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Abstract—Peer-to-peer (P2P) streaming tries to achieve scal-
ability (like P2P file distribution) and at the same time meet
real-time playback requirements. It is a challenging problem still
not well understood. In this paper, we describe a simple stochastic
model that can be used to compare different downloading strate-
gies to random peer selection. Based on this model, we study the
tradeoffs between supported peer population, buffer size, and
playback continuity. We first study two simple strategies: Rarest
First (RF) and Greedy. The former is a well-known strategy for
P2P file sharing that gives good scalability by trying to propagate
the chunks of a file to as many peers as quickly as possible. The
latter is an intuitively reasonable strategy to get urgent chunks first
to maximize playback continuity from a peer’s local perspective.
Yet in reality, both scalability and urgency should be taken care
of. With this insight, we propose a Mixed strategy that achieves
the best of both worlds. Furthermore, the Mixed strategy comes
with an adaptive algorithm that can adapt its buffer setting to
dynamic peer population. We validate our analytical model with
simulation. Finally, we also discuss the modeling assumptions and
the model’s sensitivity to different parameters and show that our
model is robust.

Index Terms— Marginal probability model, peer-to-peer (P2P),
performance analysis, streaming, video.

1. INTRODUCTION

IDEO streaming over the Internet is already a widely de-

ployed service. The engineering of video streaming from
a server to a single client is well studied and understood. This,
however, is not scalable to serve a large number of clients si-
multaneously. In recent years, a clever solution has emerged,
peer-to-peer (P2P) video streaming, which works surprisingly
well. A number of commercial systems are in service today,
such as [1] and [2].

The idea is very simple: Let the peers, other users interested
in the same content, help the source of the content in its distri-
bution. The more peers are interested in the content, the more
helpers in distributing the content, so it becomes scalable. The
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original mechanism is P2P file sharing. Each peer obtains an en-
tire file before this possession is known by others. Other peers
may then request for the file. This mechanism is quite adequate
for small files, such as a picture or an audio file. For a large
file, be it video, software, or other content, this mechanism can
incur a large delay. It is like a store-and-forward system without
pipelining.

A new kind of P2P algorithm soon got developed, known as
P2P file downloading. The most well-known example is BitTor-
rent [3]. In this case, the file is divided into a number of chunks.
In trying to download a file, a peer simultaneously engages in
downloading (or, more precisely, sharing) all the chunks of that
file. If there are N chunks in the file, one can visualize the situa-
tion as [V file-sharing sessions carrying on at the same time. The
result is that all peers can become fully engaged in file sharing
all the time, and the delay in propagating the whole file to all
peers can be minimized. The key is that there needs to be a good
schedule of which peer is to get which chunk from which other
peer at each moment.

There are two main approaches to this scheduling problem:
structured and unstructured. In the first case, the basic idea is to
form K distribution trees, each a spanning tree from the source
to all the peers. The chunks of the file are distributed via dif-
ferent trees in a round-robin fashion. The amount of service
each peer provides is related to the total out-degree it has in
these spanning trees, and the timing of the service depends on
the peer’s position in different trees. The challenge of the struc-
tured approach is to come up with the distribution trees that fully
utilize all the peers, which intuitively will also minimize delay.
The difficulty with this approach is how to deal with peer churn
and how to get the peers to provide their information reliably
for such centralized planning. In the second case, there is no
structure; peers just download from each other based on local
information of what is available and what is needed. Besides
selecting which chunks to download (share), each peer must se-
lect which neighbor peer to exchange with (known as peer se-
lection) and how fast to request and serve others (we call that
load balancing). All these mechanisms can be implemented as
distributed algorithms, as exemplified by BitTorrent [3] and sev-
eral other systems [1], [2]. Perhaps due to its simplicity (being
distributed) and robustness (to peer churn), the unstructured ap-
proach is very popular in practice. It is quite surprising that the
seemingly rather chaotic unstructured approach works at all.
Thus, the unstructured approach is also receiving a lot of atten-
tion from the academic community [4]-[17].

P2P streaming can be thought of as a special case of P2P
file downloading. The focus of P2P streaming is no longer only
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delay and throughput, but also the more stringent playback per-
formance. For this reason, some algorithms that are considered
optimal for file downloading may not be optimal for streaming.!

In the study of P2P content distribution algorithms, whether
it is for file downloading or video streaming, practice is
leading theory. In practice, chunk-selection, peer-selection, and
load-balancing algorithms must all be considered and designed
to work together to achieve the best results. The methodology
for evaluation is often based on controlled network experi-
ments, such as PlanetLab, Emulab, or experimental deployment
in campus networks. Practical systems are usually designed to
be upgradable so that new versions can be tested in real-life
environments. In spite of the success of practice, there is still
great interest in theoretical models of these P2P distributed
algorithms that are able to provide the insights of why these
algorithms work, explain the design tradeoffs, and provide a
way to understand the robustness, i.e., the sensitivity of these
algorithms to various system parameters.

In the theoretical models of P2P algorithms, it is usually not
possible to model all the aspects (chunk selection, peer selec-
tion, and load balancing) at the same time. To focus on one as-
pect (or two) only, it is possible to assume an abstract setting in
which only one problem is relevant. For example, in studying
chunk-selection algorithms, we can assume peer selection is
random, and all peers have the same capacity so that there is no
need for load balancing. This is the approach taken by [5] and
[6]. In [10], in order to focus on the load-balancing problem,
it is assumed that all peers already have all the content so that
chunk selection is not needed.

The main results of the current paper are already published in
[9]. The Zhou—Chiu—Lui model in [9] models the buffer state of
peers; by assuming homogeneous peers,? and by making an ap-
proximation via an independence assumption,? it is possible to
write down the probability of buffer occupancy in terms of a set
of differential equations. Hence, the continuity, or the playback
performance, can be explicitly computed and studied relative to
various chunk-selection algorithms and system parameters. This
analysis allows us to understand the basic tradeoffs in chunk se-
lection and propose a near-optimal yet practical algorithm. In
this paper: 1) to improve the presentation, we reorganize and re-
state the lemmas and propositions; 2) we discuss the optimality
of the proposed algorithms, based on an upper bound; 3) we add
a detailed discussion of the contribution of these results by com-
paring it to some recent and significant related works.

The organization of the paper is as follows. Section II dis-
cusses the basic probabilistic model. Section III goes into the
details of how to model different chunk-selection strategies.
Section IV provides various numerical examples, solved by
both the discrete and the continuous version of our model, as
well as validated by simulation. Section V discusses the rea-
sonableness of the assumptions in our model, while Section VI
describes application of our protocol to real protocol design.
The conclusion is given in Section VII.

I'This is the reason that some results in our paper are somewhat different from
the conclusions in other recent papers [S], [7], [15]. We will discuss this point
in more detail in the Section VI.

