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Abstract—As the feature size of advanced integrated circuits
keeps shrinking, resolution enhancement techniques (RETs) are
utilized to improve the printability in the lithography process.
Optical proximity correction (OPC) is one of the most widely
used RETSs aiming at compensating the mask to generate a more
precise wafer image. In this article, we put forward a level-
set-based OPC approach with high mask optimization quality
and fast convergence. In order to suppress the disturbance of
the condition fluctuation in the lithography process, we pro-
pose a new process window-aware cost function. Then, a novel
momentum-based evolution technique is adopted, which demon-
strates substantial improvement. We also propose a self-adaptive
conjugate gradient method that promises a higher optimization
stability and less consuming time. Moreover, the graphics pro-
cessing unit (GPU) is leveraged for accelerating the proposed
algorithm. We take the output masks from a machine learning-
based mask optimization flow as the input and work as the
postprocess to refine the quasi-optimized masks. Experimental
results on ICCAD 2013 benchmarks show that our algorithm
outperforms all previous OPC algorithms in both solution quality
and runtime overhead.

Index Terms—Design for manufacturability (DFM), graph-
ics processing unit (GPU), level set, mask optimization, optical
proximity correction (OPC), process variation.

I. INTRODUCTION

N THE past decades, much progress has been made in

optical lithography technology. In the lithography process,
pixelated optical masks are shaped in design patterns and pro-
jected on the wafer images. However, the resolution of the
lithography system is proportional to the wavelength of the
lithographic source light, and it is inversely proportional to
the size of the mask due to the diffraction effect [1]. Thus, it
becomes more and more challenging to further downscale the
transistor since the feature size is already much smaller than
the light source wavelength (193 nm).

To further extend the resolution limit, several resolu-
tion enhancement techniques (RETSs) are proposed for mask
optimization. Optical proximity correction (OPC) as a major
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RET aims at compensating for the distortion of the printed
image by predistorting the shape of the mask pattern.
Generally speaking, OPC can be divided into three categories:
1) rule-based OPC [2]; 2) model-based OPC [3]-[5]; and 3)
inverse lithography technique (ILT) [6]-[8]. The key to rule-
based OPC is predetermining a set of empirical correction
rules applying to different kinds of features on design pat-
terns. This is easy to implement but could only improve the
local fidelity. Model-based OPC adopts mathematical mod-
els to represent the lithography process and moves the edge
segments on the mask gradually.

As a critical OPC method, ILT treats mask optimization
as an inverse imaging problem that can be solved numer-
ically. It aims at optimizing the carefully designed objec-
tive function and adjusting the pixelwise mask back-
ward. A variety of attempts have been made in ILT to
improve both the printed pattern fidelity and the process
robustness [6], [7], [9]-[11].

Back in the early 1990s, Liu and Zakhor [12], [13]
proposed a branch-and-bound algorithm together with a simu-
lated annealing algorithm to systematically design predistorted
masks. However, this method turns out to be very time con-
suming. Sherif ef al. [14] introduced the linear objective func-
tion with unconditional constraints to solve the nonlinear mask
optimization problem iteratively. Granik [15] discussed and
compared the linear, quadratic, and nonlinear methods to solve
the inverse mask optimization problem and presented a model-
based algorithm with SRAF insertion [16]. Yu and Pan [17]
proposed a topological invariant pixel-based OPC to balance
the printed contour fidelity and the degree of mask manufac-
turing difficulty. Poonawala and Milanfar [6], [18] put forward
the model-based OPC and employed the steepest descent algo-
rithm to improve the efficiency of the optimization process.
They then developed the regularization framework to enhance
the quality of aerial image [9]. Shen er al. [19] performed 2-D
discrete cosine transformation (DCT2) on the target image,
which could keep its feature while reducing the mask complex-
ity. Zhang et al. designed a new pixel-based cost function [20]
which could reduce the computational complexity and lessen
the dependence on the initial conditions. Jia et al. [10] incor-
porated the focus variation into the source-mask optimization
cost function to improve both the printed pattern fidelity and
the process robustness. Liu and Shi [11] used the homotopy
continuation framework to accelerate the optimization and
improve the mask manufacturability. Gao et al. [7] pushed
this further by directly optimizing the edge placement error
(EPE) and suppressing the process variation band (PV Band)
simultaneously.
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Fig. 1. Comparison of mask complexity. (a) Is the target pattern. (b) Is
the mask generated by pixelwised OPC [7]. (c) Is mask generated by our
proposed level-set method.

However, the mask optimized by the pixelwise ILT
still contains unwanted tiny outliers and fractures, creating
obstacles to the mass production. As an alternate ILT strategy,
the level-set algorithm has been widely explored [21]-[24].
Different from regarding every pixel on the mask as an iso-
lated unit, the level-set method tracks the evolution of the
mask boundary to reduce the geometric deviation in the final
printed image [25]. This improves the mask continuity and
suppresses the degree of irregularity. Fig. 1 compares the mask
generated by pixel-based ILT and level-set algorithm. Given
the desired pattern in Fig. 1(a), the mask in Fig. 1(b) con-
tains many unwanted outliers and fractures while the mask in
Fig. 1(c) is much cleaner.

