochastic Complementation

In this section, we briefly review the concept of stochastic
complementation [26], [28], [24]. For the purposes of this
presentation, we assume a discrete state space, discrete
time, ergodic Markov chain (throughout the paper we will
also consider continuous time Markov processes; however,
there is a simple transformation between the two via
uniformization [7]). Given an irreducible discrete time
Markov chain, M, with state space S, let us partition this
state space into two disjoint sets A and B. Then, the one-
step transition probability matrix of M is

p_ Pya Pup
Pps Ppp

and m = [m4,mp| is the corresponding steady state prob-
ability vector of M. In what follows, we define the notion
for stochastic complementation and quote some useful
results [26].

Definition 1. The stochastic complement of P4 4, denoted by
Caa,is

Cis=Pas+Papll— Pyl ' Pya. 9)
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Theorem 1. The stochastic complement is always a stochastic
matrix and the associated Markov chain is always irreducible,
if the original Markov chain is irreducible.

Theorem 2. Let m 4 be the stationary state probability vector for
the stochastic complement C 4 4, then
W‘Azl/(ﬂAe)WA. (10)
The above theorems imply that the stationary state
probabilities of the stochastic complement are the condi-
tional state probabilities of the associated states of the original
Markov chain.
Let diag(v) be a diagonal matrix where the ith diagonal
element is the ith element of the vector v. We can rewrite
9) as

Caa=Pyy+diag(Pape)Z, (11)

where
Z=P,p [I-— PB,H]APB,A

and PZ, p is simply P4 g, but with all rows normalized to
sum to 1. Let r; be the ith diagonal element of diag(P 4 ge).
The probabilistic interpretation of r; is that it is the total
probability of making a transition from state s; € A to any
state in B. Also, let z; be the ith row of Z; then we can
rewrite (11) as

Tz1

222

Cua=Pya+ (12)

Tnzn

Remarks. The probabilistic interpretation of (12) is as
follows: If, in the original Markov chain, there is a
transition from state s; € A to any state in B, then, in the
stochastic complement, this transition becomes a transi-
tion to some state(s) in A instead. In other words, the
derived Markov chain “skips over” the period of time
spent in B. The transition from s; € A to B becomes a
transition to s; € A with probability z;. The stochastic
complement of P, , is therefore equal to P4 4 plus any
transition probabilities, which used to go from A to B,
“folded” back to A and redistributed according to the
stochastic matrix Z. This interpretation implies that the
ith row of matrix Z determines how r; should be
redistributed back into A. In general, it is not an easy
task to compute Z, but, for some special cases where
sufficient “structure” exists in the original Markov chain,
Z can be obtained with little or no computation. We end
this section with a useful theorem.

Theorem 3 (Single entry). Given an irreducible Markov process
with state space S, let us partition the state space into two
disjoint sets A and B. The transition rate matrix of this
Markov process is

|:QAAA QA‘B:|
QB,A QB‘B ’

where Q, ; is the transition rate submatrix corresponding to
transitions from partition i to partition j. If Qp 4 has all zero

entries except for some nonzero entries in the ith column, then
the conditional steady state probability vector (corresponding
to the states in A), given that the system is in partition A, is
denoted by m 4 and is the solution of the following system of
linear equations:

A [QA,A + QA,BCC;] =0

mae =1,

where e! is a row vector with a 0 in each component, except for
the ith component, which has the value of 1.

Proof. This is intuitively clear based on the stochastic
complementation argument above. The matrix Z will
have identical rows where each row is equal to e;. This is
true because, no matter how B is entered, A is entered
from B via the ith state, with probability 1. O

4 GENERAL APPROACH

In this section, we describe a general approach to solving
the model presented in Section 2. In particular, we first
present an exact solution which exploits the matrix
geometric structure described in Section 3.1. Because this
approach suffers from a high computational cost, we then
present an aggregation/disaggregation-based technique
which results in significant computational savings (as
shown later in the paper). We note that, due to a lack of
structure in this model, we are not able to apply the
aggregation/disaggregation technique directly; hence the
need for a bounding approach. This bounding approach
makes use of the aggregation/disaggregation technique
and the matrix-geometric structure of the model; it is
developed in detail in Sections 5 and 6.

4.1 Matrix Geometric Solution

The model presented in Section 2 is complex but has a
special structure. If we partition the state space of M into
disjoint sets B;, i € {0,1,---}, where

BOZ{(i,j,Z)GM:Z’SF]{,l-‘rl} (13)

Bn:{(i,j,K)ES[(ZZ.:FK_I—‘rl—i-TL} n>1, (14)

then M has a matrix geometric solution [30] as described in
Section 3.1, where the components of each of the A,
submatrices are

. A fi=jand1<i< K
Aoli, J] = { 0 otherwise. (15)
. Jap ifi=jand1<i< K
Aqli j] = { 0 otherwise. (16)
Aili, ] =
—[(K—da+ip+ ] ifi=jandl1 <i<K
(K —i)a ifj=i+land 1 <1< K-1
0 otherwise.

(17)



Solving a model using the matrix geometric method
involves: 1) computing the R matrix, using the procedure
in (3) and (4), for the repetitive part, and 2) solving the
system of linear equations corresponding to the northwest
corner of the generator matrix, i.e., solving By, as defined
by (2) and (13). As long as both matrices are “reasonably
small,” we could obtain an efficient solution. Computing
the R matrix, i.e., Step 1) above, requires a computational
cost of O(K?®). However, By is very large. The number of
states corresponding to it is

K-1
L+ Fi+ Y UF —Ri1)+ K(Fg 1 +1— Rg 1)
=2

Given the original Markov process M, let us partition the
state space S into K disjoint sets S;, where

SZ:{(Zij) | (z7j,l)€Sandj§l} 1=0,.,K. (18)

Then, for Step 2) above, the exact analysis requires a
computational cost of O((ng+ni+ne+mng+...+ CK)S),
where n; is the dimension of S;, for 0 <7< K — 1, and Cx
refers to the number of states in Sy with Fx_; + 1 or less
customers (refer to Fig. 1).

One approach to reducing the computational com-
plexity is to partition M into subparts, solve each
subpart separately, and then combine the solutions, i.e.,
through the method of decomposition [3]. In our model,
we can partition M into K subparts, each correspond-
ing to set S;, for 0 <i < K. Solving each S; separately
will allow us to lower the computational cost (the
computational cost of solving the aggregate model is
only O(K?); see Section 4.3 for details). More specifi-
cally, the cost for solving all K subparts will be
O((n9)*) + O((n1)®) + O((n2)°) + ... + O(Gk), where Gg
refers to the cost of solving Sk. This is much smaller than
the original computational cost if we can show that Gk is
also “small.”