2All the peers are probabilistically the same.

3All the buffer positions can be considered independently.
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Fig. 1. Sliding window mechanism of the buffer B.

II. BASIC MODEL

We begin by defining notations and stating assumptions.

Let there be M peers in the network.# There is a single server
that pushes chunks of (video) content, in playback order, to the
M peers. New chunks are generated at the rate of one chunk per
time slot. If the server selects the one peer randomly (to push
a chunk) in each time slot, each peer would be receiving new
chunks at the rate of 1/M.

Each peer maintains a buffer B that can cache up to n chunks
received from the network. We refer to the buffer positions ac-
cording to the age of the chunks stored: B(n) is reserved for the
chunk to be played back immediately; B(1) is used to store the
newest chunk that the server is distributing in the current time
slot. In other words, when the server is distributing chunk ¢ (at
time t), if ¢ > n — 1, then chunk ¢ — n + 1 is the chunk being
played back by that peer. After each time slot, the chunk played
back in the previous time slot is removed from B and all other
chunks are shifted up by 1. In other words, the buffer acts as
a sliding window into the stream of chunks distributed by the
server, as shown in Fig. 1. Each buffer space is initially empty
and gets filled by the P2P streaming protocol, either from the
server or from other peers. The goal is to ensure B(n) is filled
in as many time slots as possible, so as to support the continuous
video playback.

Let p(4)[t] denote the probability that the ith buffer space,
B(i), of peer k is filled with the correct chunk at time ¢. We as-
sume this probability reaches a steady state for sufficiently large
t, namely pg(7)[t] = pr (7). We call pg(4) the buffer occupancy
probability of the kth peer.’

Let us first consider a simple case that the server is the only
means for distributing chunks to peers. Then, the buffer occu-
pancy distribution can be expressed as follows:

pr(l) =p(l) = — Yk @)
pr(i+1)=pi+1)=p() i=12,..., Vk. (2)

Eq. (1) reflects the odds for the local peer to be picked by the
server, while (2) reflects the fact that successful downloading
only occurs at the first location of the buffer (from the server).
The playback performance, given by p(n), is equal to 1/M and
would obviously be very poor for any M > 1. In general, we

n—1

4As we will see later, if M is reasonably large, then our results are essentially
independent of M, nor do they require M to be a constant.

SNote, the buffer occupancy probability is not a probability distribution of
since it is not necessarily true that Y ps(7) = 1.
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refer to p(1) as the input rate from the server, observed at each
peer. This input rate must be greater than or equal to 1/M. The
server’s upload bandwidth to sustain an input rate of p(1) is
p(1)M. This shows the scalability problem when the server is
the only means of distributing the content. In the rest of the
paper, we assume p(1) = 1/M unless stated otherwise.

To improve playback performance, peers help each other
when asked. We model the unstructured P2P mechanism as a
pull process: Each peer selects another peer in each time slot
to try to download a chunk not already in its local buffer. This
P2P downloading model has the following implications.

* A peer may be contacted by multiple other peers in a single
time slot. In this case, it is assumed that the selected peer’s
uploading capacity is large enough to satisfy all the re-
quests in the same time slot. If peers are selected randomly,
the probability that it will be selected by & > 0 peers is
B(k), where

= () () ()

for k > 0. The likelihood of being selected by many other
peers is low, e.g., when there are M = 100 peers, the
probability that it is selected by more than three peers is
only around 1.8%.

 If the selected peer has no useful chunk, the selecting peer
loses the chance to download anything in a time slot. This
simplifying assumption can help us to derive closed-form
expression.t

Furthermore, we assume homogeneous peers,” namely, all
peers use the same strategy to select other peers and chunks to
download at the same downloading rate. The implication is that
in the steady state, all peers have the same distribution p(7) for
the buffer occupancy, as in the server-only downloading case
above. In this paper, we only consider random peer-selection
strategies. Intuitively and from previous results in the literature,
we know peer-selection strategy is an important factor when
peers have different uplink bandwidth or when the paths to dif-
ferent peers have different bottleneck capacity. In these sce-
narios, peers are nonhomogeneous and asymmetric. Once we
assume peers are homogeneous, however, it is reasonable to
adopt the random peer-selection strategy to keep the problem
tractable.

Once a peer is selected, a chunk for downloading must also
be specified. The chunk-selection policy can be represented by
a probability distribution g, where ¢(i) > 0 gives the proba-
bility that the chunk needed to fill B(%) is selected. Hence, (2)
becomes

pi+1)=p(i)+q(i) i=1,...,n—1 (3)
with the boundary condition of p(1) = 1/M. For i > 0, ¢(7) is
expected to be greater than O since there is a nonzero probability

that a peer may be found to fill B(%) if it is not already filled. This

6This type of assumption is also made in other P2P file-sharing models [14].

"This assumption is made in many similar works on the modeling of P2P
networks, such as [5], [6], and [16]. We make the same assumption so that the
problem is tractable.
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implies p(7) is an increasing function of 4, hence collaboration
by peers improves the playback performance as expected.
Consider a particular peer k, and assume it selected peer h
to download a chunk. The selection of a particular chunk to
download is based on the following events.
* WANT(k,7): B(i) of peer k is unfilled; we abbreviate this
event as W (k,1).
* HAVE(h,7): B(i) of peer h is filled; we abbreviate this
event as H(h,1).
* SELECT(h, k,1): Using the chunk-selection strategy, peer
k cannot find a more preferred chunk than that of B(7) that
satisfies the WANT and HAVE conditions; we abbreviate
this event as S(h, k, ).
Therefore, we can express ¢(7) as

q(i) = Pr[W (ki) N H(h,i) 0 S(h, k)]
= Pr[W(k,i)] Pr[H(h,i)|W(k,i)]
x Pr[S(h, k,i)|W (k,i) 0 H(h,i)]. o

The following assumptions help us to simplify (4).

* All peers are independent: The probabilities of the buffer
state at the same position for different peers, p(i), are the
same. Therefore, Pr[W(k,i)] = 1 — p(3).

* There is a large-enough number of peers, so that knowing
the state of one peer does not significantly affect the prob-
ability of the state at another peer. This implies that

Pr[H(h,i)|W(k,i)] ~ Pr[H(h,7)] = p(i).

* The chunks are independently distributed in the network.
The probability distribution for position ¢ is not strongly
affected by the knowledge of the state at other positions.
This allows us to write the selection function as

s(i) = Pr[S(h, k,i)|W (k, i) N H(h,i)] ~ Pr[S(h, k,q)]

which is independent of the actual state at position z. As
we will show, this assumption is more accurate for some
chunk-selection strategies than others.

