2022

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 10, OCTOBER 2018

RippleFPGA: Routability-Driven Simultaneous
Packing and Placement for Modern FPGAs

Gengjie Chen

, Chak-Wa Pui, Wing-Kai Chow

, Ka-Chun Lam, Jian Kuang

Evangeline F. Y. Young, and Bei Yu, Member, IEEE

Abstract—As a good tradeoff between central processing
unit (CPU) and application specific integrated circuit (ASIC),
field-programmable gate array (FPGA) is becoming more widely
used in both industry and academia. The increasing complexity
and scale of modern FPGA, however, impose great challenges
on the FPGA placement and packing problem. In this paper, we
propose RippleFPGA to solve the packing and placement simul-
taneously through a set of novel techniques: 1) smooth stair-step
flow; 2) implicit packing similar to ASIC legalization (LG); and
3) two-level detailed placement (DP). To enable the flow, a generic,
efficient, and false-alarm-free legality checking method is also
proposed. Besides, due to the insufficiency of ASIC-like conges-
tion alleviation methods, some FPGA-routing-architecture-aware
optimization techniques are proposed to improve the routability.
When evaluated by ISPD 2016 Contest benchmarks, RippleFPGA
has 5.1% better routed wirelength and 5.5x speedup compared
to all the state-of-the-art FPGA placers.

Index Terms—TField-programmable gate array (FPGA), legal-
ization, network flow algorithm, partitioning, placement.

I. INTRODUCTION

IELD-PROGRAMMABLE gate array (FPGA) is an inte-

grated circuit (IC) designed to be reconfigurable by users
after manufacturing. As technology scaling slows down, the
central processing unit (CPU), which supports high-level pro-
gramming languages, is experiencing difficulties in boosting
performance and power efficiency. Meanwhile, application
specific IC (ASIC) is becoming extremely expensive to design
and manufacture. As a good tradeoff between CPU and
ASIC, FPGA is growing in many areas such as communica-
tions, industrial control, aerospace, consumer electronics, and
artificial intelligence [1]-[3].

In order to meet the needs of the applications, FPGA is
also evolving rapidly and over time becoming bigger, faster,
and more like ASICs (e.g., the number of logic cells in a
modern FPGA reaches 5.5 million [4]). The complexity and
size together with the FPGA-specific constraints, impose many
challenges on the FPGA packing and placement [5].

A typical FPGA CAD flow is shown in Fig. 1. After
logic synthesis, the netlist consists of lookup tables (LUTs),

Manuscript received April 14, 2017; revised July 28, 2017; accepted
November 1, 2017. Date of publication November 28, 2017; date of cur-
rent version September 18, 2018. This work was supported by the Research
Grants Council of the Hong Kong Special Administrative Region under
Project CUHK14206015. The preliminary version has been presented at the
International Conference on Computer-Aided Design (ICCAD) in 2016. This
paper was recommended by Associate Editor C. C.-N. Chu. (Corresponding
author: Gengjie Chen.)

The authors are with the Department of Computer Science and
Engineering, Chinese University of Hong Kong, Hong Kong (e-mail:
gjchen@cse.cuhk.edu.hk).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2017.2778058

Logic .
HDL code Synthesis > Packing
M Routing [« Placement

Fig. 1. Typical FPGA CAD flow.

flip-flops (FFs), digital signal processors (DSPs), random
access memories (RAMs) and I/O pads. During packing,
LUTs and FFs are grouped together into basic logic ele-
ments (BLEs) and then further clustered into configurable
logic blocks (CLBs). After packing, placement legally maps
all the CLB/DSP/RAM/IO blocks onto the FPGA and opti-
mizes some metrics (e.g., wirelength and routability). Note
that besides half-perimeter wirelength (HPWL), routability is
also important in placement. For one thing, an unroutable
placement, even with perfect HPWL, is useless. For another, a
difficult-to-route placement not only requires very long rout-
ing time but also incurs significant detour and thus increase
in routed wirelength, leading to timing and power problems.

A. Previous Work

1) Packing for FPGAs: Previous approaches for FPGA
packing can can be loosely categorized into seed-based,
clustering-based, and partitioning-based approaches. We fol-
low the convection in ASIC that clustering refers to a bottom-
up process that groups several cells together, and partitioning
means a top-down process that breaks the whole circuit into
several subcircuits [7].

Seed-based approach iteratively selects a cell as a seed, and
then keeps merging an unmerged cell (with highest attrac-
tion) into the seed until the capacity limit is reached. It was
extensively used in academia. By setting the attraction func-
tion differently, VPack [8] and others [9]-[14] achieve various
objectives. The seed-based approach is an efficient greedy
heuristic but lacks a global view. It also tends to pack too
densely by exhausting the capacity of a CLB [15].

For clustering, there are mainly two types of methods
used in ASIC placement. One is a greedy heuristics that vis-
its cells in an arbitrary order and find a neighbor with the
highest attraction for merging, such as edge coarsening [16]
and FirstChoice [17]. Another approach is priority-queue-
based, which chooses the best pair among all to combine
iteratively and update the queue correspondingly, such as
edge separability-based clustering [18], BestChoice (BC) [19],
and SafeChoice (SC) [20]. Among them, BC, which prefers
stronger connection but smaller area, is the most popular with

0278-0070 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-6016-4742
https://orcid.org/0000-0002-0433-3078
https://orcid.org/0000-0002-2659-0040

CHEN et al.: RIPPLEFPGA: ROUTABILITY-DRIVEN SIMULTANEOUS PACKING AND PLACEMENT FOR MODERN FPGAs

application in many ASIC placers (e.g., FastPlace [21]) and
FPGA packers (e.g., HDPack [22], UTPlaceF [23]). Note that
a direct application of BC to packing will result in a large
number of clusters with half utilization, i.e., a loose packing.
A hybrid method (e.g., combined with seed-based approach)
is usually needed for avoiding the loose packing.