The mathematical expression of the level set is first
proposed in [25], which described the technical details of
the propagation of the mask fronts. In [26], the level-set
method was adopted in the lithography processing problem.
It was further used to solve inverse problems with con-
straints [27]. Shen et al. [21] applied the level-set method
to the inverse lithography problem and developed the mask
optimization framework. Besides, they further considered the
process variations as random variables and incorporated them
into the framework for robust design [22]. Lv et al. [23]
enhanced the computational efficiency and pattern fidelity by
adopting conjugate gradient (CG) descent and adjusting the
time step. Geng et al. [24] modified the objective function
taking the focus and variations into account and used the
hybrid CG method to achieve stable convergence. However,
the performance can still be improved. In conventional gradi-
ent descent optimization, the search direction could oscillate
in different directions. Besides, when approaching the local
optimal, the learning rate keeps decreasing. Those could
lead to slow convergence and sometimes get stuck in local
optimum. To overcome this, the momentum-based gradient
method utilizes the gradient from past iterations to decide
the search direction by introducing a momentum term. The
search path could be smoother and the direction becomes more
steadily toward global optimal using the momentum strategy.

In this article, we develop a comprehensive momentum-
based level-set method to acquire better fidelity printed pat-
terns. We propose a new process window-aware cost function
that could not only suppress the influence of the process con-
dition variation but also help reduce the EPE. To get better
convergence and improve the optimization stability, we also
develop a novel self-adaptive CG (SACG) method which could
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switch from different kinds of search velocities automatically.
The compute unified device architecture (CUDA) toolkit is
also used to perform graphics processing unit (GPU) acceler-
ation which could substantially reduce the runtime. In recent
deep learning-based mask optimization flow [28], the output
masks from neural networks are quasi-optimized which need
further refinement. Besides, those generated masks are in irreg-
ular shapes which are challenging for mask optimization flows.
As a high-performance ILT flow, our method is also robust
enough to handle rough initial masks, which makes it prac-
tical for our method to work as a post-refinement of other
quasi-optimized mask optimization flows. We apply the mask
filters with alternate sizes on the irregular input masks and
balance between the complex local features with global prop-
erties. We test our method on the benchmarks released by IBM
on ICCAD 2013 contest [29], and the results show our method
could outperform the top winner of ICCAD 2013 and several
previous methods. The main contributions of our methods are
listed as follows.

1) We propose a novel process variation-based cost func-
tion, which could suppress the PV Band meanwhile
reducing the EPE.

2) We develop a momentum-based SACG method to
improve the convergence and enhance the optimization
stability.

3) We adopt the GPU acceleration scheme and reduce the
time of the optimization notably.

4) We take the roughly optimized masks as the input
and adjust the resolution to improve the computational
efficiency and mask quality.

5) We perform experiments on ICCAD 2013 contest bench-
marks and the results turn out to be prominent among the
top winner of the contest and some previous algorithms.

The remainder of this article is organized as follows.

Section II gives an introduction to the lithography process
and formulates the inverse lithography problem, including two
important evaluation metrics. Section III gives the detailed
elaboration of the level-set framework with an efficient process
variation-based cost function, the input mask resolution adjust-
ment strategy, and a novel SACG method. Section IV details
experimental results and comparisons, followed by conclusion
in Section V.

II. PRELIMINARIES

In this section, we introduce the preliminaries on the lithog-
raphy model and the mask optimization problem. Related
variables and mathematical operators are listed in Table I.

A. Lithography Process

The lithography process is composed of an optical projec-
tion model and a photoresist model. The incident light passes
through the mask and sends the spatial information of the mask
pattern M(x, y) into the optical projection system. The input
light intensity distribution is transformed to the aerial intensity
distribution I(x, y) on the wafer plane. Due to the diffraction
effect, the aerial image can be expressed based on Hopkins
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TABLE I
VARIABLES AND OPERATORS USED IN THIS ARTICLE

Target image
Printed image
Mask

Aerial image
Optical kernels

~Z=¥

{h1,...,hi}
{h]{, ce h}{} The conjugate transpose of optical kernels
Element-wise matrix multiplication operator

Convolution operator

® ©

diffraction theory [30]

K
In,y) =) pulhi(x,y) @ M(x, y) . )
k=1

In above equation, hi(x,y) is the kth optical kernel func-
tion and py is the corresponding weight. We apply the Kth
order approximation to simplify the simulation, and K = 24
is the total number of optical kernels in accordance to the
contest [29].

The aerial image I is then transformed into the wafer image
R by comparing the aerial intensity to the photoresist inten-
sity threshold. To simulate this process, we adopt the constant
threshold model here. The mathematical expression is given
as follows:

L if I, y) = Iy
R, y) = {0, if I(x,y) < Iy 2)

where I, is the intensity threshold that controls the binary
image on the wafer plane.

B. Inverse Lithography Technique

Due to the low-pass property of the band-limited lithography
system, the printed wafer image R is typically a blurred version
of the input mask M as is written in (1).

The objective is to synthesize a predistorted binary mask
so that the corresponding printed image could be as close to
the target image R* as possible. Mathematically, this equals
to minimizing the geometric distance between the nominal
printed image with the target image

M* = argmin|R — R*|". 3)
M

In above equation, | - || is the Euclidean norm (L, norm).
Once the image is printed on the wafer plane, several metrics
are measured to evaluate the quality of the image. In the fol-
lowing parts, the introduction of two metrics called EPE and
PV Band will be given.

C. Edge Placement Error

EPE is evaluated as the geometric distortion of the target
image. As is shown in Fig. 2(a), probe points are set equidis-
tantly on every horizontal and vertical edges. If the distance
D from target to the printed image is larger than the EPE
constraint thgpg, we label it as an EPE violation

1, if D(x,y) > thgpg

0, if D(x,y) < thgpg. @)

EPE violation(x, y) = {

f
v
(a) (b)
PV Band Outer Contour Inner Contour

I Design t Outer EPE  t Inner EPE

Fig. 2. Two considered metrics. (a) Measurement of EPE. (b) Measurement
of PV Band.
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Fig. 3. Evolution process of the level-set method. (a) Perpendicular distance
d from points to the mask contour. (b) Initial mask. (c) Mask pattern after ¢
iterations.