Based on the above assumptions, (4) is

q(1) = [1 = pr(D)] pn(i)s(i) = [1 = p(i)] p(i)s(i). ~ (5)

Since each of the terms in (5) is a probability (in particular
p(i) < 1and p(i)s(i) < 1), (3) becomes

p(i+1) =p(i) + [1 = p(i)] p(1)s(i) < 1. (6)

The chunk-selection strategy s(7), the focus of this study, is
discussed in the next section.

Each peer tries to download one chunk from another peer in
a time slot, which is reasonable for streaming.8 Because of this
assumption, a peer’s chunk-selection strategy s(i) is a proba-
bility distribution, although s(i) may not sum up to 1 because
there is always some probability that no useful chunk can be
downloaded. The choice of s(4) has a great effect on playback
continuity. To help understand what the best s(4) can possibly
achieve, we can relax the assumption, by allowing each peer to

8For a progressive downloading system, a peer may try to download faster
than that.
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fetch all useful chunks from the selected neighbor, in each time
slot. This is equivalent to letting s(¢) = 1 for all ¢. This un-
constrained chunk-selection strategy can be used to derive an
upper-bound playback continuity achievable by any s(7). After
setting s(7) = 1, (6) becomes

p(i+1) = p(i) +p(i) (1 - p(i)). @)

The upper-bound continuity is derived from the solution of
this equation, which will be used later to consider optimality of
chunk-selection strategies.

Another quantity of interest is the number of time slots it
takes for a chunk to be distributed to all peers, which is a lower
bound for the buffer size n. Intuitively, we know this lower
bound must be greater than [log, (M )] because, in each time
slot, the number of peers possessing a particular chunk can at
most double from the previous time slot. Eq. (7) can give us a
tighter lower bound on the buffer size, taking into consideration
of the achieved playback continuity. This will be discussed in
detail in the next section.

III. CHUNK-SELECTION STRATEGIES

The simple stochastic model in the previous section set the
stage for us to model and analyze different chunk-selection
strategies. We begin by considering some familiar strategies.
The first one is the “Rarest First strategy” (RF), which is widely
adopted in P2P file distribution protocol BitTorrent [8], [16]
and P2P streaming protocol CoolStreaming [4]. The second one
is the “Greedy strategy” (or the nearest-deadline-first strategy),
and the last is the Mixed strategy, which is a combination of the
above two algorithms.

By intention, a peer using the Rarest First strategy will select
a chunk that has the least number of copies in the system. To de-
scribe the Rarest First strategy from the perspective of the buffer
B = {B(n),B(n —1),...,B(1)}, let us consider a particular
peer, say peer k. From (3), we know that p(4) is an increasing
function of 7, therefore p(i + 1) > p(i) fors = 1,...,n — 1.
Since peers are homogeneous, this inequality implies that the
expected number of copies of chunk in B(7 + 1) is greater than
or equal to the expected number of copies of chunk in B(z).
Therefore, under the Rarest First strategy, peer k will first select
B(1) to download if B(1) is not available in ks buffer. If chunk
B(1) is already downloaded before or B(1) is not available in
its neighbor, peer k will select B(2) to download if B(2) is not
in k’s buffer and so on.

For the Greedy strategy, peer k will select a chunk that is
closest to its playback deadline. From buffer B’s point of view,
B(n) is the closest to playback time, then B(n — 1) is the next,
and so on. Therefore, peer k will first try to download B(n) if
it is not available in k’s buffer. If the chunk B(n) is already
downloaded before or B(n) is not available in &’s neighbor, the
peer k will select B(n — 1) to download if B(n — 1) is not
in k’s B, and so on. Note that the Greedy strategy seems intu-
itively the best strategy for streaming at the first sight. Through
our analysis, we will show that while Greedy may be the best
for playback from a single peer’s point of view, it is often too
shortsighted from a system’s point of view when the peer pop-
ulation is large. Instead, Rarest First is very effective in max-

imizing peer contribution as the population grows, hence pro-
ducing good system-wide playback performance. On the other
hand, the strength of Greedy is that it takes less buffer space,
incrementally, to achieve higher continuity.

In trying to achieve the best of both worlds, we propose a
new strategy, called the Mixed strategy, which is a combination
of Rarest First and Greedy. In the following, we derive analyt-
ical results to analyze and compare the performance of these
strategies. The key is to model the selection function s(z) for
each case, substitute it into the probabilistic model, and derive
the buffer state probability distribution.

A. Greedy Strategy

We first present the analysis of the Greedy strategy. This
strategy aims to fill the empty buffer location closest to the play-
back time first. The chunk-selection function s(%), which is the
probability of selecting B(), can be expressed as follows:

-1

(i) = <1—%) FH (p) + (1 =p()7) . ®

j=it1

Since the event that downloading does not occur for a buffer at
position B(j) (for j > i)is =(W (k, j)H(h, 7)), the probability
of this event is hence

Pr [ (W (k, 5)H (b, )] = pr(G) + (1 = pu(3)) (1 = pu(3)) -
©)
Eq. (8) is based on the event that the server selects other peers
to upload, and the chunk selection does not occur for all those
positions closer to the deadline than B(%), with the buffer posi-
tion independence assumption stated earlier. Note, the first term
of (9) is the probability the local peer already has the chunk for
B(j). The second term is the probability that the local peer does
not have the chunk for B(j) and the selected peer (k) does not
have that chunk either. The rather complicated formula (8) for
s(%) has a surprisingly simple alternative form.
Lemma I: The selection function s(z) for the Greedy strategy
can be expressed as

s(i)=1—(p(n)—p(i+1))—p(1) fori=1,...,n—1.

The proof is presented in the Appendix. Intuitively, it can be
understood as follows. The term (p(n) — p(i 4 1)) is the proba-
bility that any particular chunk is downloaded into buffer posi-
tions between B(n) to B(i+ 1); the term p(1) is the probability
that any particular chunk is downloaded directly from the server.
The above expression for s(¢) is thus the probability that neither
of these two scenarios are true.

Substituting the above formula for s(4) into (6), we get the
following difference equation for p(1):

p(i+1) = p(i) +p(i) (1 = p(i)) (1 = p(1) — p(n) + p(i + 1))
fore=1,...,n—1. (10)
B. Rarest First Strategy

The Rarest First strategy is the opposite of the Greedy
strategy. Based on (3), we know p(4) is an increasing function



46

in ¢.9 This means the expected rarest chunk is the latest chunk
distributed by the server that is missing from all the local peers’
buffer. Therefore, the chunk-selection function s(i) for the
Rarest First strategy can be expressed as

()= (1- 47 T () + (—0)).

=1

Y

The meaning of each term is similar as before. The main point
is that the search for missing chunks starts from the latest chunk
B(1), then to B(2), and so on. Again, (11) has a simple form.