Netlist partitioning (refer to [24] for a survey) is a neces-
sary process for partitioning-based placers in ASIC. PPFF [25]
applies this placement paradigm to FPGA, where packing is
done implicitly within placement. Besides, an explicit way of
packing is recursive partitioning followed by adjusting illegal
CLBs [26], [27]. Since netlist partitioning is time-consuming,
the packing approaches based on it are slow. As another way of
partitioning-based packing, GPlace-flat [28] employs recursive
geometric bi-partitioning on a flat placement. To handle the
complex design rules, they ignore the precious LUT-FF con-
nections when moving cells globally between two partitions.
In general, the legality checking in partitioning-based packing
is more complicated than that in bottom-up approaches (i.e.,
seed-based and clustering-based ones).

2) Placement for FPGAs: Same as ASIC, placement
in FPGA can be classified into three categories: simu-
lated annealing, partitioning-based approaches, and analyt-
ical approaches. The most famous academic FPGA CAD
tool VPR/VTR [29], [30] is a representative of simulated-
annealing-based methods. Partitioning-based FPGA placers
like the aforementioned PPFF recursively partition a design
and place it hierarchically.

In ASIC placement, simulated annealing and partitioning-
based approaches are outperformed by analytical ones
(e.g., [31]-[33]), as the number of placement instances
substantially increases nowadays [34]. The situation is the
same in FPGA placement. Not only the industrial placers
migrate to analytical approaches [35], but also many aca-
demic analytical FPGA placers have appeared and shown very
good result. They include quadratic placers (e.g., QPF [36],
StarPlace [37], HeAP [38], UTPlaceF [23], GPlace [28]), non-
linear optimization placers (e.g., [39] and [40]) and others
(e.g., CAPRI [41] using a formulation of binary quadratic
assignment).

3) Packing and Placement Cooperation: In the convec-
tional FPGA CAD flow (Fig. 1), the separation of netlist-based
packing and CLB-level placement reduces the complexity of
each subproblem. But the drawback is twofold. First, with-
out prior placement, efficient packing algorithms suffer from
the limitation that only local connectivity information can be
considered [18], [20]. Moreover, to incorporate other met-
rics (e.g., timing, power, and routability), the netlist-level
estimation is very inaccurate [42]. Second, after packing,
placement is greatly confined to a fixed circuit structure [43].
The wirelength optimization is thus restricted and suboptimal.
To consider other objectives, which may require BLE-level
movement, the restriction is highly undesirable.

Various methods are proposed to overcome the drawback.
One way is to perform bottom-up packing according to the
information obtained from an initial placement, similar to
physical clustering in the ASIC world (e.g., physical SC [20],
FastPlace [21]). To handle congestion better, Un/DoPack [44]
redoes the packing and placement based on the trial pack-place
result. Bringing this idea from simulated annealing to analyti-
cal placement, UTPlaceF [23] and GPlace-pack [28] pack after
a flat initial placement. With the same idea, HDPack [22] uses
the physical information to improve timing. As another way,

2023

GPlace-flat [28] conducts implicit packing after flat place-
ment. A pictorial comparison of the three types of flows: 1)
the conventional one (pack-place); 2) packing with physical
information (place-pack-place); and 3) flat placement followed
by legalization (LG) (place-pack), are shown in Fig. 2(a).
Moreover, in DP, significantly larger solution space can be
explored by breaking the packed result and allowing BLE
move [43].

4) Routability in FPGA Placement: The general
approach for improving placement routability, which
inflates/depopulates cells according to a congestion estimation
at g-cell level, has been successfully applied in both ASIC and
FPGA fields [23], [28], [31]. Besides, being programmable,
the routing architecture in FPGA is quite different from that
in ASIC [1]. CAPRI [41] starts considering the segmented
routing of FPGA by graph embedding, but the objective
is timing and congestion actually becomes worse in some
cases. Chen and Chang [40] proposed a smooth function to
approximate the discrete routing cost under their nonlinear
placement framework. As the major weakness, both works
are not scalable for large designs due to the complicated
problem formulation.

B. Motivations

The key issues in the previous work about FPGA packing

and placement that motivate this paper are as follows.

1) The artificial separation of packing and placement stages
may be undesirable. This is a chicken-and-egg problem:
without placement information, a good packing solution
is difficult to obtain; without packing, there is no way
to do a legal placement. Aware of this, some previous
works start to blur the boundary between the two. It is of
particular interest whether stronger integration between
packing and placement is possible.

2) The bottom-up packing (including seed-based and
clustering-based one) is efficient and friendly for consid-
ering design rules, in contrast to the partitioning-based
one. But even with physical information, the process is
still based on the pairwise attraction, which concentrates
on local situation. Besides, it requires careful engineer-
ing to control the packing density. Many methods need
to iteratively update the packing parameters until num-
ber of packed CLBs is not overflowed [23], [28]. On the
other hand, the partitioning-based approach has more
global view and controls the packing density implic-
itly, but is time-consuming and has difficulty in legality
checking. Therefore, it is highly desirable to combine
the strengths of the both together.

3) As FPGA technology advances, more flexible con-
figuration within CLB is allowed to improve the
performance [45]. This, however, makes the legality
checking in CLB much more complicated. It is a major
motivation for a separated packing stage [14], [22].
Therefore, an efficient and effective legality checking for
packing, which can enable many high-level techniques,
is in need.

4) To better handle routability, it is also necessary to con-
sider the routing issues special to FPGAs in an effective
and efficient way.