D. Process Variation Band

In real applications, process variation could cause the devi-
ation in the final printed image, leading to printed failure. It
is essential to maintain the robustness of printed images. PV
Band is utilized to evaluate such robustness, which is defined
as the exclusive OR (XOR) region between the outermost and
innermost contours under different process conditions, as is
shown in Fig. 2(b). In this article, the depth of the focus
(focus/defocus) and the intensity of incident light (dose) are
considered as the process variables.

III. LEVEL-SET-BASED ILT FRAMEWORK

In the level-set framework, the mask optimization process is
transformed into a contour evolution problem. Different from
many ILT methods in which each pixel is taken as an opti-
mized unit, the level-set method considers the mask boundary
as a continuum. Fig. 3 gives an example of the boundary evo-
lution process. To get the level-set function, first we need to
obtain the perpendicular distance d(x, y) from all points on the
mask plane to the mask boundary. An example in initialization
step is shown in Fig. 3(a). The initial position for the mask
boundary is represented by red contour in Fig. 3(b), the con-
tour divides the mask plane into three parts which could be
characterized by the level-set function ¥ (x,y). The level-set
function values outside and inside the mask contour are set
to be positive and negative values of perpendicular distance
d(x,y), respectively, and the contour itself is zero boundary
of the level-set function. The mathematical representation is
given as follows:

—d(x,y), if (x,y)eC™
Yx,y) =10, if (x,y) €9dC 5
d(x,y), if (x,y) eCt.

dC is the boundary of the mask. C~ and C™ are the inner
and outer regions of the mask, respectively. Once the initial
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mask contour is given by v, the wafer image could be sim-
ulated and evaluated. After that error information could be
sent back to update the level-set function. The new mask
is adjusted based on the changed function value. This is an
iterative method and the mask could be updated to optimum,
as is shown in Fig. 3.

A. Level-Set-Based ILT

For level-set-based ILT, we adopt the binary mask. Whether
the pixel is transmitted or blocked is determined by the level-
set function ¥ (x, y), the relation can be described as follows:

mi,, if Y(x,y) <0

Moy, if ¥(x,y) > 0. (6)

Mww={

In the above equation, mj, = 1 and my, = 0 means that the

pixel on (x, y) is determined to be inner and outer of the mask.

In general, this level-set-based ILT algorithm is developed to

reduce the pattern distortion which is described in (3). The
cost function can be expressed as follows:

LuonM) = |R —R*|>. (7

To enable the backpropagation, we use the sigmoid function
to approximate the step function in (2)

R = sig(l) = (8)

1+ 50T

where s is the steepness. By combining (1), (7), and (8), we
could get the detailed expression of the nominal cost function

2

Lnom (M) = . (9)

K
sig [Z kb (x, y) @ M(x, y)|2] —R*

k=1

Given the cost function, the velocity v(x, y) can be deduced
based on [27]

 OLuon(M)
oM
where |V (x, y)| is the gradient of the level-set function. We

need to calculate the Jacobian of the cost function Ly, (M)
at M

v(x,y) = IV (x, )l (10)

2
d|R —R*
:G(M)zi” M | =2(R—R") OR

= 2(R - R*)R(1 — R)%

8 Lnom (M)
oM

oM

K
X Z(Mﬂhk(x’ y) @ M(x, y)|2)
k=1

K
3
— J— * p— —
=2(R—R*)R( RO /;:1/“{

X (e (x.y) ® M(x.y) © (h{(x.y) © M(x. )
=2-{me [k -R)oRO1-B o (1 aM)]
+hj @ [(R*~R) 0RO (- R)( M) |.
(1)
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B. Process Variation-Aware Cost Function

To keep the optimization algorithm robust to different pro-
cess conditions, a process variation-aware cost function should
be taken into consideration. We propose a new cost function
that could help minimize the PV band area and, meanwhile,
improve the quality of printed images without aggravating
increasing computational burden

Lyy(M) = |Rin(M) — R*|* + | Row(M) — R*||*.  (12)

To achieve a low cost value in (12), Riy(M) and Ry, (M)
should be both close to the target image, which is stricter than
minimizing the distance between Ri,(M) and R, (M). This
adjusted cost function could guide the optimization process to
find the desired mask, which could generate the wafer image
with a tolerable PV band and less EPE number.

The total cost function is a linear combination of (7)
and (12)

L = Lyom(M) + vaprvb(M)- (13)

The gradient of the total cost function can also be expressed
in a separate way

GM) = Guom(M) + Wpvb Gpvb (M) (14)

where wp,;, is the weight of the PV band cost function. The
calculation of Gpy,(M) is similar to (11).

C. Self-Adaptive Conjugate Gradient Method

CG methods are proved to be efficient when solving
optimization problems in large-scale systems. In our work,
the CG method is applied to help evolve from the initial level-
set function to the final result. Denote the velocity in the ith
iteration as v;

y, — | ~GADIVYl, if i=0
T =GMDIVYl + Ay, if >0
where A; is the CG coefficient characterized by the CG
method. In previous work, we adopt the Polak—Ribiere—Polyak
(PRP) CG method proposed in [31], which is one of the widely
applied formulas for A;. In the PRP method, the expression of
CG coefficient is as follows:
IGiD)IVYillI> = G:MD Vil - iy (M)| Vi |
IGi-1 MDYV Y1 |

15)

JPRP _

(16)

However, we observe from the experimental results that
under some test cases, the evolution speed with PRP CG could
be unstable, and obtained solutions can be further improved.
In order to achieve better convergence, in this article, we adopt
a modified SACG method to achieve better results in aspects
of printed pattern fidelity and runtime.

The Fletcher—Reeves (FR) conjugate method proposed
in [32] offers another choice for velocity update

R _IGaDIvyil®
LG DIV ?