Lemma 2: The selection function s(7) for the Rarest First
strategy can be expressed as

The proof is presented in the Appendix. The rationale for this
result is the same as that for the Greedy strategy. The term p(7)
represents the probability that any particular chunk is down-
loaded into buffer positions B(1) to B(i — 1). Therefore, s(¢)
as shown above represents the probability that this event does
not occur.

Again, substituting s(¢) into (6), we have the following dif-
ference equation:

p(i+1) = p(i)+p(i) (1 = p(i))* fori=1,....,n—1. (12)

C. Buffer Size, Peer Population, and Continuity

The difference equations for p(7) in (10) and (12) help us
express the relationships between the following key parameters:

e n, the buffer size;

e M, the population size (or equivalently p(1), which is
equal to 1/M);

* p(n) is the playback continuity because p(n) is the prob-
ability of the availability of the most urgent chunk. If
chunk 7 is unavailable for playback, the users will suffer
quality degradation. Therefore, p(n) is an important per-
formance metrics of the system. For convenience, we also
use the expression € = 1 — p(n) in some results.

To derive closed-form solutions, it is most convenient to con-
sider the fluid form of (10) and (12) as continuous differential
equations. We use the symbol y for p(i), and the symbol z for
1. This means

y=p(i) dy=pi+1)—p)
dr = 1.

T =1
The discrete equations now become

dy _y(-y)y—p()+e dy _
dz 1+y2—y dz

respectively. Based on these equations, we obtain the following
results.

9In general, p() is a nondecreasing function. However, for both Greedy and
Rarest First, ¢(¢) > 0 for all buffer positions, so p(7) is an increasing function.
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Lemma 3: For the Greedy strategy, the sensitivity of buffer
size n to peer population M (or p(1) = 1/M) and disconti-
nuity e can be expressed as

on o 1 8n~_ 1
ap(1) ep(l) O ep(1)

Here, On/dp(n) represents the sensitivity of buffer size n
to peer population size M (note p(1) = 1/M) when other
things such as continuity are held constant. Similarly, On /O
represents the sensitivity of buffer size n to continuity (note,
p(n) = 1 =€), while M is held constant. Let us defer the inter-
pretation of this result after we introduce the next lemma.

Lemma 4: For the Rarest First strategy, the sensitivity of
buffer size n to peer population M and discontinuity € can be
expressed as

(13)

8n~ 1 anN 1 1

ap(1) ~ p(1) e T2 e

The proofs are included in the Appendix.

Egs. (13) and (14) characterize the key difference between the
Greedy and Rarest First strategies. Due to the negative gradient
of n relative to p(1) and e, respectively, an immediate observa-
tion is that more buffer space is needed for larger peer popula-
tion size M (or smaller p(1)) while other things (such as conti-
nuity) are held constant; similarly, more buffer space is needed
for higher continuity (or smaller €) while population is held con-
stant. This is intuitive. Buffer size is directly proportional to the
delay of playback relative to the source, which we will refer to
as source delay. Other papers have analyzed the relationship be-
tween population size, delay, and throughput in P2P file down-
loading (e.g., [17]), which are consistent with our observation
here.

The above equations also allow us to compare the Rarest First
and Greedy strategies. For incremental increase in peer pop-
ulation, the need for additional buffer space when using the
Rarest First strategy is 1/e¢ times less than that for the Greedy
strategy. This means that the Rarest First is more scalable than
the Greedy strategy as the peer population increases.

On the other hand, for given peer population size, in order
to increase continuity, the need for additional buffer space by
the Greedy strategy is p(1)/e times less than that for the Rarest
First. This means for sufficiently large p(1) (hence sufficiently
small M), the Greedy strategy can achieve better continuity than
Rarest First. This will be illustrated in Section IV.

The above observations are more formally summarized as
follows.

Proposition 1: Based on the P2P streaming model with large
peer populations, we asymptotically have the following.

1) As peer population increases, both the RF and Greedy

strategies need larger buffers to maintain same continuity.

2) For incremental population increase, RF needs less buffer
size to maintain continuity.

3) For given population size, Greedy can eventually achieve
better continuity than RF for sufficiently large buffer size;
conversely, RF is better than Greedy given limited buffer
size.

The proof, parts of it already evident from this discussion, is

included in the Appendix.

(14)
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D. Mixed Strategy

The intuition about the different strengths of the Greedy and
Rarest First strategies lead us to propose a Mixed strategy that
can take advantage of both of these chunk-selection algorithms.

Let the buffer B be partitioned by a point of demarcation m,
1 < m < n. The Rarest First strategy is used first with buffer
spaces B(1), ..., B(m). If no chunk can be downloaded using
the Rarest First strategy, then the Greedy strategy is used with
the other partition of the buffer, B(m+1), B(m+2),..., B(n).
When m = n — 1, the Mixed strategy is the same as the Rarest
First strategy; when m = 1, the Mixed becomes the same as the
Greedy strategy. Through variation of m, a peer can adjust the
download probability assigned for each partition.

The buffer state probability for B(1) to B(m) satisfies the

following equations:
p(l) =1/M
p(i+1) =p(i) + p(i) (1 = p(i))*

The probability for B(m + 1) to B(n) can be derived from
(10) by substituting p(1) with p(m)

p() +p(i) (1=p(i)) (1= p(m) —p(n))
1—p(i) (1=p(7))

These equations can be solved numerically.

Recall that at the end of Section II we derived a way to com-
pute an upper bound on continuity that can be achieved by any
chunk-selection strategy. This upper bound can help us prove an
asymptotic notion of optimality for the Mixed strategy. Assume
the needed buffer length for different strategies is a function of
discontinuity € and number of peers M, thatis n = f(e, M).

Proposition 2: For large peer population M and small dis-
continuity €, asymptotically, the Mixed strategy is optimal in the
sense that the most significant terms for its needed buffer size
is the same as that needed by the strategy achieving the upper
bound.

Proof: The proof is presented in the Appendix.

This result is rather surprising. The proof shows that
Mixed can achieve the same order of required buffer length
as that needed for the upper-bound strategy,!0 yet RF and
Greedy cannot. In other words, Mixed always needs a smaller
buffer than RF or Greedy to achieve a given continuity (or
discontinuity ¢).