Note that Si is infinite, but also has a matrix geometric
structure. That is, we can partition the state space of Sk into
disjoint sets B;, i € {0,1,---}, where

BU:{(i,j,K)GSKZZ.SFK_1+1} (19)

B,={(,j,K)€Sk:i=Fg1+14+n} n>1, (20)

and the matrices A; are given in (15)-(17). We can then
apply the solution of Section 3.1. In this case, the
computational cost for computing R is also O(K®) and,
thus, Gx = O((Ck)*) + O(K?).

For the applications where the number of servers, K, is
large, we expect a significant improvement in computa-
tional complexity when using the decomposition method.
What remains to be determined is whether it is possible to
partition M and solve each S; separately. This is the topic of
the following section.

4.2 Partitioning of M

If we could partition the state space of the original Markov
process M into disjoint sets, then we could use stochastic
complementation (see Section 3.2) to compute the condi-
tional steady state probability vector for each set, given that
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Fig. 2. State transition diagram for the aggregated process.

the original Markov process M is in that set. By applying
the state aggregation technique [3], we can aggregate each
set into a single state and then compute the steady state
probabilities for the aggregated process, i.e., the probabil-
ities of the system being in any given set (see Section 4.3).
Last, we can compute the individual (unconditional) steady
state probabilities of the original Markov process M [3];
these can in turn be used to compute various performance
measures. Unfortunately, the basic problem here is that we
are not able to find special structure in the original model,
such as the “single entry” structure exploited in Theorem 3,
which can aid in determining the matrix Z (refer to (11)).

4.2.1 Alternative Approach

If, on the other hand, we could alter our model such that the
single entry structure would exist, then we would be able to
take advantage of Theorem 3 and, in essence, “disentangle”
the partitions and solve each one separately. This would
give us an approximate solution of the original model. If, in
addition, we were able to alter the original model such that
not only did we have the special structure, but were also
able to obtain provable (performance) bounds, then we
would also be able to bound the error due to this
approximation. The bounding technique used in solving
the model of Section 2 is given in Sections 5 and 6, where we
illustrate how to construct and solve the upper and lower
bound models as well as prove that these models do indeed
provide bounds on the desired performance measures.
Numerical results illustrating that 1) our bounds are tight
and 2) the bounding technique results in significant
computational savings are given in Section 8.

4.3 Analysis of the Aggregated Process

In this section, we briefly describe the analysis of the
aggregated process, which is needed once the conditional
steady state probabilities for the disjoint sets of states are
computed. For each [, 1 <[ < K, we can aggregate all the
states in S; into a single state. The transition state diagram
of the resulting aggregated process is illustrated in Fig. 2.
The transition rates of the aggregated process can be
computed as follows:

o= A (21)

J=1

i=1,2,...,K—1 (22)

geeey

i
pi=py jm(Ria+1,44) i=12.. K  (23)
j=1

where m;(F;,j,i) and m;(R;—1 +1,7,1) are the conditional
steady state probabilities, conditioned on being in set S;.
(We show how to obtain these, for each of the bounds, in
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Sections 5 and 6.) The aggregated process depicted in Fig. 2
is a simple birth-death process and, hence, the correspond-
ing steady state probabilities are very simple to compute
(refer to [16]).

For each I, 0 <[ < K, we need to determine: 1) m;(i, j) the
conditional state probabilities of all states in S;, given that
the system is in S;, and 2) n((), the steady state probability of
being in state [ of the aggregated process. Then, the steady
state probability of each individual state (3, j, 1) in M can be
expressed as

(i, 4,1) = m(i, j)m (1)

4.4 Computation of Performance Measures

In this section, we briefly discuss computation of perfor-
mance measures for the model of Section 2. Given the
steady state probabilities, we can compute various perfor-
mance measures of interest. More specifically, we can
compute many performance measures which can be
expressed in the form of a Markov reward function, R,
where R =3, ., 7(i, j, 1) R(i, j,1) and R(i, j,1) is the reward
for state (¢, j,{). Two useful performance measures are the
expected number of customers and the expected response
time.

We can easily compute Ng, the expected number of
customers, given that the system is in S, for 0 <! < K —1,
by expressing it as a Markov reward function, where
R(i,7,1) =4 (and, then, the expected response time is
computed using Little’s result [22]). Computation of Ns,,
the expected number of customers given that the system is
in Sk, is a bit more involved. Specifically,

where (i,4,1) € S). (24)

o0
NSK = Z ’L.7T(Z'7j,K)+Z(FK,1—}—]_—i—j)ﬂ'je
V(i,j,K)€By J=1
= Y in(if, K)+ (Fxa+1)(1—me)  (20)
v(i,j,K)€By
+m (I —R) e

Note that 7(7, j, K) in the first summation term is simply
one of the components of m),, which we defined in
Section 3.1.

5 UprPER BOUND

In this section, we describe two models which can provide
upper bounds on the desired performance measures for the
model described in Section 2, namely, the mean number of
customers and the mean system response time. For both
upper bound models, we begin by illustrating the idea
through the construction of these models. Then, for the first
upper bound model, we present our proof of the fact that it
does indeed result in an upper bound on performance
metrics of interest. Last, we give a computational procedure
for obtaining the desired performance measures. For the
second upper bound, we omit the proof and the computa-
tional procedure as they are similar in nature to the proof
and computational procedure of the first upper bound
model.

5.1 Upper Bound Model

The basic idea for the construction of the upper bound
model, M7, is as follows: We alter several transitions in the
original model while satisfying the criteria that the new
model will: 1) provide a (hopefully tight) upper bound on
the desired performance measures and 2) be a simpler model
to solve. As pointed out in Section 4, we would like to solve
this model using the decomposition method. The difficulty
with applying this approach to the original model is the
existence of multiple entry states in S;, from both S;_; and
Si+1- Thus, we will construct the upper bound model by
altering transitions in the original model and creating a
single entry state “somewhere” in ;. Intuitively, we will be
modifying the departure processes, as compared to the
original model, such that M7 will have fewer active servers.
That is, M} and M will “see” the same arrivals, but, at any
given moment, M7 will have the same or fewer number of
servers processing these arrivals. Note that these judicious
modifications of the departure process will allow us to have
a tight upper bound as well as an efficient computational
procedure (see Section 8).

We begin at the lowest level—for instance, in the case of
Fig. 1, we begin at level Ss. To achieve the upper bound, we
can alter the following transitions (which are indicated by
dashed transition lines in Fig. 3). The original transition
from state (R, + 1,2,3) to state (R,,2,2) is changed to a
transition to state (Rs, 1, 2), at the same rate. In addition, the
original transition from state (Ry + 1,3, 3) to state (Rs,2,2)
is changed to a transition to state (R;, 1, 2), at the same rate.