It has been widely researched that the FR CG method is
globally convergent on general functions, while its drawback

a7
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is sometimes it could cause a jam [33], [34], and for some
test targets, the optimization process using only the FR CG
method would take serval iterations without making significant
progress to the better masks..

To overcome these problems, we combine the PRP CG with
FR CG to make full use of the superiority of both methods.
The CG coefficient could be adjusted in a self-adaptive manner
—MROAf AFR < ) PRP
AR i PR > |5 PR

FR . 2 FR PRP
At A AT < AT

Ai= (18)

s

D. Momentum-Based Updating Strategy

In our level-set mask optimization framework, the input
masks could be in irregular shapes which are generated from
other quasi-optimized mask optimization flow. Besides, the tar-
get patterns themselves for some test cases are sophisticated.
Therefore, it is necessary to further avoid the stuck and sup-
press the oscillations during the update of level-set function
¥ (x,y). In our work, the momentum term containing the his-
tory information of velocity is utilized to guide the search
direction

Vip1 () = ¥ilx, y) + (i(x, y) + opvi1(x, y) Az (19)

In the above equation, ¢, is a hyperparameter controlling the
weight of velocity from the last iteration. It can be tuned from
case to case. This momentum-based term could help optimize
masks within fewer iterations on several benchmarks without
reducing the quality.

E. Mask Filters for Irregular Input

As a robust high-performance mask optimization method,
we could accept the complex masks as initial masks and refine
them to get desired wafer patterns. This capability shows great
practical value because our proposed mask optimization could
be concatenated to other quasi-mask optimization flows and
work as a postprocess. The framework is displayed in Fig. 4.
We display an example of an irregular initial mask and the
magnified view of a local area with and without mask filters, as
can be seen in Fig. 5. It can be observed that the output mask
from the previous optimization flow contains many nonrectan-
gular complex local features. The curvilinear edges composed
of a large number of short segments bring a heavy computa-
tional burden when calculating the level-set distance function.
Besides, the tiny local features sometimes lead to overfitting
and degrade the mask quality. In this article, we apply fil-
ters with different grid sizes on the input masks and decrease
the resolution. Fig. 5 displays two filtered results using 2 x 2
filters and 4 x 4 filters, respectively, and the orange boxes
are filters in different sizes. For a filter with size (f,f), we
check the transmissivity in every nonoverlapping (f, f) square
region. If there exists at least one transmitted pixel in an (f, f)
region, then the whole region is transmitted, otherwise, it is
totally blocked. In this way, we maintain the major optimized
properties and abandon the minor local topological features.
The calculation of the distance to the mask boundary can be
significantly accelerated.

Target Printed image

o Iy

F = ° =0
- e ¢

o °

Pre-process
mask
optimization

Level set
refinement

=
=3

Filtered mask

Mask filter

i

Quasi-optimized
mask

Fig. 4. Overview of Level-set mask optimization as postprocess of quasi-
optimization flow.

[
[

T
IEEEEEN
|IENEEEE

(@) (c)

Fig. 5. Complex initial mask and the magnified details corresponding to
black-box area. (a) Raw magnified mask without using filters. (b) Magnified
mask area after 2 x 2 filter. (c) Magnified mask area after 4 x 4 filter.

F. Level-Set-Based ILT Mask Update Algorithm

Based on the techniques introduced above, we could build
a complete iterative algorithm to generate the optimal mask
using the level-set function. In the initialization stage, the ini-
tial mask My can either be shaped as the same with target
image R* or be generated from other quasi-optimization flows.
Then, level-set function ¥y(x,y) for the initial mask can be
calculated with (5) (line 1). The mask is sent into forward
lithography simulator and printed on wafer plane described
by (1) and (8). Once the wafer image R is generated, gradi-
ent of total cost function Go(M) is calculated by (11) (line 2).
From (15), the starting velocity vy is set as the negative initial
gradient (line 3).
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Fig. 6. Overview of GPU. (a) GPU architecture. (b) GPU programming model and thread hierarchy.

In every iteration, the optimization process starts from
choosing a proper time step Af; (line 5). In order to keep
the stability, we suppress the value of At; with regards to the
maximum value of evolution velocity

— max([vi(x, )

In the above equation, A; is a constant time-step coefficient.
We set it to 2.5 in our experiment. Then, the change of level-
set function could be calculated using the momentum strategy
(line 6). The level-set function in the next iteration could be
updated based on (19) (line 7), leading to the correction of
the mask pattern (line 8). After that the wafer image is simu-
lated and evaluated (line 9), the gradient for the next iteration
could be computed (line 10), followed by the calculation of
new velocity (line 12). The loop will continue until the preset
iteration number N is achieved or the maximum velocity is
less than the tolerance €, which means the optimization pro-
cess has found a stable result. The whole process is described
in Algorithm 1.

The updated mask in the last iteration loop is chosen as the
optimized mask M*.

(20)

At;

G. GPU-Enabled Acceleration

A GPU is formed by multiple units named streaming multi-
processors (SM) as shown in Fig. 6(a). Each SM can execute
many threads concurrently. CUDA is a parallel computing plat-
form and a programming model developed by NVIDIA for its
GPU. The NVIDIA CUDA Toolkit provides a development
environment for creating high-performance GPU-accelerated
applications. The parallel portions of a GPU application are
executed on the device as kernels. A kernel is executed as
a grid of thread blocks which is a batch of threads that can
cooperate with each other [see Fig. 6(b)].