Proposition 3: For a given common buffer length, the conti-
nuity of the Mixed strategy is asymptotically (large M and small
€) always better than that of Rarest First or Greedy: five better
or the same continuity as RF or Greedy;

Proof: The continuity p(n) is an increasing function of
buffer length n for all strategies. In Proposition 2, we proved
that the Mixed strategy can always achieve the same continuity
as Rarest First or Greedy with fewer buffers. It therefore follows
that Mixed can always use additional buffer space to achieve
better continuity than Rarest First or Greedy. [ |

The basic idea of the Mixed strategy is to use the front part
of the buffer, from position 1 to m, to implement the Rarest
First strategy to help distribute the content to as many peers

fore=1,...,m—1.

for i >m.
(15)

p(i+1)=

100f course, this is not exactly saying Mixed is optimal. What strategy is
optimal is still an open problem.

as quickly as possible; and to use the tail part of the buffer,
from position m + 1 to n, to implement the Greedy strategy
to maximize continuity.

For given buffer length and population size, a good question
is how to find the optimal m. This can be done by a brute force
search since there are only n possible values for m. In prac-
tice, there is an adaptive method to search for the suboptimal m
in very few steps. This makes it easy to implement the Mixed
strategy even for dynamic peer populations. This point will be
discussed in detail next.

IV. NUMERICAL EXAMPLES AND ANALYSIS

In this section, we consider a number of numerical examples
to illustrate our results and their application to protocol design.
For each numerical example, the results can be computed in the
following ways.

Discrete Model: The discrete model is given by the differ-
ence equations corresponding to the various chunk-selection
strategies [(1), (3), (5), (8), (11), (15)]. The solution for the
buffer state distribution p(7) can be derived numerically. For the
Greedy strategy, we first give p(n) a fixed value, substitute
steps inversely from p(n) to p(1), and then compare p(1) with
1/M. If p(1) is approximately equal to 1/M, then we get the
solution; else p(n) is adjusted accordingly, and the inverse sub-
stitution process is repeated. For the Rarest First strategy, sub-
stitute p(4) from p(1) until p(n). For the Mixed strategy, we
compute the first part, from 1 to m, using the same substitution
process as that for Rarest First, and then compute what is left
using the same trick as that for Greedy.

Continuous Model: The continuous model is given by the
differential equations in (10) and (12). In general, they can be
solved numerically using MATLAB. For some relationships, we
also derived closed-form solutions.

Simulation Model: We built a simulation program based on
our discrete model. There is one server and M peers. The server
pushes one newest chunk to a randomly selected peer in each
time slot. Each peer randomly selects only one other peer to
contact and download one chunk, but may upload at most two
chunks to different neighbors. If a peer is selected by the server
to receive a new chunk, that peer will not download another
chunk from other peers in the same time slot. The peers form an
overlay network where each peer is a neighbor with a subset of
the other peers, randomly selected from the peer population. The
size of the subset is 60 unless noted otherwise. Three chunk-se-
lection strategies—RF, Greedy and Mixed—are run separately
for more than 1000 time slots in each experiment. The values
of various parameters, such as M, n, and average degree, are
specified as part of the description of the experiment. The sim-
ulation model is used to check to what extent the independence
assumption may affect the analytical models, especially in the
case with small peer population. Furthermore, simulation can
produce a lot more details about specific peer behavior and the
dynamics of the system including transient behavior.

Important Parameters: In most experiments, we set the peer
population to 1000, which we think is large enough to validate
our model. The choice of buffer length is based on the likely ex-
pectation that the achievable continuity is high (>99%) to enjoy
a video. The minimum required buffer length derived from the
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Fig. 2. Buffer occupancy distribution for Rarest First and Greedy policies from
discrete, continuous, and simulation models.

formula of the upper bound is about 13 (for M = 1000). There-
fore, it is reasonable to set the buffer length to three times this
minimum size (which is 40) for most experiments.

Experiment A: Comparing Discrete and Continuous Results
With Simulation: Our first task is to compare our discrete model,
the continuous model based on the differential equation approx-
imation, to simulation.

In this experiment, M = 1000 and n = 40. In the simulation,
the number of neighbors for each peeris L < 60. The results are
shown in Fig. 2. There are two groups of curves, one for Greedy
and one for Rarest First. In each group, there are three curves:
one calculated using the discrete iterative equations, one calcu-
lated using the approximate continuous differential equations,
and one from simulation.

We will compare Greedy and Rarest First (as chunk-selection
strategies) later on. At this point, let us focus on the accuracy
of the different methods. First, we note that the analytical re-
sults are reasonably close to the simulation results. Second, we
expect the discrepancy between the discrete model and simula-
tion is mainly due to the independence assumption. For Greedy,
there are fewer chunks in the buffers, hence the independence
assumption is less accurate. Third, we expect the discrepancy
between the discrete and the continuous models is mainly due
to the approximation of p(i + 1) — p(4) by a continuous gra-
dient, which happens to have a bigger effect on the equation for
Rarest First this time. We denote p®(i) to be the value of p(¢)
in simulations and denote p™ (%) to be the value of p(7) in our
model. To study the gap between our model and simulation re-
sults, we define model gap as >, |p®(i) —p™(4)|. Given fixed
buffer length n = 40, the RF and Greedy strategies are run with
different total numbers of peers separately. The result in Fig. 3
shows that the more peers are in the system, the more accurate
is our model.

Experiment B: Comparing Rarest First, Greedy and Mixed:
To compare the three chunk-selection strategies, we keep the
buffer size at n = 40 and set . = 10 for Mixed (this means
the number of buffer positions running Rarest First is 10). The
results (from the discrete model) are shown in Fig. 4. To com-
pare the different strategies for different buffer sizes, we plot the
continuity for buffer sizes between 20 and 50 in Fig. 5. It is ob-
served that Rarest First consistently beats Greedy in continuity.
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Fig. 5. Experiment B: Continuity versus buffer size.

The reason is evident from our analysis and Fig. 2. Rarest First
works hard at distributing new chunks from the server, achieving
a performance not far from the theoretical limit of log, (7). The
Greedy, however, is like a procrastinator, making a great effort
to fill the buffers only near the playback time for each chunk.
From analysis earlier, we also know that Mixed can always out-
perform RF and Greedy. From Fig. 5, we can see that when the
buffer length is larger than a threshold (around 25), the gap be-
tween Mixed and the upper bound becomes quite small.

To further study how Mixed strategy outperforms RF and
Greedy, the continuity gaps between Mixed strategy and other
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strategies are shown with 95% confidence interval in Fig. 6. The
gap is calculated as the mean of the difference continuity minus
1.65 times standard deviation.

Experiment C: Picking the Optimal m in Mixed Strategy: We
now take a closer look at the Mixed strategy. In the last experi-
ment, the parameter used to partition the buffer, n, is a constant.
Here, we fix the buffer size to be 40 and vary m. The perfor-
mance of continuity is plotted against m in Fig. 7.