C. Contributions

In this paper, we propose a routability-driven simultane-
ous packing and placement engine called RippleFPGA for

2024

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 10, OCTOBER 2018

o flat GP L) soft BLE 0
placement placement packing
. . — — — 1
flat netlist LUT/FF flat netlist -
B o place-pack| - - BLEGP bk CLB.physwal o
o E o packing (LG)
(=N
= 0 = ————
% l B F------- - BLE % l [3) slot assignment
x &= < .
8 8 g I;, O| two-level DP [in CLB (6]
pack-place - CLB (5]
""""""""" =0- T e (LD lacement .
placed design placed design B placed design
(a) (b)
Fig. 2. Different FPGA packing and placement flows. (a) Three types of flows in the previous work. (b) Our proposed flow of simultaneous packing and

placement.

modern FPGAs. Our major contributions are summarized as
follows.

1) We propose a stair-step framework that interleaves the
packing and placement stages [briefly illustrated by
Fig. 2(b)]. The integrated flow is smooth and enables
fast feedback of accurate estimation (e.g., routability)
from a final state to an intermediate state.

2) We design an implicit CLB packing scheme, which is
similar to ASIC LG. By approximating the analytical
global placement (GP) directly, it can implicitly con-
trol the packing density and directly reflect objectives
considered in placement.

3) We propose a generic, efficient, and false-alarm-free
CLB legality checking and slot assignment methods for
the modern FPGA with complex design rules, which
enable the implicit CLB packing and the BLE move
in DP.

4) Under this framework, we propose some routing-
architecture-aware techniques, including partition allo-
cation (PA), CLB slot assignment, and alignment
optimization, together with the ASIC-like congestion
alleviation methods.

The remainder of this paper is organized as follows.
Section II gives an introduction to our target FPGA architec-
ture as well as the problem formulation. Section III provides
an overview of our flow. Sections IV and V then intro-
duce packing and placement algorithms in detail, respectively.
Section VI describes our speedup techniques. Section VII
shows the experimental results, and we finally conclude in
Section VIIIL.

II. PRELIMINARIES
A. Target Architecture

Our target architecture is Xilinx UltraScale VU095 [5], a
representative of modern FPGAs. Its layout is illustrated in
Fig. 3. There are a large number of CLB/RAM/DSP/IO blocks
of various sizes. Each block can only be placed into sites of
its own type.

The internal structure of CLB is shown by Fig. 4. Each CLB
can contain at most eight BLEs, which are divided into two
halves. Within a BLE, there are at most two LUTs and two
FFs under the following constraints.

1) For the two LUTs, if both are used, the total number of

distinct inputs should be no more than five. If only one

T TTETTT]

EE

ustration of Xilinx UltraScale architecture.

Fig. 3.

upper half using

CKO0, SRO, CE0/1 |

lower half using
CK1, SR1, CE2/3 7|

Fig. 4. Tllustration of CLB and BLE in Xilinx UltraScale.
LUT is occupied, there is no restriction on it. Note that
the input of a single LUT ranges from two to six.

2) For the two FFs, their clock enable (CE) signals can
differ, but the clock (CK) and set/reset (SR) signals need
to be identical.

3) CK, SR, and the two CEs for the four BLEs in a half
should be the same.

The four FFs that are required to use the same CE will be
referred as an FF group. Note that there are thus totally four
FF groups in a CLB, with two in each half.

For routing, all the external connections of blocks go to
the dedicated switch boxes first, which are then connected by
predefined routing segments. Inside a CLB block, two types

CHEN et al.: RIPPLEFPGA: ROUTABILITY-DRIVEN SIMULTANEOUS PACKING AND PLACEMENT FOR MODERN FPGAs

of nets can be physically achieved without going through the
switch box: 1) inputs shared by the two LUTs in the same BLE
require no wire and 2) an LUT drives an FF within the same
BLE (referred as LUT-FF connection in this paper), which is
implemented by internal exclusive wires. In terms of routing
demand as well as delay, the preference of connections should
be: 1) requiring no switch box; 2) assigning pins to the same
switch box; and 3) assigning pins to different switch boxes.
This preference is the major consideration of packing.

B. Problem Formulation

The wirelength and routability evaluation of a placed design
can be combined into a single metric: the routed wirelength.
Note that to have routed wirelength, the placement should be
routable first. The problem formulation is thus as follows.

Problem 1 (Routability-Driven FPGA Placement): Given a
netlist of LUTs, FFs, DSPs, RAMs, and IOs, and the target
FPGA architecture, decide the sites and slots of cells to
minimize the routed wirelength.

III. FLOW OVERVIEW

In ASIC placement, there are typically three stages: GP,
LG, and DP [31]. GP gives the location of each cell across
the chip to optimize wirelength as well as others under the
cell density constraint. LG aligns cells to the placement sites
without overlapping. Finally, DP further improves the solution
by relocating cells.

RippleFPGA integrates packing and placement by a stair-
step flow, which is divided into six stages [Fig. 2(b)].

1) Flat GP: An initial GP is conducted on the flat netlist to
minimize HPWL. At an early point of this stage, netlist
partitions are globally allocated to fit the unbalanced
horizontal and vertical routing resources.

2) Soft BLE Packing: LUTs and FFs are packed into BLEs.
The BLEs generated here are soft since in later stages
they can not only be merged with each other but also be
split. Only LUTs and FFs with strong mutual connection
and of small distance apart are packed together.

3) BLE GP: The second GP is on the coarsened BLE-level
netlist. Some later iterations are congestion-driven. In
the middle of this GP, DSPs and RAMs are legalized
and fixed in their locations due to their large sizes and
high connectivity.