Previous work [35] built a learning-based independent mask
printability evaluation framework, in which the author imple-
mented matrix-based concentric circle sampling (MCCS) with
CUDA to accelerate the feature extraction from layout pattern,
and this served as a preparation step for machine learn-
ing model training. This can be regarded as an indirect

Algorithm 1 Level-Set-Based ILT Method Flow

Require: : Target image R*, initial masks My, optical kernels
hy, ..., hg, resistant model steepness s, intensity threshold
I;;, max iteration number N, velocity tolerance €.
Ensure: Optimized mask M*.
1: Initialize: Yo < Mo;

: Go(M) < 2LodD;
tvo = —GoM) VY (x, y)l;

: repeat

Time step: At; < m,

Change: Ay <= (vi(x, y) + Avvic1(x, ) At
Level-set function: Y1 < ¥; + Ayi;

mip, if Y,y <0,
My, if ¥(x,y) >0,

9: Evaluate the printed image with Score function:
Riv1, Rit1)in, (Rip1)our;

8: Mask : Miy1(x,y) =

10: Gradient of cost function: Gj+1(M) < %;
11: Aix1 < SACG method;

122 vig1 = =G MD|VY (x, y)| + AR v

13: until i > N or |[V|pax < €

CUDA-based speedup method in the mask optimization pro-
cess. On the contrary, we implement the lithography simula-
tion process with CUDA and accelerate the mask optimization
process directly. As is expressed in (1), the level-set method
requires massive calls of forward lithography simulation which
brings a large amount of computational efforts from convolu-
tion operations. Based on the properties of convolution, we
can transform the calculation of aerial image intensity into
the following expression:

K K
MRH=Y - Mh)=> M® (u - hy)
k=1 k=1
K

=M®Zﬂk'hk
k=1

1)

where H is the general kernel function defined as the weighted
sum of the optical kernel functions. With this transformation,
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TABLE 11
BENCHMARK STATISTICS

ID ‘ Pattern area

Bl 215344
B2 169280
B3 213504
B4 82560
BS 281958
B6 286234
B7 229149
B8 128544
B9 317581
B10 102400

the general kernel function could be precomputed in a multi-
processing way. This could reduce convolution operations by
K times and greatly improve the efficiency of our approach.

We apply the fast Fourier transform (FFT) algorithm to
accelerate convolution operations. The FFT is a divide-and-
conquer algorithm for efficiently computing discrete Fourier
transforms (DFT) of complex or real-valued data sets. By effi-
ciently converting convolution operations between point-value
representation and coefficient representation, the FFT algo-
rithm reduces the convolution computations from O(N?) to
O(Nlog(N)). However, by profiling the runtime of the level-
set method, the runtime of the CPU-based FFT algorithm
takes nearly ninety percent of the total runtime. We imple-
ment the FFT algorithm using the CUDA Toolkit for GPU
acceleration. Our GPU-based FFT algorithm provides a sim-
ple interface to compute FFTs by leveraging the parallelism
of the GPU, which reduces the total runtime to a large extent.
Moreover, (21) can be computed with GPUs in parallel to fur-
ther reduce the total runtime. To the best of our knowledge,
we are the first to implement the CUDA-based acceleration
on the lithography simulation process. This hardware-based
acceleration is proved efficiently and can reduce the runtime
of one iteration significantly in Section IV. However, it is also
a general acceleration strategy and can be applied smoothly
in many other OPC frameworks, only if it is an ILT-based
method.

IV. EXPERIMENTAL RESULTS

Our level-set ILT algorithm is implemented in C/C++.
We adopt the 193 nm wavelength lithography system with
a defocus range of £25 nm and a dose range of +2%,
which is provided in the ICCAD 2013 contest [29]. We adopt
24 optical kernel functions in the optical model, and the
threshold intensity in the photoresist model is 0.225. The PV
band metric system and EPE checker module are also pro-
vided in the contest. For all following experiments, the targets
are ten benchmarks composed of rectangles and polygons in
different shapes released by IBM [29]. Each benchmark lay-
out is a 32 nm 1x metal layer. The size of the image is
2048 nm x 2048 nm with the resolution of 1 nm? per pixel.
The pattern area of each benchmark is listed in Table II. The
outermost final printed pattern is generated at nominal focus
and +2% dose while the innermost printed pattern is generated
at defocus and —2% dose. The EPE violation threshold thgpg

is set to 15 nm. EPE is measured on the sample points located
on the pattern edges every 40 nm. In our experiment, target
patterns B1 and B3 are the most complex, and the primary
objective is to optimize the masks under nominal condition.
The weights of the PV band cost function wpy, in (14) for
them are 0.2. For other targets, the wp,, are set to be 2.5. The
weights of velocity from the last iteration in (19) for different
targets are set differently, ranging from 0.2 to 0.5.

To evaluate the effectiveness of our SA-Level-set mask
optimization method quantitatively, we adopt four metrics
described in [29], which are the number of EPE (#EPE), PV
Band area (PVB), runtime (RT), and the number of shape vio-
lations. The score function is the linear combination of those
metrics

Score = RT + 4 x PVBand

+ 5000 x #EPE + 10000 x ShapeViol. (22)

In the above score function, ShapeViol is visually checked
from the final printed image.

A. Comparison With Different Level-Set Methods

In the first experiment, we compare our mask optimization
methods with recent other level-set-based methods. We imple-
ment our mask optimization flow on a single Nvidia Tesla
P100 GPU accelerator. The initial masks are shaped as the
same with target patterns. The lithography model is the same
in [29], and the metrics are calculated using (22). It is worth
mentioning that Shen er al. [21], [22] and Lv et al. [23]
used different benchmarks and metrics. For fair comparisons,
we build the flow described in these papers on our own
and test them on an Intel Xeon E5-2690 V4 CPU with
2.6 GHz and 32-GB RAM to obtain the converged results.
The detailed performance results are listed in Table III. The
“Level set” represents the primary level-set-based optimization
flow proposed in [21]. The “Robust-Level set” in [22] consid-
ers the influence of aberration conditions and aims to minimize
the expectation-orient objective function under different condi-
tions. The “CG-Level set” in [23] includes the PRP CG method
and Euler time step. The “FLSB-ILT” in [24] adds the PV
Band-based objection function to nominal cost. The “M-Level
set” in [36] represents our momentum-based level-set function.
The “SA-Level set” improves the M-Level set by adopting the
SACG method. Compared with previous level-set optimization
methods, our momentum-based level-set mask optimization
tactfully assembles the process variation-aware cost function,
CG method, and momentum-based updating strategy, and it
successfully gets better scores than previous level-set-based
methods.