For continuity, it is quite interesting. There is an optimal m
when continuity is maximized. These two plots show that there
is a knee occurring at m = 10 when a balance of high continuity
is achieved. Another way to view the Mixed strategy is the value
of p(m), which was discussed in Proposition 2. In this numer-
ical experiment, the number of peers is 1000, and the result is
shown in Fig. 8(a) and (b). In the first experiment, the buffer
length is given as 40, while the value of p(m) varies. The con-
tinuity is not very sensitive for the varying p(m). When p(m)
is approximately equal to 0.3, the continuity is best. In the sim-
ulation, we assume p(m) = 0.3. In the second experiment, the
discontinuity is fixed at 0.5%, while p(m) varies. The two fig-
ures show that continuity is not very sensitive when p(m) or m
varies. In the dynamic network, the value p(m) is controlled to
achieve good performance.

Experiment D: Performance for Small-Scale Networks:
Here, we test the relationship between buffer size, population,
and continuity, as studied in Proposition 1.
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Fig. 8. p(m) versus best Mixed strategy. (a) Effect of varying p(m) on con-
tinuity of the mix strategy. (b) Effect of varying p(m) on buffer length of the
Mixed strategy.
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There are three examples in this experiment, and the result
in each case is derived from simulation (the analytical models
are less accurate for small networks). Each result is calculated
based on the average values of 3000 time slots.

In the first experiment, the number of peers in the network
varies from 5 to 15, and each peer sets n = 15. We compare the
continuity achieved by Greedy and Rarest First. Fig. 9 shows
that Greedy achieves better continuity when the number of peers
is sufficiently few relative to the value of continuity (in this case,
9), as we expect. In the second and third experiment, we study
a network with a small peer population. Though peer popula-
tion in the real system is much larger, the small network case
is more appropriate for comparison of different chunk-selection
strategies. In the second experiment, the number of peers is fixed
at M = 40. However, the peers have different quality require-
ments (denoted 1 — ¢) and have to change their buffer length
to meet the requirements. The result is shown in Fig. 10(a). In
the third experiment, we let the peers’ continuity requirement
be fixed at 0.93, but the number of peers (M) varies from 5 to
40. In order to make sure the continuity is larger than 0.93, each
peer has to enlarge its buffer if the number of peers increases.
The result is shown in Fig. 10(b).

The results from these two experiments are consistent with
Lemmas 3 and 4 and Proposition 1: Namely, Greedy is able to
provide a high-quality requirement with less buffer length, while
Rarest First can provide good playback performance for a large
number of peers.

Experiment E: Study of Dynamics: While the analytical
model is able to give us average steady-state system behavior,



50

100 30
g 60 ——Greedy g
- - 20/ —1
D 40 ()
2 2
20 15
0 10
092 094 096 0.98 5 10 15 20 25 30 35 40
Continuity Number of Peers

(a) (b)

Fig. 10. Second and third experiments in Experimen D. (a) Small network with
fixed peers. (b) Small network with fixed continuity.

0.9
P
S
£0.8
c
S
(@]
0.7 —o—Rarest First
——Greedy
——Mix
0.6 ) ) - )
1000 1200 1400 1600 1800 2000
Time Slot

Fig. 11. Continuity of the network simulation.

simulation has the advantage of giving us the dynamic behavior
of specific settings. In this experiment, we simulate the case
of M = 1000 and n = 40 and look at how continuity evolves
over time.

We compare the continuity achieved by different strategies.
We simulate 2000 time slots. The data is taken from time slots
1000 to 2000 to capture the steady-state conditions. In each time
slot, the continuity is the average continuity of all peers, that
is the number of peers being played chunks divided by total
peers. As shown in Fig. 11, Mixed not only achieves the best
continuity, but its continuity is also much more steady than that
of other two strategies.

Experiment F: Adapting the Mixed Strategy to Peer Popula-
tion: Based on our analysis and the numerical examples, we
show that the Mixed strategy can achieve the best continuity
given a fixed peer population size in the network. In reality, the
peer population size is unknown and is likely to change over
time. Here, we describe an algorithm to adaptively adjust the
Mixed strategy’s m to the network dynamics.

In the previous experiments, m is fixed (at 10). One way to
adapt m is by observing of the value of p(m). We can set a target
value for p(m), say p,, = 0.3. When a peer finds the average
value of p(m) is less than p,,, the peer increases m, else the
peer decreases m. In our simulation, every peer calculates the
average value of p(m) for 20 time slots and then decides the
value of m based the average value.

We conduct the following experiment. Let there be 100 peers
in the network initially. After every 100 time slots, another 100
new peers with empty buffer are added to the network, which
means there are 7 X 100 peers in the network after ¢ x 100 time
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slots. For all the peers, the initial value of m is 10. We cal-
culate the average continuity and average value of m for the
initial 100 peers in the network as a function of time. From
Fig. 12(a) and (b), we observe that the average value of m (of
the 100 tagged peers) adapts to the increasing peer population.
Furthermore, the continuity of the Mixed strategy is quite steady
(except a glitch!! between time slot 700-800) compared to that
of Rarest First.

V. ROBUSTNESS OF THE MODEL

For simplicity and tractability, we have made a number of as-
sumptions in the P2P streaming model. It is important to under-
stand the implication of these assumptions. In this section, we
rely on simulation to study the robustness of the model to look
at what happens when some of the assumptions are violated.

A. Discrete Model With Fractional Bandwidth

One basic assumption in the model is about physical band-
width constraints. It is assumed that there is enough bandwidth
in the network to support the playback rate of all peers. In reality,
however, the bandwidth may be limited, so that it is not suffi-
cient to satisfy all peers’ requirement. Assume the total play-
back rate is P, the total download rate of all peers is f x P, and
f is a real number in (0, 1) modeling limited bandwidth. We
show that in this case, only a small adjustment to the chunk-se-
lection function s(7) is necessary to keep our model still fairly
accurate. Because of limited bandwidth, suppose each peer can
only upload a chunk successfully with probability f. The server
still pushes one chunk per time slot. For Greedy, s(n — 1) is
changed to f —(1/M) due to the limited bandwidth. Similar, for
Rarest First, s(1) is changed to f —(1/M). Therefore, the corre-
sponding chunk-selection function for Greedy becomes s(i) =
f = p(1) — p(n) + p(i+), and that for Rarest First becomes
s(4) = f — p(7). The resultant difference equations for the dis-
crete model become

p(i+1) =p(i) + p(i) (1 — p(i))
x (f =p(1) —p(n) +p(i + 1))

fori=1,...,n— L. (16)
p(i+ 1) =p(i) +p(i) (1 — p(i)) (f — p(9))
fori=1,...,n— L. (17)

Uprobabilistically speaking, there is always some chance that a peer with a
new chunk does not get requested by other peers due to random peer selection,
and this initial delay can unfortunately significantly affect the continuity of that
chunk.
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strategy.