4) Implicit CLB Packing (LG): Soft BLEs are packed into
CLB implicitly, based on an efficient legality checker
and guided by Tetris-like LG [46].

5) Two-Level DP: In DP, block-level and BLE-level move
are conducted to further improve HPWL as well as
routability.

6) Slot Assignment in CLB: Lastly, LUT/FF slots within
CLBs are assigned to maximize the switch-box-free
connection.

IV. PACKING ALGORITHMS

This section focuses on packing methodologies (i.e.,
stages 2, 4, and 6), while placement algorithms will be
introduced in the next section.

A. Max-Weight-Matching-Based BLE Packing

In stage 2, LUTs and FFs are packed into soft BLEs accord-
ing to both the physical information obtained from the initial

2025

GP and the connectivity. Only LUTs and FFs with strong
mutual connection and small distance are packed together. A
simple BLE structure, where each BLE contains only one LUT
and one FF, is assumed in many previous work. In UltraScale,
the two LUTs and two FFs with sophisticated constraints in a
BLE pose great challenges to packing.

In general, our BLE packing consists of two steps. First, FFs
driven by an LUT are considered to be merged with the LUT.
Second, two LUTSs (and their attached FFs) are considered to
be merged together. Besides saving spaces, the other objec-
tive of BLE packing is to increase the local switch-box-free
connections (i.e., the shared LUT inputs and the LUT-FF con-
nections), which is significant for routability and wirelength.
For the simplicity of illustration, an LUT or FF may also be
regarded as a single-cell BLE from now on.

1) LUT-FF Connecting: LUT-FF connection is precious as
mentioned in Section II-A. In this step, we try to merge an
LUT with the FFs driven by it. FFs with the Manhattan dis-
tance from the LUT exceeding a threshold dpn.x (which is
empirically set to 20 switch-box units) will be ignored, to
avoid a huge disturbance to wirelength. An LUT may drive
multiple FFs. In this case, FFs are sorted by the distance from
the LUT and the first two legal FFs are selected.

2) LUT Fairing: After the first step, each BLE contains
at most one LUT. The single-LUT BLEs are considered to
be merged together, in order to save spaces and increase input
sharing. We construct a weighted graph G (V1, E1; wy), where
a vertex v € V| represents a single-LUT BLE and an edge
(u, v) € E; represents a candidate pairing. A pairing is a can-
didate if and only if: 1) the two LUTSs have no conflict; 2) the
attached FFs have no conflict; 3) the distance between the two
LUTs is smaller than dpax; and 4) the number of shared inputs
between the two LUTs is not smaller than a threshold (which
is empirically set to 2).

Furthermore, we let the weight of an edge (u, v) be the num-
ber of inputs that # and v share. A maximum weight matching
problem on G is then solved, where each matching indicates
that the two corresponding BLEs should be merged into one.
Note that the edge weight here does not incorporate physical
distance according to two considerations. First, LUT pairs with
large distance are already forbidden, so ignoring distance leads
to negligible wirelength loss. Second, within a BLE, shared
inputs between two LUTs directly imply precious switch-box-
free connections, while for LUTs with close GP locations, it
makes no difference by assigning them: 1) to the same BLE;
2) to different BLEs but the same CLB; or 3) even to different
CLBs sharing the same switch box.

Note that the packing result here is a guidance instead of
a restriction for the following stages. The LUTs and FFs that
merged into the same soft BLE are very likely to stay in the
same BLE in the end, but separation is possible if needed.
Besides, soft BLEs can also merge with each other to save
space, without reducing the switch-box-free connections.

B. Max-Cardinality-Matching-Based CLB Legality Checking

In the design flow, we need to repeatedly query whether
several given soft BLEs can be legally placed into a CLB. Only
with an efficient legality checker, the implicit CLB packing
guided by Tetris-like LG (stage 4) and the BLE move in DP
(stage 5) are possible. In most scenarios, checking is done
incrementally, which is formally defined as follows.

Problem 2 (Incremental Legality Checking): Given a set of
soft BLEs which can be legally placed into a CLB, and another

2026

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 10, OCTOBER 2018

Algorithm 1 Incremental Legality Checking

Algorithm 2 Refined-Tetris-Based BLE LG

Require: a CLB ¢ containing several BLEs, another BLE b;
Ensure: whether b can be added;
1: Local variables: set of single LUTs LS, set of LUT pairs LP, FF group
FG; (i=0,1,2,3);
2: Backup LS, LP, FG;;
3: for LUT/FF v in b do
4: if v is an LUT then

5: succ < AAALUT(v);
6: else

7. succ < AJAFF(v);

8 end if

9: if !succ then

10: Recover LS, LP, FG;;
11: return false;

12: end if

13: end for

14: return true;
15: function AAALUT(v)
16: for u € LS do;

17: if (u,v) is a valid LUT pair then;
18: LS < LS\{u};

19: LP < LPU {(u,v)};

20: return true;

21: end if

22: end for

23: LS < LSU {v};

24 if |LS|+ |LP| < 8 then

25: return true;

26: end if

27: Solve max-cardinality matching on LUT pair graph;
28: return |LS| + |[LP| < 8;

29: end function

30: function AddFF(v)

31: for i :=0 to 3 do

32: if |FG;| = 0 or (v shares CK, SR & CE with FG; and |FG;| < 4|)
then

33: FG; < FG; U {v};

34 return true;

35: end if

36: end for

37: return false;

38: end function

soft BLEs, decide whether they can be legally placed into a
CLB together.

In [47], we use a dedicated finite state machine with many
tedious case discussion to check legality and assign LUT/FF
slots. There, two (or even three or four) soft BLEs can be
merged into one, but LUT-FF connections existing in the input
BLEs are not allowed to be broken. To avoid the number of
states growing exponentially, some merging between BLEs is
decided greedily, which in some cases leads to false alarms
(e.g., results sensitive to order of BLEs added).