In the last three columns of Table III, we apply the SACG
method and test the performance on the same test cases. The
SA-Level-set method could reduce the PVB value slightly
compared to the momentum-based level-set method for most
test cases without increasing the EPEs and, thus, achieves
0.7% improvements for the total scores. It can be seen the
significant contribution of the SACG method is accelerating
the convergence and reducing the runtime. Since the weight
of the runtime term in score function (22) is small compared

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on January 20,2023 at 09:33:49 UTC from IEEE Xplore. Restrictions apply.



YU et al.: GPU-ENABLED LEVEL-SET METHOD FOR MASK OPTIMIZATION

601

7623 7683 8294 2863 4053 9734 7539 4796 4784 3052 6042
1000 |- b
=2 800 — b
o =
3
= 600 - b
£
S 400 [ b
=
=
a4
0 il _DI____I HI _Dll ULiDlm _Dll _HDII _Dlll_Dll UU0
T T T T T T T T T T T
casel case? case3 cased caseb caseb case’ case8 case?9 casel0 Avg
] Level set B Robust-Level set O CG-Level set 0 FLSB-ILT
0 M-Level set-CPU [ M-Level set-GPU B SA-Level set-CPU [ SA-Level set-GPU
Fig. 7. Runtime comparison with different level-set-based methods. For better display, we truncate the values above 1000 s, for those cases, the exact run

time is marked on the top.

TABLE III
COMPARISON BETWEEN DIFFERENT LEVEL-SET-BASED METHODS

Level set [21] Robust-level set [22] CG-level set [23] FLSB-ILT [24] M-Level set [36] SA-Level set
1D #EPE PVB Score #EPE PVB Score #EPE PVB Score #EPE PVB Score #EPE PVB Score #EPE PVB Score
Bl 7 60672 278085 7 59934 275163 8 62094 288737 15 53576 296927 4 62693 270895 4 60656 262716
B2 1 51518 211415 3 50576 217655 3 50518 217392 6 43414 211339 1 50724 207977 1 49914 204720
B3 45 103597 690255 41 100704 658657 48 90718 653662 49 81593 579666 29 100945 598994 29 100945 598943
B4 1 29868 125089 1 28267 118807 1 29437 123475 5 29505 145883 0 29831 119508 0 29524 118206
B5 1 58338 238644 1 56626 231845 1 58585 239641 2 54155 230673 1 56510 231116 1 56023 229138
B6 1 52825 216594 1 51454 211154 1 52927 217039 1 51841 222098 1 51204 209881 1 50897 208637
B7 0 46746 187291 0 45536 182501 0 46827 187634 2 43934 193275 0 45056 180288 0 44921 179732
B8 1 22957 97090 1 22835 96691 1 22709 96087 3 23554 114012 1 22757 96095 1 22508 95079
B9 1 64636 263785 0 63391 253876 0 64588 258639 4 61479 270700 0 64597 258466 0 62177 248751
B10 0 19109 76657 0 19082 76529 0 19082 76539 6 19258 110084 0 18769 75140 0 18780 75167
Avg. 238491 232288 235885 237466 223722 222109
Ratio 1.074 1.046 1.062 1.069 1.007 1.000

Pattern area / PVB unit: nm?

with other terms, this improvement is considerable. The results
show the SACG method could enhance the level-set updating
algorithm and help to find a better resolution.

We separately present the runtime comparison of our meth-
ods with previous level-set-based methods. The runtime is
measured from the input of the target pattern to the produc-
tion of the optimized mask. For all methods listed in Table III
except for FLSB-ILT, the iterative optimization process stops
either when the maximum velocity of mask contour is smaller
than the threshold € = 0.001, or the preset maximum iteration
number N = 50 is reached, as described in Section III-F.
For FLSB-ILT in [24], the optimization method stops when
the root mean square (RMS) of cost function (13) is smaller
than the tolerance value 0.1 or the maximum iteration num-
ber is met. The results are presented in Fig. 7. It is worth
mentioning that for the method that consumes time larger
than 1000 s for one test case, we truncate the bar to 1000 s
and add the exact runtime on top of it. As introduced in
Section III-G, the FFT part consumes more than 90% of the
total runtime on our CPU machine. This FFT algorithm could
be implemented in a multiprocessing way with GPU acceler-
ation and achieves a speedup of more than 5x. The overall
efficiency could thus be largely improved. By adopting GPU
acceleration, we significantly reduce the computational time
in all cases without degenerating the fidelity or robustness of
the masks. The SA-Level-set process with GPU has almost

5.4x%, 6.0x, and 5.5x speedups compared with level set [21],
Robust-Level set [22], and CG-Level set [23], respectively. For
FLSB-ILT [24], they use the same litho model on the same
test cases. FLSB-ILT consumes more than 17x more average
time than the M-Level set. Compared with the SA-Level set
with CPU only, it could achieve more than 4.2x speed up.
Combined with the SACG method, our SA-Level-set method
could obtain 1.4x and 4.8x speedup compared with GPU and
CPU versions of the M-Level set, respectively, and achieve the
best among all compared methods.