The following experiment is designed to validate our discrete
model with a fractional of the bandwidth requirement. In the
simulation experiment, there are 1000 peers. Each peer has a
buffer with length 40. Set the fraction of bandwidth support to
f = 0.7. We run separate experiments using the Greedy strategy
and Rarest First strategy, and compare them to the results com-
puted from the discrete model [(16) and (17)]. Fig. 13 shows the
modified model is quite accurate.

B. Server Using Pull Strategy

In our model, the server is assumed to push the newest chunks
to peers. One question is whether it is possible to do away with
this asymmetry between the server and peers complete, and let
the peers pull the chunks from the server. A simulation experi-
ment is carried out to observe the performance when the server
stops pushing. Again, let there be 1000 peers in the network
and buffer length be 40 for each peer. Fig. 14 shows the re-
sult. The Rarest First strategy is still able to perform reason-
ably well, although continuity reduced by about 20%. However,
for Greedy, the P2P mechanism becomes completely ineffec-
tive. Each peer’s continuity reduces to 1/M, as if there is no
P2P support. The result indicates the assumption that server uses
push is necessary.
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Fig. 15. Buffer occupancy distribution of the network when server talks with a
subset.

C. Vary Size of Server Fan-Out

In the original model, we assume the server randomly pushes
out the newest chunk to the whole network of peers. In reality
however, the server may only be able to push to a subset of
the peers. To study this situation, we changed the simulation to
allow the server to only work with a subset of peers in its push.
The effect of different sizes of the subset is shown in Fig. 15.
When the subset size is greater than a relatively small threshold,
in this case 40 for a total population size of 10 000, the curve has
become quite flat. In a real P2P streaming network, the server
may talk with 60 or more peers. Base on this experiment result,
the full connection of the server, which is an important assump-
tion in our model, will not inflate the P2P streaming system per-
formance significantly.

VI. BRIEF DISCUSSION OF RELATED WORKS

In P2P content distribution, practice is currently leading
theory. A number of operational or experimental P2P systems
have been developed and successfully deployed for file sharing
[3], live streaming [4], [15], and video-on-demand streaming
[11]. Following the success of these systems, there is significant
interest in modeling and analyzing how such systems work
and in understanding the underlying factors that these systems
depend on.

One important question studied by the theoretical papers is
the capacity of the P2P system for disseminating content to a
population of peers, irrespective of whether the overlay P2P
network is structured or unstructured. The general answer is
related to that of the max-flow problem, which can be com-
plicated depending on the network topology. Under the uplink
sharing model assumption and for large peer population, [6]
derived a closed-form upper bound for static populations. Sep-
arately, [13], [14], and [16] studied the problem for dynamic
peer population. Following [8], [16] studied design tradeoff
between system throughput and contribution fairness, indi-
cating the price for achieving optimal capacity will be uneven
contribution. There are a number of extensions to the capacity
bound—taking into consideration of degree limits, availability
of helpers, and other factors—and these references are not
listed here separately.
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Once we know the limit, the important remaining question
is how to achieve the limit. In this regard, there are a number
of studies of distributed algorithms based on the unstructured
approach, notably [5], [9], [12], and [17]. Out of these studies,
[9] was the paper from which the current paper is derived. The
other three papers all studied various chunk-selection algo-
rithms for P2P content distribution. All these papers make the
same abstraction: that the peer-to-peer content exchanges occur
in slotted time. Reference [9] assumes a pull method: A peer
finds another peer to download a chunk of content. The other
three papers assume a push method: A peer pushes a chunk of
content to another selected peer. In most cases, the selection
of a neighbor (to pull or push a chunk) is random. In the case
of pull, there is some chance that two or more peers try to pull
from the same target; in the case of push, there is the chance
that two or more peers try to push to the same peer. In both
cases, the problem can be avoided either by assuming peers are
omniscient and try to avoid such collisions, or by assuming the
number of peers is large so that such collisions occur rarely and
it can be assumed they do not occur.

The work from [9] and the other three papers reach some sim-
ilar, but also some different, conclusions. This is because they
define different metrics. In [5], [12], and [17], the authors define
diffusion rate and (source) delay as general metrics for content
distribution. These metrics are not specifically targeted at file
downloading or streaming. Asymptotically, they are important
goals for any content distribution mechanism. These papers pro-
ceed to prove that certain P2P algorithms can achieve optimal
diffusion and optimal delay. Out of these optimal algorithms,
some require global knowledge, which implies potentially high
message exchange overheads. Most amazingly, it is shown that
a simple chunk-selection algorithm (essentially corresponding
to the rarest first) with random peer selection is proven to be
optimal for both diffusion rate as well as delay.

The model and metric in [9], however, specifically targets P2P
streaming. The model incorporates buffers from each peer, and
each P2P algorithm yields a different steady-state buffer state
distribution. The metric to optimize is defined as the continuity,
or the percentage of peers able to playback the content from
its buffer (of fixed size). Based on this model, [9] is able to
conclude that Rarest First alone is usually not optimal; you can
do better by devoting part of the buffer to fetching chunks that
are more urgent due to the deadline for playback. This is the
first successful effort, to the best of our knowledge, to model
and study P2P streaming algorithms analytically.!? The work
[18] summaries the difference between [9] and works [7]and
[14]. The key difference is that [9] shrinks the space of buffer
state from 2" to n such that the result is manageable, though the
model is not as accurate as [7] and [14].

VII. CONCLUSION

The art of modeling is on the one hand to capture the essential
aspects of the original system, and on the other hand to be simple

12To be fair, from a practical perspective, two other works on P2P streaming
that preceeded [9] are very influential. One is Coolstreaming [4], which first
demonstrated convincingly by experiments that P2P streaming based on un-
structured algorithms can work. The other is BiTos [15], which showed a mixed
strategy works well, although their mixed strategy is somewhat different than
that in [9] and there was no analysis in [15] to back the idea up.
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enough to yield some insights about the original system. We
feel that is what our model accomplished for the P2P streaming
problem. In addition, the insights from our model also lead to
some practical algorithm that can be incorporated into well-es-
tablished systems as improvements.

There are a number of interesting directions for further
studies. We believe the simple probability model can be ex-
tended to analyze other chunk-selection and peer-selection
algorithms. The buffer requirements for P2P streaming are not
the focus of this study and can certainly be more thoroughly
analyzed. Finally, whether there exists an optimal strategy is
still an open problem.

APPENDIX
Proof of Lemma 1: From (6), we have
p(i+1) = p(i) = s(i)p(i) (1 — p(i)) -
From (8), we have

s(i+1)—s(i) = —-p(i+1)).

Note the right-hand side of the above two equations are the
same, except the index ¢ versus ¢ + 1. This means

s+ Dp(E+1)(1

s(i+1)—s(i) =p(i+2) —p(i+1)
n—2 n—2
> G+ =s() =D (Pl +2) ~p(i+1))

s(i) =s(n—1) —p(n) + p(i +1).