In general, we can describe the upper bound version of
our model, M7, as follows: We can construct a correspond-
ing Markov process, M}, with the following state space S"':

S = {(NY, N, L) | N7 2 0,
Ngl € {071727"'7K}7L111 € {07172>~'->K}}7

where N} is the number of customers in the queuing
system, IV is the number of activated servers, and L is the
level to which the state belongs (see Section 2 for an
explanation of the “level” notation). The transition structure
of MY is the same as that of the original process M, given in
(1), except for the transition corresponding to a change of
levels due to a departure (line 5 in (1)). The upper bound
model transitions that replace this original transition can be
specified as follows:

(i,5,1) — (i —1,min(j,l—1),l—1)
pl{ (i—1=R,e R)A(Il=k+1)A(1<2)} 26)
(4,7,) — (—-1,1,1-1)

(

gul{(i—-1=Re RA)AN(I=k+1)A(1>3)},
where 1{z} is an indicator function of z.

5.1.1 Second Upper Bound Model

An alternative upper bound model can be constructed by
considering arrivals rather than departures, as was done
above. As in the first upper bound model, we strive to
satisfy the criteria that the new model will: 1) provide a
(hopefully tight) upper bound on the desired performance
measures and 2) be a “simpler” model to solve. Again, the
alterations of transitions are done to create a single entry



Fig. 3. State transition diagram for the upper bound Mj.

state “somewhere” in S;, but, instead of altering departure-
related transitions, we alter arrival-related transitions.
Intuitively, we will be modifying the arrival processes, as
compared to the original model, such that Mj will have
fewer active servers. That is, M5 and M will “see” the same
arrivals, but, at any given moment, Mj will have the same
or fewer number of servers processing these arrivals. Note
that these judicious modifications of the arrival process will
allow us to have a tight upper bound as well as an efficient
computational procedure.

The transition structure of Mj is the same as that of the
original process M, given in (1), except for the transition
corresponding to a change of levels due to an arrival (line 2
in (1)). The upper bound model transitions that replace this
original transition can be specified as follows:

G,5.0) — (i+1,51+1)
M{(i=F e F)Al=KAI<1)} o)
(4,7,0) — (i+1,1,14+1)

MN{(G=FeF)A(l=kAl>2)}.

u

An example of Mj is illustrated in Fig. 4, where the
modified transitions (as compared to the original model of
Fig. 1) are indicated by dashed lines.

The proof that M provides an upper bound on the
desired performance measures is similar to the proof given
in Section 5.2 in the context of M. Likewise, the numerical
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computation of performance measures using My is similar
to the numerical computations given in Section 5.3 in the
context of M.

5.2 Proof for the Upper Bound Model M7

In this section, we give a theorem and the corresponding
proof that MY provides an upper bound on the mean
number of customers and the mean response time of the
original model M. Using the state notation defined in the
previous section, we have the following notation for the
original model M, [N(t), Ny(t), L(t)], where N(t) is the
number of jobs waiting in the queue at time ¢, N,(t) is the
number of activated servers at time t (where
0 < Ny(t) < K), and L(t) is the level to which the state
belongs at time t. Similarly, we define the state vector for
the upper bound model M7 as [N} (t), N¥(t), L (t)].

We first give a definition of stochastic comparison [25]
that will be useful in our proof and then state the theorem.

Definition 2. Let X and Y be two real valued random
variables. X is stochastically less than Y (X <,Y) iff
PlY < t] < P[X < t] Vt.

Theorem 4. If N(0) <y N;'(0), then we have N (t) <q N;'(t) Vt.

Proof. We shall use a sample path analysis argument [24],
[33] to show our result. Below, we compare the two
systems on a specific sample path (which is accom-
plished through coupling [33]). If we can show that the
above-stated relationship holds on a “generic” sample



Fig. 4. State transition diagram for the upper bound M3.

path, then it follows that the corresponding stochastic
relationship holds as well. We couple [21] the initial total
number of customers in both systems such that N(0) <
Nj/(0) and condition on the three possible events that can
occur in these systems, namely: 1) an arrival event, 2) a
server activation event, and 3) a service event. We also
couple the two systems (M and M) through the arrival
process, i.e.,, whenever there is an arrival to one system,
there is also an arrival to the other system. Finally, recall
that the exponential assumptions (for 1) server activation
and 2) service times) guarantee that the remaining time
to the next server activation or the next service event is
also an exponential random variable with the same
parameter.

Let {t,} be a sequence of times where each ¢
corresponds to the ith system event (i.e., either arrival
or server activation or service). We then prove the above
statement by induction.

Basis step. For ty = 0, the result follows from the initial
coupling of these two variables and, therefore,
N(0) < N}(0).

Inductive step. Assume that the hypothesis holds for
the first n events. We then show that it also holds for the
(n + 1)st event by distinguishing each type of an event as
follows:

e  Arrival event: In the original system M, we have
N(ty+1) = N(t,) + 1. Since we do not reject any
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arrivals in the upper bound model M}, we also
have Nj(ty+1) = N{(t,) +1 and, therefore,
N(tn+1) < Nf(thrl)'

Server activation event: During any server activa-
tion event, the total number of customers in the
system remains the same in both the original
model M and the upper bound model MY.
Therefore, N(t,41) < N{(tpi1).

Service event: To show that the stochastic relation
holds between the two models, we perform the
following “pairing” of servers. We number the
(homogeneous) servers in both systems, from 1 to
K. When there is a departure from server j in one
system and server j in the other system is busy,
we force a departure from server j in the other
system as well. (Note that this is another
legitimate form of coupling due to the assump-
tion of exponential service times.)

Let K,.4(t) (K,(t)) be the number of activated
servers at time ¢ in model M (M7). We apply the
following mapping in both models. If the number
of customers N(t) < K, i4(t) in model M, then
these customers reside on the “first” N(¢) servers.
Similarly, if there are Nj'(¢) < K, (t) customers in
model MY, then they also reside on the “first”
N{'(t) servers. Hence, if a departure occurs from
some server other than N(t) (similarly, N{'(t)), we



just “reshuffle” the customers to satisfy this
constraint. (Again, this is a legitimate operation
due to the assumption of exponential service
times, i.e., we can “move” a customer from one
server to another and resample its service time,
because the remaining service time of a customer
in our system is an exponentially distributed
random variable with the same parameter as its
original service time distribution).

We distinguish between three possible cases of
the service event, depending on whether we have
a busy or an idle server in each of the two
systems. That is, a departure from server j occurs
in one of the systems and we consider how this
event affects both systems.

1. Server j is busy in both systems and,
thus, both systems experience a departure
of one customer. Then, clearly, we have
N(tnﬂ) < Nylu(tnwtl)'

2. Server j is busy in M but not in Mj,
thus there is a departure in M only.
The fact that N(t,) < Nj'(t,) before this
event means that server j has not yet
been activated in My{. (Recall that the
number of activated servers in M is at
least as high as in MY).) Thus, the
relationship is still maintained and we
have N(t,41) < N(t,) < Ni(t,) = Ni‘(tns1),
ie, after this event N(t,11) is strictly less
than N{'(tp41).