B. Comparison With Different SOTA Methods

In the next experiment, we compare our methods with other
state-of-the-art process window-aware pixel-based OPC meth-
ods: MOSAIC_fast, MOSAIC_exact in [7], robust OPC in [4],
and PVOPC in [5]. The initial masks are shaped as the same
with the target pattern, which is consistent with other com-
pared methods. In this section, our methods are also tested on
a single Nvidia Tesla P100 GPU accelerator. Since all com-
pared methods use identical metrics and benchmarks and the
lithography system is also the same, the comparison can be
made directly. The detailed data are listed in Table I'V.

It is worth mentioning Kuang et al. [4] offered their detailed
data to us, based on which we are able to compute the score
values using (22). Although the tradeoff between EPE counts
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TABLE IV
COMPARISON WITH STATE-OF-THE-ART OPC ALGORITHMS

MOSAIC _fast [7] MOSAIC_exact [7] Robust OPC [4] PVOPC [5] M-Level set [36] SA-Level set
ID | #EPE  PVB Score | #EPE ~ PVB Score | #EPE  PVB Score | #EPE  PVB  Score | #EPE  PVB Score | #EPE  PVB Score
Bl 6 58232 263246 9 56890 274267 0 66218 265150 2 58269 243240 4 62693 270895 4 60656 262716
B2 10 47139 238812 4 48312 214493 0 53434 213878 0 52674 210826 1 50724 207977 1 49914 204720
B3 59 82195 624101 52 84608 600955 18 146776 677256 | 47 81541 561367 29 100945 598994 | 29 100945 598943
B4 1 28244 118298 3 24723 115161 0 33266 133371 0 26960 108030 0 29831 119508 0 29524 118206
B5 6 56253 255327 2 56299 237363 1 65631 267713 4 61820 267342 1 56510 231116 1 56023 229138
B6 1 50981 209238 1 49285 204224 0 62068 248625 0 55090 220414 1 51204 209881 1 50897 208637
B7 0 46309 185475 0 46280 186761 0 51069 204495 0 51977 207982 0 45056 180288 0 44921 179732
B8 2 22482 100186 2 22342 100031 0 25898 103691 0 22869 91541 1 22757 96095 1 22508 95079
B9 6 65331 291646 3 62529 268138 1 75387 306667 0 70713 282907 0 64597 258466 0 62177 248751
B10 0 18868 75703 0 18141 73276 0 18536 74205 0 17846 71425 0 18769 75140 0 18780 75167
Avg. 236203 227467 249505 226507 223722 222109
Ratio 1.063 1.024 1.123 1.020 1.007 1.000
Pattern area / PVB unit: nm?
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Fig. 8. Runtime comparison with different OPC methods. For better display, we truncate the values above 1000 s, for those cases, the exact run time is

marked on the top.

and PV band area is still challenging to handle, our methods
successfully attain the best general performance with the low-
est score among all the compared methods. The performance
using the momentum-based level-set method without SACG
is 5.6% better than the fast version of MOSAIC work
(MOSAIC_fast). For the high-quality version MOSAIC_exact,
our result is still 1.6% better. Compared with the rule-based
robust OPC and PVOPC, our result has a general improvement
of 11.5% and 1.2%, respectively.

The results show our method could generate robust and high
fidelity pattern images on these benchmarks, and it reveals the
potential for achieving high-quality masks for other desired
patterns.

The runtime comparison is presented in Fig. 8. For
MOSAIC_fast and MOSAIC_exact in [7], the iterative
optimization processes stop when the RMS of gradients of all
pixels is smaller than tolerance value 0.015, or the iteration
number is already 20. In robust OPC [4] and PVOPC [5],
the mask is updated iteratively until the total number of EPE
violations is less than a threshold or the maximum number
of iterations is achieved. MOSAIC_fast adopts an alternate
gradient method to reduce computational time. It consumes
4.1x more runtime than the SA-Level set. MOSAIC_exact
sacrifices the computational efficiency to pursue a high-quality
mask, the SA-Level-set method achieves almost 24 x speedup

on this. In an ILT flow, the simulations consume the most time
in the optimization process. As is explained in [4], in Robust
OPC, they only run the simulators in two process conditions
for each iteration and estimate the results in the third pro-
cess condition using the experimental data. Compared with it,
the SA-Level set is 2.7x faster. The rule-based PVOPC also
consumes 1.46x more time than the SA-Level set.

Fig. 9 displays the optimized masks of ten test cases
together with corresponding printed patterns and PV Bands.
The mask images are in good accordance with the target
images. Outliers and fractures are reduced, which makes the
masks more manufacturing friendly.

The wafer images of cases B5 and B6 in first ten iterations
are shown in Fig. 10 as the visualization of the optimization
process. For the first several iterations, the results are unsta-
ble and shots and cuts could appear in the printed images.
However, this could be corrected in the next few steps. In
our experiments, for most cases, the optimal masks could be
generated in 15 iterations.

C. SA-Level Set as Robust Postprocess

To evaluate the robustness of our SA-Level set working as a
postprocess, we conduct further experiments to refine the com-
plex output masks generated from a quasi-mask optimization
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Fig. 9. Level-set inverse lithography results. Columns correspond to ten test cases. Rows from top to bottom are: (a) target patterns; (b) optimized masks;

(c) printed wafer images; and (d) PV band.
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Fig. 10. Visualization of the optimization convergence in first ten iterations. The object pattern of rows from top to bottom is cases B5 and B6, respectively.