In this paper, a scheme that separates the legality checking
and the slot assignment is proposed. The improvement is in
four aspects. First, the checking is now optimal without false
alarm. Second, by deferring the slot assignment, the legality
checking, which is frequently invoked, is more efficient. Third,
without tedious discussion of the complicated design rules,
the scheme is generic and also easy to implement. Fourth,
by allowing breaking LUT-FF connections, the success rate
and the number of shared LUT inputs are increased. Note that
even though the LUT-FF connections can be broken, the actual
number of breaking is tiny.

The legality is checked incrementally by Algorithm 1. By
ignoring LUT-FF connections temporarily, LUTs and FFs
inside the new BLE are checked individually (lines 3—13).
When trying to add an LUT (lines 15-29), optimal solution

Require: BLEs B with their GP locations, min number of candidate sites in
a round negnds
Ensure: The CLB site that each BLE belongs to;
1: for b € B do

2 Displacement d < 0;

3 while b is not placed do

4: Candidate sites S <« @;

5: while [S| < ngg,q do

6: Add CLB sites with displacement d to S;
7 d<—d+1;

8 end while

9: Sort § by ascending HPWL;

10: for s € S do

11: if b can be assigned to s (by Algorithm 1) then
12: Assign b to s;

13: Break;

14: end if

15: end for

16: end while

17: end for

will be found by max-cardinality graph matching (lines 27 and
28) after the greedy method (lines 16-26) fails. In the LUT
pair graph for matching (line 27), each vertex is an LUT while
edges represent valid LUT pairs. To add an FF (lines 30-38),
FF groups with the same CK, SR, and CE will be exhausted
first to save space. In our implementation, some redundant
checking (e.g., FGo and FG; have the same CK and SR) is
avoided by two-level loops, but here the idea is shown by a
single loop.

C. Refined-Tetris-Based BLE Legalization

In stage 4, CLB packing is implicitly conducted under an
LG framework. LG needs to consider the legality of a move
and to minimize the disturbance to GP simultaneously. Unlike
DSP/RAMs, a CLB site can contain multiple BLEs under the
complicated LG rules.

Based on the legality checking method described in
Section IV-B, our BLE LG algorithm (Algorithm 2) refines
Tetris, which legalizes cells sequentially without affecting
previously legalized cells. Apart from the displacement, which
is the only objective of Tetris, HPWL is also captured in the
LG of RippleFPGA. Candidate sites under the restriction of
displacement are first obtained (line 6). A legal site is then
found by attempting the candidate sites in increasing HPWL
order (lines 10-15). If all attempts fail in this round, candidate
sites with larger displacement are tried. To encourage HPWL
optimization, the number of candidates sites in each round is
a relatively large number. As this algorithm is highly flexi-
ble in choosing the secondary object (HPWL in ours), it can
also be adapted for optimizing other objectives like timing,
power, etc.

D. ILP-Based Slot Assignment Within CLB

After repeatedly checking legality and adding BLE during
LG and DP stages, the CLB that each BLE belongs to is
known, but the slot for each LUT/FF still needs to be deter-
mined. In our flow, the slots are assigned in stage 6 after all
cell movements are settled. Besides legality, the other target
in slot assignment is to maximize the shared LUT inputs and
the LUT-FF connections, which is similar to BLE packing. In
general, slots are assigned by two steps. First, the LUT pairs
are modified to consider the above two connections instead

CHEN et al.: RIPPLEFPGA: ROUTABILITY-DRIVEN SIMULTANEOUS PACKING AND PLACEMENT FOR MODERN FPGAs

Fig. 5. Max-weight matching on the (a) original graph G, and (b) graph
without nonpositive edges G’z.

A, 15 B
12 12
F 11 C
8 8
E 8
(b)

Fig. 6. Max-weight matching on the (a) original graph G, and (b) graph with
penalized edges. (c) Max-weight matching with at least two edges on Gj.

of legality only. Second, slots for the LUT pairs and FFs are
determined to maximize the LUT-FF connections.

1) LUT Pairing: Different from BLE packing, LUT pairing
in slot assignment is decided first, since legality is a hard
constraint now. Not only shared LUT inputs but also LUT-FF
connections are considered in LUT pairing. We construct a
weighted graph G»(V3, E»; wp) again, where a vertex v € V,
represents an LUT and an edge (u, v) € E; represents a legal
LUT pair. The edge weight wy(u, v) between LUTs u and v
is set as follows:

wy(u, v) = NSI(u, v) + (PNF(u, v) — PNF(u#) — PNF(v))
(1)

where NSI is the number of shared inputs and PNF is the
potential number of FFs for an LUT (pair). PNF can be zero,
one or two, which is the maximum number of FFs that: 1) are
in this CLB; 2) are logically driven by this LUT (pair); and
3) have no type conflict (if PNF is two).

After constructing G, general maximum-weight matching
algorithm does not work because of negative-weight edges
and constraint C on cardinality. The cardinality constraint is
due to the limited capacity of CLB (eight BLEs at most),
which is the major difficulty of the problem. By removing
the nonpositive edges and the cardinality constraint first, the
maximum-weight matching can be easily solved. If the result
is legal, it is optimal. The proof is simple and omitted due
to the space limit. Fig. 5 shows an example. Suppose at least
two matchings are required (i.e., C = 2). By ignoring nonpos-
itive edges CD and EF in G> and the cardinality constraint, it
becomes easy to obtain max-weight matching M = {AB, DE}
on the resulted graph G). Since [M| =2 > C, M is the optimal
constrained matching on G».