3. Server j is busy in Mj but not in M and,
thus, there is a departure in M only. The fact
that N(t,) < N{(t,) before this event means
that server j is not busy in M, ie., in fact
N(t,) < N{(t,) and N(t,) < Kpyg(t,) before
t,+1. Hence, the relationship is maintained
and we have N(t,41) < N{(tn+1)-

By removing conditions on the initial state of the system,
arrival times, server activation times, and service event
times, we have that N(t) <y N}(t) Vt. O

Let R and R} be the random variable denoting the
response time of customers in models M and Myj,
respectively. Then, we have the following corollary.
Corollary 1. E[R] < E[RY].

Proof. Let N =lim; ., N(t) and N} = lim;_.., N{(t) (note
that the limit’s existence in the distributional sense is
justified because of the geometric tail in the models).
Based on the previous theorem, we have E[N] < E[N}].
Since both systems are subjected to the same external

arrival process with rate )\, by Little’s result [22], we have
E[R] < E[R{]. O

5.3 Numerical Computation for Model MY

In this section, we present a numerical computation
procedure for the upper bound model Mj. Our goal here
will be to partition the upper bound model into disjoint sets
and apply the stochastic complementation approach of
Section 3.2. Let us first define the following notation:
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1 K
S =Js and S/ =Js;,
=0 i=l
where (for ease of notation) S;, 0 <1 < K, is defined as in
(18), but with respect to the upper bound model M7. Then,
we can state the following theorem.

Theorem 5 (Multiple entries). Given an irreducible Markov
process, MY, of Section 5.1, with state space S et us
partition the state space into two disjoint sets S, and S,
for 3 <1< K. The transition rate matrix of this Markov
process is:

Qs 57,
Qs s, ]

Qs;,sl+
QS;—I S’
where @Q, ; is the transition rate submatrix corresponding to

transitions from partition i to partition j. Then, v, and z,
1 <k <mn,in (12) are as follows:

fgu ifk=(R+ 1,50 and1 <5<
= {0 otherwise
T (P12 = 1)) Qe 1), +1,00)
Z::l Tt (B9l =1))ae,_y ie1).(F g +1.0)

ifk=(R-1+1,5,0),1<j<land
n=(F_1+1Lzl)andl <z <l-1

0 otherwise,

Zkn =

where m(n) is the probability of being in state n conditioned
on being in S; and q; ; is the transition rate from state i to state
J in M. Then, the stationary state probability vector, m s+ is
given by (10).

Proof. This follows from the definition of a stochastic
complement. O

A very similar theorem can be stated for constructing a
stochastic complement for Qs;.s;; we omit it in the interests
of brevity. Given these theorems, we can construct the
stochastic complement for each set S; and compute the
conditional steady state probabilities.

Let us now present the numerical computation proce-
dure for the upper bound model Mj. The basic idea is that
we first compute the steady state probability vector given
that the system M7 is in a particular set, namely, S; for
0 <! < K (this procedure is described below). Then, we
compute the aggregate state probabilities for each S; as
described in Section 4.3. Based on these two values, we can
compute the individual steady state probabilities as well as
the desired performance measures.

We now concentrate on computation of the steady state
probabilities given that the system M7 is in a particular set
S;. Let N, denote the expected number of customers, given
that the system is operating in S;, 0 <! < K. For S, the
conditional steady state probability is clearly equal to 1 and
Ns, = 0. For &, there is a single exit state to S; and a single
entry state from S;, where i € {0,2}. Therefore, we can
apply Theorem 3 twice, fold the transition from state
(F1,1,1) to state (Ry,1, 1) with rate A and from state (1,1, 1)
back to (1,1,1) with rate p and compute the steady state
probability vector, given that the system is in S;. Once this
is obtained, Ng, is easily computed.
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Level Sy has a single entrance state from level S;3 and
also a single entrance state from level S;. Therefore, we can
apply Theorem 3 again and fold both transitions from states
(F5,1,2) and (F3, 2, 2) to state (R, 1,2), each at the rate of A.
In addition, we can fold both transitions from states (R; +
1,1,2) and (R; + 1,2,2) to state (F1 + 1,1,2), the former at
the rate of 1 and the latter at the rate of 2. At this point, we
can compute the steady state probability vector, given that
the system is in Sy, using a variety of methods (refer to [32]).
Once this is done, we can easily compute Ng,.

For level S;, where 3 <1 < K — 1, we first note that there
is a single entry state from the states in S;;;. Therefore,
using Theorem 3, we can fold the transitions from state
(F1,7,1), where 1 < j </, to state (Ry,1,1), each with a rate
equal to A. On the other hand, there are multiple exit states
to S;-1 and multiple entry states from S;_; to ;. Since we
have computed the conditional steady state probabilities,
given that the system is in S;_; in a previous step, using
Theorem 5, we can determine exactly how to fold these
transitions from the exit states (R;—1 + 1,7,{) back to the
entry states (F;+1,7,l). Then, we can compute the
conditional steady state probabilities, given that the system
is in &;, using a variety of methods (refer to [32]). Once the
conditional steady state probability vector is determined,
we can easily compute Ng, for 3 << K —1.

The computation of the conditional steady state
probabilities for set Sy is somewhat different. First,
observe that we can apply Theorem 5 to fold the
transitions from the exit state (Rx_1+ 1,7, K) back to
the entry states (Fx_1+1,5,K). Since the state space
cardinality of Sk is infinite, we cannot use standard
numerical methods (such as the power method) to compute
the conditional steady state probabilities in this case.
However, since the Markov process corresponding to Sk
has special structure, i.e., a quasi-birth-death version of the
matrix geometric form, the remainder of the solution can
proceed as described in Section 4. Note that, although
solving the entire model using the approach of Section 4 is
not computationally efficient, exploiting the matrix geo-
metric form for the solution for Sx is computationally
efficient since, in this case, By is relatively small, on the
order of (Fx_1 — Rx—1) x K, and R is also relatively small,
on the order of K x K.

6 LoweR BounD

In this section, we describe two models which can provide
lower bounds on the desired performance measures for the
model described in Section 2, namely, the mean number of
customers and the mean system response time. The
intuition behind the construction of the lower bound
models is similar to that of the upper bound models. We
alter several transitions in the original model while
satisfying the criteria that the new model will: 1) provide
a (hopefully tight) lower bound on the desired performance
measures and 2) be a “simpler” model to solve.