From the Eq. (8) of s(¢), we get s(n —1) = 1 —1/M. There-
fore, we have s(i) =1 — p(1) — p(n) + p(i + 1). [ |
Proof for Lemma 2: Again, from (6), we have

= p(i) = s(i)p(i) (1 = p(7)) -
From (11), we have
s(i+ 1) = s(i) = s(i)p(i) (p(i) — 1).

This time, the right-hand side of these equations are again the
same except for the sign (and index off by 1). This gives us

p(i+1)

s(i+1) —s(i) = - (p(i +1) —p())
Z U+1)=s0) = —Z(p(i-i-l)—p(’i))
s(1) = s(1) +p(1) — p(2)-

When there are M peers in the network, p(1) = 1/M, which
is the probability the server selects it for sending the newest
chunk. From (11), we have s(1) = 1 — 1/M. Therefore, we
have s(z) = 1 — p(4).

Proof of Lemma 3: Assume ¢ = 1 — p(n) and € — p(1) # 0,
which covers all the chunk-selection strategies we are interested
in. We get the following solution for the differential equation:

() ()
a T+e—p(1)

n(y+e—p(l)-C.
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Here, C is a constant that can be derived from the boundary
condition y = p(1) = 1/M

In (P(El))
C== p(1)

Solving the above equation, we can express 7, the buffer size,
in terms of the other parameters p(1) and e

1-p(1))p(1) 1-p(1)
In ( (1—e€)e ) 21D( € )+1+1n( € )
p(l) —e€ 1+e—p(1) 1—p(1)

Although n is an integer, we can still study its sensitivity with
respect to p(1) and € by differentiation, which yields the results
in the Lemma. ]

Proof of Lemma 4: With a similar method as in the proof for
Lemma 3, we derive the solution for the differential equation for
the Rarest First algorithm

) e

x=1%+1n<13
e

(=)

l+e—p 1

n =

Again, p(1) and e represent the number of peers and the
streaming quality, respectively, and y(n) = 1 — e. Similarly,
we express n as a function of p(1) and ¢

p(1)

":%1“(?) ‘1“(15(;21» BEO)

Differentiating, we get the results in the Lemma. ]

Proof of Proposition 1: The proofs for part (1) and (2) follow
directly from Lemmas 3 and 4.

The proof for (3) can be derived by going back to the differ-
ential equations of the continuous model. We prove it in three
steps. First, a special buffer length ng is found, where the discon-
tinuity e (ns) is less than egr(ns). Second, we show the buffer
required to satisfy incremental continuity requirement beyond
ng is less for Greedy, which means the Greedy strategy beats
Rarest First beyond the special buffer length n. Third, we com-
pare 9n /Oe from the beginning point n = 1 to support the state-
ment: Rarest First is better when buffer length is limited.

First Step: M 1is given. Assume a target discontinuity es
such that e = p(1) = 1/M. This simplifies the differential
equation for Greedy to the following:

dy _ y*(L—y)
de  1+y2 -y’

This equation can be solved to yield the solution
1 In(l—y)—-C
r=———In(l-y)—
Y

1
C = —]Tl)—ln(l—p(l))—l.

Substituting €, = p; back, the needed buffer length for this
value of ¢ is

1 1— ¢ €5
TLG:——I—IH< >—
€s €s 1 — ¢

=ng.

The continuous differential equation for RF is not simplified,
but can be solved to yield

1 1- s s
TLRF:—+2III< 6)— &
€

s €s 1_Es

> ng.

Because the function p(n) is an increasing function in n,
the discontinuity err(ns) is therefore greater than eg(ns) =
p(1). This ensures Greedy outperforms Rarest First for all buffer
lengths greater than n.

Second Step: For buffer lengths beyond 7, the approxi-
mate absolute value of dn /e in (13) and (14) becomes

on 1

— |~ —7 f d
e ex p(1) or Greedy
on

1 1
—| ~— + — for Rarest First.
Oe 2t €

The value of ¢ for buffer length beyond ny is less than p(1).
Therefore, | for Greedy is less than that for Rarest First,
which means Greedy consumes less buffer length for the same
incremental continuity requirement beyond ng. Based on the
first and second steps, the conclusion is that Greedy achieves
better continuity if buffer length is large enough.

Third Step: If the buffer length is very limited, it means €
is much bigger than p(1). By the same argument as that in the
second step, |On/0¢| for Greedy is larger than that for Rarest
First, which means Greedy consumes more buffer length for
the same incremental continuity requirement. Both Greedy
and Rarest First start from n = 1 with the same continuity
p(1) = 1/M. Therefore, Rarest First is better when buffer is
very limited. [ |

Proof of Proposition 2: Based on the definition of upper-
bound chunk-selection function at the end of Section II (that is
s(4) = i for all ), we can write down the corresponding differ-
ential equation for it and derive the following solution:

xr=1In(y)—In(1—-y)-C

nUB:1n(126>—1n<1€(—;21))+l.

We now compare nyp, the needed buffer length for Upper
Bound, with nyfixed, nRF, and ng, the corresponding buffer
length requirements for Mixed, RF, and Greedy, based on their
most significant terms. For nyg, itis O(In(1/¢)) + O(In(M)).
From the proof of Lemma 4, ngr is O(1/€)+ O(In(M)), while
ng is O((1/(p(1) — €))(In(1/€) 4+ In(M))). Thus, the order of
nrr and that of ng are both larger than that of nyp. However,
for the Mixed strategy, the Rarest First part is given a relative
large discontinuity, and the Greedy part is given a relative large
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p(1). Assume the continuity for the Rarest First part is A, or
p(m) = A. This means the order of nyfixea is O((1/(1 — X)) +
In(M) + (1/(X —€))(In(1/e) + In(M))).

In the Mixed strategy, A is controlled by varying the buffer
length of the Rarest First strategy. The maximum A we can get
is p(m), which is the continuity of Rarest First strategy with
buffer length m. If the desired value for A is not close to 1, we
show that it can be achieved by picking m from a narrow range
of values for any M in a large range of values. From the proof of
Lemma 4, we have a closed-form solution of the buffer length n
for RF, as a function of M and \. Consider the regime when
p(1) = 0, this function is simplified to

1—=X 1
M =en 55

If A is picked to be not close to O and 1, In((1—X)/A)—(1/A)
is relatively small compared to n. This means M from a large
range of values can be satisfied using » from a narrow range of
values.

Let us go back to the expression for nyjixeq- Since for almost
any M we can easily pick m to make A a constant, the order of
NMixed becomes O(In(1/€)) + O(In(M)), which is the same as
that of nyg. |
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