TABLE V
COMPARISON OF DIFFERENT POSTPROCESSES

Test case MOSAIC [28] M-Level set [36] Filtered-Level set FSA-Level set
D #EPE  PVB RT Score #EPE  PVB RT Score #EPE  PVB RT Score #EPE  PVB RT Score
Bl 8 58043 448 272620 4 62019 371 268453 4 61491 357 266321 3 60696 299 259175
B2 11 53020 458 267538 1 51226 421 210325 1 50550 264 207464 1 50200 230 206030
B3 49 75644 441 628017 29 98214 396 558252 29 98214 393 558249 29 98214 394 558250
B4 5 26401 442 131046 0 31132 813 125341 0 30878 812 124324 0 30747 796 123784
B5 4 59765 469 259529 0 58675 146 234846 0 58570 187 234467 0 58502 162 234170
B6 0 54878 437 219949 0 53095 139 212519 0 52411 138 209782 0 51935 138 207878
B7 2 49156 447 207071 0 46400 115 185715 0 45974 115 184011 0 45712 139 182987
B8 4 24441 442 118206 0 23542 141 94309 0 23335 116 93456 0 23268 137 93209
B9 5 66492 452 291420 1 65996 302 269286 1 65713 260 268112 1 65327 228 266536
B10 1 21338 442 90794 0 20005 69 80089 0 19883 70 79602 0 19881 69 79593
Avg. 448 248619 292 223914 271 222579 259 221161
Ratio 1.730 1.124 1.127 1.012 1.046 1.006 1.000 1.000

Pattern area / PVB unit: nm?

flow, the enhanced GAN (EGAN) flow in [28]. The targets
are the same as those in Section IV-B. We denote the test
case ID “EGAN-;” as the ith quasi-optimized input masks cor-
responding to the ith target. In order to observe and compare
the general performance of masks using different optimization
methods. We still adopt the score function in (22) as metric.
It is worth mentioning that we get the executable files from
Yang et al. [28], in order to keep the experimental conditions

consistent and get comparable run time data, We run all the
compared ILT refinement methods in this section on a macOS
machine with a 1.4-GHz Intel i5 CPU. The filtered masks
are set as initial masks in SA-Level-set optimization flow and
replace the pixel-based ILT refinement engine as described
in [28]. The detailed results are displayed in Table V.

The “MOSAIC” here represents MOSAIC_fast mask refine-
ment adopted in EGAN-OPC flow, as is explained in [28].
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TABLE VI
MOMENTUM EFFECT COMPARISON

| #EPE | PVB | Runtime | Score

49736 81.4 224027
49635 70.9 221879

w/0. momentum 4.0
W. momentum 3.7

The M-Level set represents the EGAN generated masks with
the momentum-based level-set algorithm but without using
the SACG method and mask filtering. The “Filtered-Level
set” represents the optimization of the filtered mask using a
momentum-based level set, which the SACG method excluded.
To gain a better balance between local features and global
properties, and save memory storage, we use filters with the
size of (2, 2) and (4, 4) to reshape the quasi-optimized masks.
The “FSA-Level set” means the filtered masks optimized with
the self-adaptive momentum-based level-set algorithm.

The FSA-Level-set result has a great 12.4% improve-
ment compared with MOSAIC, which proves our complete
postoptimization process is able to generate state-of-the-art
masks compared with the traditional pixel-based ILT method.
Compared with the Level set, the FSA-Level set could achieve
1.2% improvement, this demonstrates the significant advan-
tages of the mask filter strategy. Besides, the mask filter
strategy could adjust the complexity of the input mask and
has strong robustness. We can concatenate our Level-set flow
to other mask quasi-optimization flow and work as a postpro-
cess. The FSA-Level set also exhibits 0.6% lower score value
compared with the Filtered-Level set, together with the results
in Section I'V-B strongly proves the effectiveness of our SACG
method.

We also list the detailed runtime value and compare the
speed of different methods, as is shown in Table V. Compared
with MOSAIC, our FSA-Level set has a great 1.73x speed
up. For most cases, we could refine the same quasi-optimized
masks within fewer iterations. Compared with the level set
without using the mask filter strategy and the SACG method,
the FSA-Level set is 1.13x faster. We further analyze the
effect of the mask filter strategy and the SACG method. The
Filtered-Level set could accelerate the optimization process
compared with the level set, which validates the effective-
ness of the mask filter strategy. But it takes 1.046x longer
time compared with the FSA-Level-set result, which proves
the SACG method could guide the searching algorithm to bet-
ter masks with less time. This runtime superiority together
with the general performance improvement could significantly
prove the robustness of our FSA-Level-set method.

D. Ablation Study on Momentum Term of SA-Level Set

An ablation study is performed on the SA-Level-set
optimization process with GPU to investigate the influence
of the momentum strategy. The results are given in Table VI,
where “w/0. momentum” represents the update of the level-set
function is momentum excluded and only uses the latest veloc-
ity, while “w. momentum” refers to the momentum included
the optimization process. We compare the average values in

all four metrical aspects. The results show that the mask gen-
erated with momentum added could produce a more robust
pattern, and the average number of EPE violations could be
reduced with a smaller PV Band. Besides, the momentum
strategy could help accelerate the convergence by reaching the
best results in less time. Generally speaking, the momentum
strategy could bring comprehensive development and improve
the total score.

V. CONCLUSION

In this article, we develop a level-set inverse lithography
mask optimization method with CUDA speedup to generate
mask patterns with high fidelity and robustness in a very
short time. We formulate the new process variation-based cost
function to minimize the PV band and pattern displacement
effectively. A momentum-based CG algorithm is adopted to
help improve the convergence. To further enhance the mask
quality and accelerate the optimization process, we propose
the SACG method. The mask filters are adopted to improve
the robustness for irregular input, which makes our method
practical to work as a postmask optimization process. We also
use GPU to accelerate the optimization process. Numerical
experimental results show that our method could produce bet-
ter masks in a short time, and it is robust to different process
variations and complex input masks.
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