6.1 First Lower Bound Model

As pointed out in Section 4, we would like to solve our
model using the method of decomposition. Recall that the
difficulty with applying this approach to the original model

was the existence of multiple entry states in S;, from both
S;-1 and S;;1. Thus, we will construct the lower bound
model by altering transitions in the original model and
creating a single entry state “somewhere” in §;. Intuitively,
we will be modifying the departure process, as compared to
the original model, such that /\/tl1 will have more active
servers. That is, /\/ll1 and M will “see” the same arrivals,
but, at any given moment, M will have the same or greater
number of servers processing these arrivals. Note that these
judicious modifications of the departure process will allow
us to have a tight lower bound as well as an efficient
computational procedure (see Section 8).

We begin at the lowest level, for instance, in the case of
Fig. 1, we begin at level S3. To achieve the lower bound, we
can alter the following transition (this is indicated by the
dashed transition line in Fig. 5). The transition from state
(R2+1,1,3) to state (R, 1,2) is changed to a transition to
state (R, 2,2), at the same rate.

In general, we can describe the lower bound version of
our model, Mll, as follows: We can construct a correspond-
ing Markov process, M}, with the following state space S":

ST =A{(N, Ny Ly) | Ny 2 0, Ny € {0, 1,2,
L €40,1,2,...,K}},

K}7

where N! is the number of customers in the queuing
system, N, is the number of activated servers, and L} is the
level to which the state belongs (see Section 2 for
explanation of the “level” notation). The transition structure
of M) is the same as that of the original process M, given in
(1), except for the transition corresponding to a change of
levels due to a departure (line 5 in (1)). The lower bound
model transitions that replace this original transition can be
specified as follows:

(4,7,0) — (i —1,min(j,l —1),1 —1)
jul{(i—1=Ry e RIA(I=k+1)A(l<2)}
(i,4,1) (i—1,1—1,1—1)
gpl{(i—1=Ry e R)A(I=k+1)A (1> 3)},

(28)

—

where 1{z} is an indicator function of z.

6.2 Second Lower Bound Model

An alternative lower bound model can be constructed by
considering arrivals rather than departures. As in the first
lower bound model, we strive to satisfy the criteria that the
new model will: 1) provide a (hopefully tight) lower bound
on the desired performance measures and 2) be a “simpler”
model to solve. Again, the alterations of transitions are done
to create a single entry state “somewhere” in S, but, instead
of altering departure-related transitions, we alter arrival-
related transitions. Intuitively, we will be modifying the
arrival process, as compared to the original model, such
that M), will have more active servers. That is, M), and M
will “see” the same arrivals, but, at any given moment, M},
will have the same or greater number of servers processing
these arrivals. Note that these judicious modifications of the
arrival process will allow us to have a tight lower bound as
well as an efficient computational procedure.

The transition structure of M), is the same as that of the
original process M, given in (1), except for the transition



Fig. 5. State transition diagram for the lower bound model M.

corresponding to a change of levels due to an arrival (line 2
in (1)). The lower bound model transitions that replace this
original transition can be specified as follows:

G.4,0) — (i+1,5,1+1)
A{(i=F e F)A(l=kAI<1)} -
(i,5,) — (i+1,1,1+1)

M{(i=F,e F)A(l=k)A(>2)}.

An example of M) is illustrated in Fig. 6, where the
modified transitions (as compared to the original model of
Fig. 1) are indicated by dashed lines.

The proof that M| and M., provide lower bounds on the
desired performance measures is similar to the proof given
in Section 5.2 in the context of M. Likewise, the numerical
computation of performance measures using M} or M) is
similar to that of Section 5.3 in the context of M.

7 APPLICATION TO VOD SERVERS

In this section, we illustrate the utility of threshold-based
queuing models with hysteresis in the design of distributed
systems and, specifically, in the design of multimedia
systems. With technological advances in information and
communication technologies, multimedia on-demand
systems now play a major role in educational applications,
entertainment technology, and library information systems.
In this paper, we use the Video-on-Demand (VOD) systems
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as an example application. (For a survey on the design of a
VOD system, we refer the reader to [5].) Due to the
enormous storage and bandwidth requirements of multi-
media data, such systems are expected to have very large
disk farms. Thus, it would be unrealistic to consider a
centralized design of a video server using a single disk
cluster and/or a single processing node. One difficulty in
designing any large distributed information system is the
choice of data placement techniques. The distribution of
data among the nodes of the system can significantly affect
the overall performance of that system. Inappropriate data
distribution can lead to load imbalance problems due to
skewness in the data access patterns. Specifically, in a large
distributed VOD system, improper data distribution can
lead to a situation where requests for (popular) objects
cannot be serviced, even when the overall capacity of the
system is not exhausted, because these objects reside on
highly loaded nodes, i.e., the available capacity and the
necessary data are not on the same node.

In the recent past, a great deal of CM server designs, e.g.,
as in [1], [4], [9], have focused on “wide” data striping,
where each object is striped across all the disks of the
system. This approach “spreads” the load more or less
evenly across all disks and avoids the problem of
“partitioning resources,” e.g., as in [1], which is illustrated
in Fig. 7a, where object A is striped across N disks, i.e., its
first block, A;, is placed on the first disk, its second block,
A, is placed on the second disk, and so on (to simplify the
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Fig. 6. State transition diagram for the lower bound M.

figure, we only illustrate the disks in this case, i.e., rather
than also illustrating the processing nodes, the buffer space
etc., as in Fig. 7b). However, this approach suffers from the
following shortcomings: A processing node can only be
attached to a limited number of disks, therefore, a multi-
node system must be considered and, thus, some form of
synchronization in delivery of a single object from multiple
nodes must be addressed (depending on the system and
network architecture, this can be a significant problem). In
addition, it is not practical to assume that a system can be
constructed from homogeneous disks, i.e., as the system
grows, we would be forced to use disks with different
transfer and storage capacity characteristics. Having to
stripe objects across heterogeneous disks would lead to
further complications [19], [31]. Moreover, an appropriate
choice of a striping unit and the communications network
infrastructure dictate an upper bound on the number of
disks over which an object can be striped, beyond which
replication of objects is needed to increase the number of
simultaneous users [4]. Finally, due to the potential need for
communication of video data between the nodes over
which the data is striped, the capacity of the communication
network limits the performance of the distributed
VOD server. This limitation directly affects the scalability
of the VOD server, as shown in [2].

Instead of striping each objects across all the nodes of the
system, we can take a hybrid approach, as in [34], and

§F2+1, 3, 3% §F2+2, 3, 3% bl
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constrain the striping to a single node and replicate popular
objects on several nodes in order to provide sufficient
bandwidth capacity to serve the demand for these objects.
This is illustrated in Fig. 7b, where each objects resides
completely on a single node, but multiple copies of the
same object may exist, e.g., there are two copies of object A.
That is, one could take advantage of load balancing
properties of striping by allowing an object to be striped
within the disks of the same node, as illustrated in Fig. 7b,
but avoid the shortcomings of striping by replicating across
nodes [2].