If M violates the cardinality constraint, we add a constant
P to each edge weight as penalty, by the idea of Lagrangian
relaxation. Since it will be computationally impractical to
iteratively update P, P is set large enough. Note that
P=3, £, Iw2(e)] is sufficient for guaranteeing the legality
(i.e., maximum cardinality) because of Theorem 1. Then, pairs
with negative weight are split in descending order until the car-
dinality constraint is not violated. An example (C = 2) is in

2027

Fig. 6. The max-weight matching without constraint on G is
M = {AB}, which is illegal. By adding sufficient penalty to
edges, the max-weight matching on Fig. 6(b) is {AF, BC, DE}.
The solution is legal now but can be improved by excluding
negative edge DE, as in Fig. 6(c).

Theorem 1: For a graph G, = (Va, E3;wp), define
G) = (Va, E3;w)), where w)(e) = wa(e) + P with P =
ZeeEz lwz(e)|. The maximum-weight matching M” of G is
also a maximum-cardinality matching of GJ.

Proof: Suppose it is false and the maximum-cardinality
matching is M* with [M*| > |M"|. Then wj(M*) —wj(M") =
(IM*| = IM"]) - P+ wo(M*) — wo(M") = P + wo(M*) —
woM") > P — ZeeEz [wa(e)| = 0. Therefore, M” is not a
maximum-weight matching, which is a contradiction. |

2) LUT-FF Connecting: Now, there are some LUTs (or
LUT pairs) and FFs. For candidate LUT-FF connections, the
preferred action is to assign the corresponding LUTs and FFs
to the same BLE (i.e., to achieve the connections). However,
different candidates may conflict with each other. The problem
is formally stated as follows.

Problem 3 (LUT-FF Connecting in CLB): Given some LUT
pairs and FFs which can be legally placed into a CLB, decide
the specific legal slots for them to maximize the achieved LUT-
FF connection.

The problem can be solved by integer linear programming
(ILP). Suppose the set of LUT pairs is L and the set of FFs
is F. Binary variables x;; represents whether LUT pair [€ L
is assigned to the ith half, ys; represents whether FF f € F
is assigned to the ith FF group. Let C = {(/,f)} be the set
of candidate LUT-FF connections where LUT pair [drives
FF f. The decision variable z; ¢ indicates whether (/,f) € C is
achieved. There are then the following legality constraints.

1) Each LUT pair or FF has one and only one assignment

1
Y xi=1, Vel (2a)
i=0
3
ny,,- =1, VfeF. (2b)
i=0
2) Each half or FF group has limited capacity
Zx,,i <4, Vie{0,1} (3a)
leL
D yri<4 Vje{0.1,2.3} (3b)
feF

3) FFs with different CK, SR, and CE are conflicted

yrj+yr; <1, Y(f,f) with different CK/SR/CE
Vje{0,1,2,3} (4a)

yrjt+ypy =<1, Y(f.f) with different CK/SR
v(.j) € {(0, 1), (2,3)}. (4b)

4) x;; and yr; is binded if the LUT-FF connection is
achieved. That is, ;7 — (0 A Or,0 V Yr1)) V (1 A
(/r,2 V ¥r,3)). By introducing auxiliary binary variables
sir,0 and s;7 1, it can be expressed as

Sifi < XL Vi e {0, 1} (5a)
sifi < yr2i +yr2iet, Vi€ {0, 1} (5b)
af < sipo+ s, YU e C (50)

2028

5) Due to the limited BLE capacity, from an FF group to
an LUT pair, there can be only one achieved connection

Y(.f),(fyeC
Vie(0,1,2,3). (6)

aftap +yritye <4

The ILP formulation is thus

max Z 2Lf (7a)
(.hHecC

S.t. X1, Yfj» 2Lf> Sir,i are binary variables
(2) — (6). (7b)

This formulation can be improved by two modifications.

First, there are numerous constraints (between every pair
of conflicted FFs) in (4). For example, Assuming two CK/SR
types, two CE types in each CK/SR type, and four FFs under
each CE type, the total number of constraints is (4 x 4) x
(‘21) x4+ (8 x8) x (%) x 4 = 640. To avoid such extensive
enumeration, type representatives can be used (in this section,
a type refers to the same configuration of CK SR and CE
hereafter). Suppose K is the set of FF types. Let Fy represent
the set of FFs of type k € K, and the type representative t;
indicate whether Fj occupies jth FF group. Then, (4) can be
replaced by

tj>yrj, Vf€Fy, Ykek, Vje{0,1,2,3} (8a)
Do <1, Vie{l,2,3,4) (8b)
k
tj+twy <1, Yk K) with different CK/SR
V(. j) € {0, 1), 2,3)}. (8¢)

Under the same assumption, the number of constraints is
reduced from 640 to 16 x 4 +4 4+ (2 x 2) x 4 = 84.

Second, the LUT pairs and FFs without internal LUT-FF
connection, which are the majority in L and F, can be removed
from the ILP formulation to reduce the variable number sig-
nificantly. The variables for such unconnected LUT pairs can
be deleted directly since theirs halves can be arbitrarily deter-
mined later without affecting both constraints and objectives.
However, postponed assignment of unconnected FFs may fail
due to the FF conflict constraints. To guarantee sufficient legal
slots, type representative f ; helps again

3
D uy = [IFil/41, VkeK. ©)
=0

In summary, with the help of type representatives, a much
more efficient ILP formulation equivalent to (7) is

max Z s (10a)
(I.HeC

St X1, Yf.js 2f5 SLf,is Tkj aAT€ binary
(2), (3), (5), (6), (8), and (9) (10b)

with unconnected LUT pairs and FFs removed from sets
L,F, Fy in (2), (3), and (8). It can be efficiently solved by
ILP solver.