In order to achieve better load balancing characteristics,
the number of replicas of each object should change as the
object access patterns change. Thus, another approach to
dealing with skews and changes in data access patterns is to
replicate objects dynamically, as demand for it arises. (For
instance, in [2], we showed that hybrid designs, in
conjunction with dynamic replication techniques, are less
dependent on interconnection network constraints, pro-
vide higher reliability, and can be properly sized so as to
result in cost-effective end-to-end systems.) Hence, dy-
namic replication of objects in distributed VOD systems is
the focus of our analysis. Note that we do not advocate a
particular approach to designing VOD servers, but rather
show how our modeling methodology can be applied to
one viable approach to VOD design (which, e.g., is taken
in [34]).
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Fig. 7. Data placement. (a) Striping. (b) Replication.

Since dynamic replication could result in significant
system overheads [18], e.g., in the form of additional I/O
disk retrievals, memory buffers, and communication band-
width, in designing such a system, we must address the
following questions: 1) What are efficient replication
algorithms for video data which do not incur significant
system overheads and 2) what are appropriate trigger
mechanisms for initiating replication or deletion of a video
object. A poor choice of triggers can cause the system to
perform unnecessary replication or deletion, which can lead
to a waste of system resources, e.g., if a deleted object is
replicated in the “near” future.

There are multiple classes of replication policies that can
be studied. Briefly, the basic trade-off is as follows: The
shorter the replication period, the faster one can achieve a
load balanced system which should result in better system
performance. On the other hand, more “aggressive”
replication policies (which result in shorter replication
periods) can interfere with “normal” operation of the
system (e.g., by using more resources for replication) and,
thus, may result in worse system performance. The topic of
“appropriate” replication policies is outside the scope of
this paper (refer to [18]). However, efficient solution
techniques discussed earlier, as well as their application to
VOD systems discussed in this section, should aid
designers in efficient experimentation with the different
replication policies. In this paper, we concentrate on the
second question above, i.e., the question of proper trigger
mechanisms. More specifically, we model threshold-based
trigger methods with hysteresis behavior. Since the cost of
altering the number of replicas is significant, the use of a
threshold-based approach can result in a cost-controlled
creation and deletion of these replicas, according to the
changes in the access patterns [2]. The “general” benefits of
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using threshold-based policies with hysteresis are discussed
in Section 1.

We model the distributed VOD system with K nodes
and threshold-based replication of video objects (i.e.,
decisions of addition and removal of object copies are
threshold-based), as a K-server threshold-based queuing
system with hysteresis. This model is defined as follows:
Each copy of an object is modeled as a server in this
queuing system; thus, in the remainder of the paper, the
two terms are considered equivalent. Note that, since a
single copy of an object residing on one of K nodes of the
VOD server is able to “serve” multiple, let us say a
maximum of C, requests for the same video, each of the
K servers in the queuing system is able to serve up to C
simultaneous requests and will be modeled as an M/M/C
server [16].

Moreover, replication and deletion of objects is equiva-
lent to addition and removal of servers. Clearly, the creation
of a new copy of an object is not an instantaneous operation,
hence the need for the noninstantaneous activation of
servers. However, it is fair to consider deletion of a replica
as an instantaneous operation since all we basically have to
do is mark the object as deleted (depending on the details of
the algorithms used, some amount of time might be
required to delete a copy; however, this would be a
relatively small amount of time, i.e., relative to the amount
of time it takes to create a new copy).

Fig. 8 illustrates our model of the VOD system as a
threshold-based queuing system with hysteresis and non-
instantaneous server activation with the following para-
meters: 1) « is the time needed to activate a server (i.e.,
create a copy) and is a function of the replication policy
used, as well as the amount of server resources available for
replication, 2) 6 is the number of streams currently being
served by all active servers when some of the servers have
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Fig. 8. Application of model to VOD system.

not been activated yet, as prescribed by the threshold
vectors, and is a function of the current user population as
well as the replication policy, and 3) § is the number of
streams currently being served by all active servers when
all servers have been activated, as prescribed by the
threshold vectors, and is a function of the current user
population. In general, «, §, and 3 are all functions of the
current state (i.e., (4, 7,1)) and the specific values of o and ¢
depend on the replication policy being used. For instance,
in the case of a replication policy which requires one stream
worth of server resources to accomplish the replication
(refer to [18] for details), 6 and [ can be expressed as
follows: 6 = min(i,j* (C — 1)) and 5 = min(i, j * C), where
C is the maximum number of streams that one server can
serve simultaneously. These minor modifications to the
model parameters, as compared to the ones depicted in
Fig. 1, are needed because 1) a single copy of an object is
able to service up to C simultaneous video streams and
2) some of the servers’ resources are potentially being used
for replication purposes.

In summary, we can use the methodology described in
the previous sections to analyze candidate designs (e.g.,
various threshold settings) and the subsequent performance
of a distributed VOD system. Next, we illustrate such an
application of our methodology to a VOD system through
numerical examples.

8 NUMERICAL EXAMPLES AND VALIDATION OF
BOUNDS

In this section, we present numerical examples which
empirically illustrate the computational savings as well as

the tightness of the bounds given in Sections 5 and 6
(theoretical results are given in Section 4.1).

We define the computational savings as the number of
flops used to solve the original model M (as described in
Section 2) divided by the number of flops used to solve the
modified model(s) (as described in Sections 5 and 6), i.e.,
computational savings which are greater than 1 are a
reduction in computational cost.

We begin with the original model of a threshold-based
queuing system (refer to Section 2) with hysteresis (i.e.,
without considering the extensions given in Section 7). We
have three cases where the number of servers, K, is equal to
5,7, and 10, respectively. For K = 5, the threshold vectors
are F = (25,50,75,100) and R = (12,24,49,74), for K =7,
the threshold vectors are F = (25,50, 75,100, 125,150) and
R =(12,24,49,74,85,110) and, for K = 10, the threshold
vectors are F = (25,50,75,100,125,150,175,200,225) and
R =(12,24,49,74,85,110, 130, 160, 190). For all values of K,
C is set to 30 and a = 1.0. The service rate p is equal to 1.

TABLE 1
lllustration of Computational Savings with Different Values of K

K A System | Computational

utilization Saving
5 | 15.0 0.10 8.457
5 | 145.0 0.96 8.331
7 | 21.0 0.10 13.264
7 1 203.0 0.96 13.174
10 | 30.0 0.10 28.500
10 | 290.0 0.96 28.370
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TABLE 2
Tightness of Bounds for a = 204
A Utilization | MY expected | M3 expected /\/ll1 expected Mlz expected % Error
response time | response time | response time | response time
30.0 0.1 0.033333 0.033333 0.033333 0.033333 —
60.0 0.2 0.169967 0.169967 0.169967 0.169967 —
90.0 0.3 0.216872 0.216872 0.216872 0.216872 —
120.0 0.4 0.244564 0.244550 0.244517 0.244517 0.013311
150.0 0.5 0.254905 0.254916 0.254809 0.254809 0.037531
180.0 0.6 0.278554 0.278533 0.278424 0.278424 0.039070
210.0 0.7 0.299463 0.299451 0.299287 0.299287 0.054792
240.0 0.8 0.313259 0.313247 0.313081 0.313081 0.052827
270.0 0.9 0.328654 0.328680 0.328450 0.328450 0.062080
290.0 0.96 0.383838 0.384005 0.383705 0.383705 0.034608
TABLE 3
Tightness of Bounds for o = 10u
A Utilization | MY expected | MY expected /\/ll1 expected /\/ll2 expected % Error
response time | response time | response time | response time
30.0 0.1 0.033333 0.033333 0.033333 0.033333 —
60.0 0.2 0.170016 0.170016 0.170016 0.170016 —
90.0 0.3 0.217060 0.217060 0.217060 0.217060 —
120.0 0.4 0.244746 0.244718 0.244653 0.244653 0.026672
150.0 0.5 0.255113 0.255136 0.254922 0.254922 0.074931
180.0 0.6 0.278765 0.278722 0.278504 0.278504 0.078124
210.0 0.7 0.299720 0.299697 0.299369 0.299369 0.109608
240.0 0.8 0.313505 0.313481 0.313150 0.313150 0.105630
270.0 0.9 0.328935 0.328989 0.328528 0.328528 0.123905
290.0 0.96 0.384070 0.384406 0.383805 0.383805 0.069003
TABLE 4
Tightness of Bounds for o = p
A Utilization | MJ expected | MY expected ./\/ll1 expected Mlz expected | % Error
response time | response time | response time | response time
30.0 0.1 0.033333 0.033333 0.033333 0.033333 —
60.0 0.2 0.170891 0.170891 0.170891 0.170891 —
90.0 0.3 0.220488 0.220489 0.220485 0.220485 0.001309
120.0 0.4 0.248024 0.247733 0.247051 0.247051 0.276299
150.0 0.5 0.258797 0.259123 0.256944 0.256944 0.721062
180.0 0.6 0.282530 0.282085 0.279912 0.279912 0.776326
210.0 0.7 0.304202 0.304118 0.300824 0.300824 1.095207
240.0 0.8 0.317900 0.317658 0.314356 0.314356 1.050094
270.0 0.9 0.333847 0.334613 0.329931 0.329931 1.187057
290.0 0.96 0.388147 0.391621 0.385635 0.385635 0.651192

We vary the arrival rate so that we have either a lightly
loaded system (with system utilization of 0.1) or a highly
loaded system (with system utilization of 0.96). Table 1
depicts the computational saving. Note that the solution of
all models (i.e., upper and lower bound models and the
original model) is carried out using the MATLAB numerical
solutions package. From this table, it is clear that we have
large computational savings which grow as the model
grows, e.g., either as the number of servers, K, increases
and/or as the differences between the forward and reverse
thresholds, F; and R;, grow.

For the original model defined in Section 2, Tables 2, 3,
and 4 illustrate the tightness of the bounds for the expected
response time metric under the following settings: K =5,
F =(25,50,75,100), and R = (12,24,49,74). The service
rate y is set to 60, the average arrival rate A is varied from
30 to 290, while « is equal to 204, 104, and p, respectively. In
all cases, the percentage of error (%E) is defined to be:

spread of the bounds « 100%,

(30)

percentage error =
lower bound

where: 1) the “spread of the bounds” is the difference
between the minimum of the two upper bounds and the
maximum of the two lower bounds and 2) “lower bound”
refers to the maximum of the two lower bounds. As can be
seen from these tables, the obtained bounds are tight. The
percentage error is less than 1.2 percent for all illustrated
cases, even under high system utilization.

In Fig. 9, we depict the expected response time of the
system under various threshold vectors. Since the percen-
tage error is very small, we simply plot the expected
response time given by the tighter of the two upper bounds.
As can be seen from this figure, significant differences in the
expected response time are produced by different choices of
the system threshold settings. This occurs under low,
moderate, and high system utilizations. Thus, our efficient
solution methodology for threshold-based models can be of
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Fig. 9. Expected response time under different threshold vectors, K = 5

great use in computational-cost-efficient experimentation
with system parameter settings.

In the remainder of this section, we give numerical
results for the model corresponding to the VOD applica-
tions. We set C =30, 6 = 8 =min(i,j*C), and K =7. In
Tables 5, 6, 7, and 8, we depict the tightness of the bounds
under different values of the forward threshold vector (F),
the reverse threshold vector (R), and the rate of server
activation («). We note that we experimented with other
values of K, F, R, and «, and the results were qualitatively
similar; thus, we do not present them here. (Also note that
“upper bound” refers to the minimum of the two upper
bounds and “lower bound” refers to the maximum of the
two lower bounds.)

As can be seen from these tables, the obtained bounds
are tight for various values of F, R, and «. The percentage
error is less than 0.8 percent for all illustrated cases. This
implies that, even when server activation rate « is relatively
small, as compared to the service rate y (e.g., & = 0.01 and
u = 1.0), we can still obtain tight performance bounds with
significantly reduced computational costs. It is also im-
portant to point out that the percentage error is small, even
under high system utilizations. This is due to the fact that, in
the heavily loaded cases, the system spends most of its time

and p = 1.0.

operating in the unmodified region (or the tail end) of the
state space. Furthermore, note that a system with thresh-
old settings that correspond to less aggressive replication
but more aggressive dereplication of video objects (i.e.,
Table 6) can achieve comparable performance (in terms of
expected response time) to a system with more aggressive
replication of video objects (i.e., Tables 5 and 7). Systems
with more aggressive replication policies tend to have a
higher operational cost (i.e., there is a cost associated with
operating a greater number of servers, hence the original
motivation for use of threshold-based policies). Thus, by
properly setting the threshold vectors, we can obtain
lower system operating costs without a loss in system

performance.
In summary, an important contribution of our metho-

dology is that it facilitates efficient (in terms of computa-
tional cost) experimentation with possible system designs
(e.g., as in the case of the VOD server application) for
systems using threshold-based resource management
policies with hysteresis behavior.