In practice, many cases may be easy to optimize. Therefore,
a greedy heuristics is attempted for each case first. Essentially,
LUT pairs are sequentially committed in the order of num-
ber of candidate LUT-FF connections. For each LUT pair, the
achieved LUT-FF connection is maximized as long as it is

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 10, OCTOBER 2018

Rough QP by B2B Final Rough
Initial | | Legalization Net Model & Legalization
Placement (Upper Pseudo Nets (Upper
Bound) (Lower Bound) Bound)
t
Fig. 7. Overall GP flow.

legal. Then, an upper bound of the total achieved LUT-FF
connection is calculated by »,.; PNF(J). If the heuristics can
accomplish the upper bound, there is no need to invoke ILP,
which saves runtime. In experiment results, we will show that
usually only single-digit number percent of cases actually call
ILP, which makes the slot assignment more efficient in general.

V. PLACEMENT ALGORITHMS

There are two GP stages in our flow, a flat one (stage 1) and
a BLE one (stage 3), where two routibility optimization tech-
niques, including PA and cell inflation/shrinkage, are applied.
After LG, the congestion-aware two-level DP (stage 5) further
improves the solution.

A. Heterogeneous Global Placement Engine

Our GP engine in stages 1 and 3 is based on Ripple [31],
which invokes the lower bound and upper bound compu-
tations alternatively. The overall flow of GP is shown in
Fig. 7. In the lower bound phase, the wirelength minimization
is formulated as a quadratic programing (QP), where the
“Bound2Bound” [49] net model is used to capture the HPWL
objective. The minimized wirelength, however, leads to many
cell overlaps. In the upper bound phase, the placement is
roughly legalized by spreading the cells. To be more specific,
the chip is divided into bins and cells are iteratively spread
until the cell density of each bin is within a threshold. In
the next lower bound phase, pseudo pins and pseudo nets are
added for movable cells. A pseudo pin is placed at the cell
location in the last upper bound phase, while a pseduo net con-
nects a pseudo pin and the corresponding cell. By iteratively
calling the lower and upper bound computations and gradually
increasing the pseudo net weights, we can obtain a converged
GP result with few overlaps and minimized wirelength.

Recall that each site in the heterogeneous FPGA architecture
is dedicated for a type of cells, which should be taken care of.
Otherwise, due to type mismatch, LG may cause significant
displacement even if GP has very few overlaps. In our GP,
fence constraints are used to avoid placing cells into illegal
sites. That is, when spreading cells of a type in the upper
bound phase, the maximum cell density of unmatched sites is
set to zero.

Another issue in GP is how to set the areas of LUT/FFs
(in flat GP) and BLEs (in BLE GP). For DSPs and RAMs,
the area can be set straightforwardly, since each DSP/RAM
site can hold one and only one DSP/RAM block. Without
CLB packing, the number of LUTs and FFs that a CLB site
can contain is unknown. Furthermore, LUTs and FFs share
the CLB sites and cannot be separated by fence constraints.
Their areas are thus set by the following adaptive estimation.
The estimated number of FFs that a CLB can contain cf is
set to 9, which is the average of maximum (16 if there is
totally no conflict) and minimum (2 if FF CK/SR types are all
different). Similarly, the estimated number of LUTs cyy that
a CLB can contain is 12, the average of 16 and 8. Here, a

CHEN et al.: RIPPLEFPGA: ROUTABILITY-DRIVEN SIMULTANEOUS PACKING AND PLACEMENT FOR MODERN FPGAs

@ (b) ©

Fig. 8. Routability problem due to the unbalanced horizontal and vertical
routing supply. (a) Placement with small wirelength but illegal cell density.
(b) Spreading cells by strictly maintaining cell order. (c) Spreading cells with
PA. The final placement results of a design (d) without initial PA and (e) with
allocation.

six-input LUT is counted twice. For a design with ng FFs and
nt LUTSs, the number of CLBs needed is thus estimated to
be max{niy/crut, nee/cer}. The base LUT/FF area ay is then
adaptively calculated by

max{niut/ Clu, Nt/ Ctr}

ayp = (11)

4 Nt + Nt

The actual LUT/FF area is therefore
a}f = ay - scale (12)

where scale is a scale factor tuned for a tradeoff among HPWL,
routability and LG difficulty, which is design independent.
Besides, the area of a soft BLE is just the summation of those
of its member LUT/FFs.

B. Routing-Architecture-Aware Partition Allocation

At an early point of stage 1, netlist partitions are globally
allocated to fit the routing supply imbalance.

Analytical ASIC placers typically do not need netlist par-
titioning, where the netlist minimization relies on the math-
ematical optimization on the flat netlist. However, the Xilinx
UltraScale FPGA is unbalanced in the routing supply of the
horizontal and vertical directions. It has 168 x 480 sites and
82 x 480 switch boxes on the chip (roughly two horizontally
neighbored sites share a switch box, as in Fig. 3). Despite
the chip area is actually square, the distance measured by
number of switch boxes, which implies timing as well as rout-
ing resource in FPGA, is significantly unbalanced between the
width and height. Meanwhile, the number of wire segments
between two horizontally aligned switch boxes (another type
of routing resource) is nearly the same as the corresponding
vertical one.

The imbalance in routing supply leads to more serious con-
gestion in the vertical direction. Regarding our GP method,
the lack of free space in the horizontal direction leads to
high cost in wirelength and congestion during cell spread-
ing, as in Fig. 8(a) and (b). Furthermore, when using the
cell inflation technique to alleviate the identified congestion,
much horizontal demand is transformed to vertical one dur-
ing the vertical cell spreading. It thus exacerbates the vertical
congestion, which is already more serious.