TABLE 5
Tightness of Bounds for K =7, a = 1.0, C = 30, F = [25,50, 75,100, 125, 150], R = [12, 24,49, 74, 85,110]
A Utilization upper bound expected lower bound expected % Error
response time response time
21.0 0.1 1.000000255862361e+-00 1.000000255862172e+00 1.891819549916208e-11
42.0 0.2 1.000000309530742e+-00 | 1.000000000075587e+00 | 3.094551548109907e-05
63.0 0.3 1.000334567282336e+00 | 1.000000000000281e+00 | 3.345672820548488e-02
84.0 0.4 1.000593861233585e+00 | 1.000000000000034e+00 | 5.938612335509650e-02
105.0 0.5 1.000288177154562e+00 1.000000000000001e4-00 2.881771545608644e-02
126.0 0.6 1.000312596911268e+00 | 1.000000000000063e+00 | 3.125969112049790e-02
147.0 0.7 1.000041019171975e+00 1.000000009869768e+00 | 4.100930180243217e-03
168.0 0.8 1.000025498901918e+00 | 1.000025385141033e+00 | 1.137579971716200e-05
189.0 0.9 1.004170068823032e+00 1.004170068777971e+00 | 4.487371745694744e-09
203.0 0.96 1.074135437109156e+00 | 1.074135437109065e+00 | 8.475494325397538e-12
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TABLE 6
Tightness of Bounds for K =7, a = 1.0, C = 30, F = [30, 60, 90, 120, 150, 180], R = [20, 50, 80, 110, 140, 170]

NO. 3, MARCH 2002

lower bound expected
response time

% Error

18
A Utilization upper bound expected
response time

21.0 0.1 1.000104623069284e+00
42.0 0.2 1.000343607715703e-+00
63.0 0.3 1.001834121837977e+00
84.0 0.4 1.004670331219891e-+00
105.0 0.5 1.003747332082535e+00
126.0 0.6 1.004389788045049e-+00
147.0 0.7 1.006136578130167e-+00
168.0 0.8 1.006148865501521e-+00
189.0 0.9 1.007465564351478e+00
203.0 0.96 1.074796618224905e+00

1.000104623068440e+00
1.000009245892043e+00
1.000049244341178e+00
1.000045861652261e+00
1.000023048231660e+00
1.000023817269108e+00
1.000023759082076e+00
1.000043826844377e+00
1.004180690086566e+00
1.074137906388060e+00

8.439032515723980e-11
3.343587322152371e-02
1.784789606010720e-01
4.624257491541032e-01
3.724198014696275e-01
4.365866792916622e-01
6.112673816572111e-01
6.104771104290813e-01
3.271198398197550e-01
6.132469889828774e-02

TABLE 7
Tightness of Bounds for K =7, a = 1.0, C = 30, F = [20, 40, 60, 80, 100, 120], R = [10, 25, 45, 50,90, 110]

lower bound expected
response time

% Error

A Utilization upper bound expected
response time

21.0 0.1 1.000000001708815e+00
42.0 0.2 1.000117054064421e+00
63.0 0.3 1.000348503764478e+00
84.0 0.4 1.001141127258548e+00
105.0 0.5 1.003067276012174e-+00
126.0 0.6 1.001607716264445e-+00
147.0 0.7 1.000046759779983e+00
168.0 0.8 1.000025501396460e+00
189.0 0.9 1.004170068823262e+00
203.0 0.96 1.074135437109158e+00

1.000000000741306e-+00
1.000000000000175e+00
1.000000000000098e+00
1.000000000000045e+00
1.000000000000003e~+00
1.000000000000062e+00
1.000000009869766e+00
1.000025385141034e+00
1.004170068777979e+00
1.074135437109065e+00

9.675091831628907e-08
1.170540642460933e-02
3.485037643799696e-02
1.141127258502854e-01
3.067276012170818e-01
1.607716264382953e-01
4.674990975561479¢-03
1.162524750891850e-05
4.509483996580184e-09
8.661541761808702e-12

TABLE 8
Tightness of Bounds with Vary o where K =7, C = 30, F = [25,50, 75,100, 125, 150], R = [12,24, 49, 74, 85, 110]

lower bound expected
response time

% Error

1.001227478821129e+00
1.000072716973847e+00
1.000019436839250e+00
1.000000255862172e+00
1.000000000349613e+00
1.000000000010455e+00
1.074135437111578e+00
1.074135437110102e+00
1.074135437109956e+00
1.074135437109065e+00
1.074135437107651e-+00

2.031395644199525e-05
2.705923006178263e-08
4.372506190325745e-09
1.891819549916208e-11
0.000000000000000e+00
0.000000000000000e+00
2.598042888207738e-08
1.125586990286464e-10
4.738008047267083e-11
8.475494325397538e-12
1.674426927702693e-12

A « Utilization upper bound expected
response time

21.0 0.01 0.1 1.001227682210043e+00
21.0 0.10 0.1 1.000072717244459e+-00
21.0 0.20 0.1 1.000019436882976e+00
21.0 1.00 0.1 1.000000255862361e+4-00
21.0 5.00 0.1 1.000000000349613e+00
21.0 10.00 0.1 1.000000000010455e+00
203.0 0.01 0.96 1.074135437390643e+00
203.0 | 0.10 0.96 1.074135437111311e+00
203.0 0.20 0.96 1.074135437110465e+00
203.0 1.00 0.96 1.074135437109156e400
203.0 5.00 0.96 1.074135437107669e+00
203.0 | 10.00 0.96 1.074135437107182e+-00

8.475494325412467e-13

1.074135437107173e+00

9 CONCLUSIONS

We have considered a K-server threshold-based queuing
system with hysteresis in which the number of servers,
employed for serving customers, is governed by forward
and reverse threshold vectors. The main motivation for
using a threshold-based approach was that many applica-
tions incur significant server setup, usage, and removal
costs. The motivation for the use of hysteresis was to control
the cost during momentary fluctuations in workload. An
important and distinguishing characteristic of our work is
that we considered the time to add a server to be nonnegligible,
which is a more accurate model for many applications.

In this work, we have shown that an exact solution of the
model can be obtained but at fairly significant computa-
tional costs. We then developed an efficient method for
computing the steady state probabilities of a multiserver

threshold-based queuing system with hysteresis, which, in
turn, allowed computation of various performance
measures. More specifically, we proposed modified models,
which we showed to have an efficient computational
solution, and used them to bound the performance
measures of interest for the original model. These bounds
are tight and the reduction in computational cost, as
compared to the exact solution, is significant. We have also
illustrated how we can apply this methodology to a VOD
system. The example cases presented in the paper resulted
in less than a 1.2 percent error (due to bounding) with an
order of magnitude reduction in computational cost. The
reduction in computational cost should be even greater for
larger systems (for instance, we expect to get three orders of
magnitude reduction in computational cost when the size of
the system grows to approximately 40 servers). It is useful
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to point out that our bounding methodology can be applied
to a heterogenous server system if we include an additional
constraint which specifies server activation and deactiva-
tion order, e.g., from the slowest to the fastest server during
activation and from the fastest to the slowest server during
deactivation. An interesting open problem might be to find
an ordering of server activation and deactivation that
would optimize system operational cost under given
performance constraints.

In conclusion, an important contribution of our metho-
dology is that it facilitates efficient experimentation with
possible system designs for systems which use threshold-
based resource management policies with hysteresis beha-
vior. Such experimentation is either inaccurate or infeasible
(for reasonably large systems) with previously existing
solution methodologies.
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