As a result, RippleFPGA allocates the netlist partitions ver-
tically at an early point of the flat initial GP. In this way,
the routing demand fits the unbalanced routing supply and

2029

Algorithm 3 Recursive Netlist Bipartition

Require: Netlist G,;; = (V,;;, E;;;), min cut ratio ¢, min partition size n,i,,
max imbalance 8y}
Ensure: Recursive bipartition of G,;;
1: function Bipart(G,;)

2: if |V| < nyin then

3: return;

4: end if

5: Obtain sub-partitions Gy;1 = (V1. Eqn) and Gy = (Vyp, Eppp) of
Gy, by multi-level hypergraph bipartition under max imbalance constraint
of Smax;

6: if cut size > ¢yin - |Ep| then

7: Abandon Gy;; and Gyp;

8 else

9: Bipart(Gy);

10: Bipart(Gyp);

11: end if

12: end function

avoids the congestion, as in Fig. 8(c). Note that different
from partitioning-based GP, where a partition of the netlist is
restricted to a geometric region, our PA only generates a bet-
ter initial solution to guide the later stages without posing any
constraint. Moreover, we put high requirement on partitioning
and only manipulate global partitions, which is controlled by
a minimum cut ratio cpj, and a minimum partition Size nmpin,
respectively.

The partitions are allocated after a few (e.g., two) iterations
of GP, which provides initial cell locations. There are gen-
erally two steps. First, a recursive hypergraph bipartition is
conducted to identify the obvious subcircuits in the netlist.
Second, the identified partitions are relocated according to
their locations in GP and their relationship in the bipartition
hierarchy.

1) Recursive Netlist Bipartition: A direct k-way partition-
ing usually performs better than recursive bipartitioning in
terms of cut size. However, the number of partitions needed
is unknown in our application scenario, since only partition-
ing with small cut size is desirable. Therefore, the scheme
of recursive netlist bipartition, which stops when the cut size
becomes too large, is adopted. Also, the area of a partition
should be sufficiently large to span the chip horizontally with a
reasonable aspect ratio, because partitions need to be vertically
allocated later. The detailed method is shown in Algorithm 3.
The netlist G, is partitioned recursively until either the size
of the subcircuit too small (line 2) or the cut size is too
large (line 7).

Besides, if the cut size obtained in the partitioning is
huge, which indicates the design is difficult to route, the
cell area used in GP is increased correspondingly (line 2 in
Algorithm 4).

2) Partition Relocation: In order to minimize the distur-
bance to the wirelength in initial rough GP, subcircuits are
vertically aligned by Algorithm 4. To respect the connec-
tions between partition, subpartitions of a same parent partition
should be placed next to each other; the relative order in ver-
tical direction is maintained if possible, since it implies their
connections to IO (lines 25-31). Within each subcircuit, the
cells are moved and spread to a designated bounding box while
keeping their relative order of in x and y directions (lines 21—
24). The height of the bounding box is determined by total cell
area (line 20) and the width is the chip width. Before mov-
ing cells, the information needed is calculated in a post-order
traversal of the bipartition tree (lines 6-17).

2030

Algorithm 4 PA

Require: Netlist G,;; = (V,, E;;;), cell locations (x;, y;), chip width W;
Ensure: updated cell locations (x;, y;);

: Bipart(Gy);

: Increase cell area if the cut size is large;

1 A, yavg < ObtainInfo(Gyy);

: Bottom of the target region y; < yavg — ﬁ;

1

2

3

4

5: RelocPart(Gyy, y);
6: function ObtainInfo(G,;)

7 if G,; has no sub-partitions then

8 A < total cell area of V;

9: Yavg < average y-coordinate of V;
10: else

11: Al, Yavgl < ObtainInfo(Gy);
12: A2, Yavgr < ObtainInfo(Gyp);
13: A< A l—{-/z?g‘, Vil

1 yavg < VD

15: end if

16: return A, Yayg;

17: end function
18: function RelocPart(Gy, y;)
19: if G,;; has no sub-partition then

20: Height of target region h <— A/W;
21: Sort Vy by yi;

22: yé(—ﬁ%—i—ylforvieV;
23: Sort Vy; by x;;

24: xéeﬁ»WforvieV;
25: else if y,y01 < Yayg2 then

26: RelocPart(Gy, y);

27: RelocPart(Gypn,y; + AW});
28: else

29: RelocPart(Gy, y);

30: RelocPart(Gy,y; + %);
31: end if

32: end function

The impact of our PA is shown by Fig. 8. Without
the initial PA, subcircuits are messed up and a subcircuit
may distribute vertically along the chip, which causes bad
routability [Fig. 8(d)]. With guidance, the messing is avoided
[Fig. 8(e)].

C. Congestion-Driven Global Placement

In some later iterations of stage 3, cells are inflated and
shrunk to improve routibility and wirelength according to con-
gestion. Here, a congestion estimation is first needed. Routing
result generated by the actual FPGA routing tool, which will
also be the final evaluation, is the most accurate choice. It,
however, requires much runtime. Meanwhile, the industrial
global router is integrated in the commercial tool and can-
not be individually invoked. Therefore, our own congestion
estimation is needed.

In [50], the congestion map is built according to the net
bounding box. It estimates routing congestion by the num-
ber of nets that may consume a site, i.e, the total number of
bounding boxes covering a site.

However, two nets with the same bounding box may differ
substantially in routing demand, due to the highly diverse num-
ber of pins. To take this into account, a bounding box should
be weighted properly. We treat each switch box as a global
routing cell (g-cell) and calculate the weighted bounding box
overlaps of the ith g-cell by

cong, — 3 WD - HPWL(n) %)

|Gl

meN;

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 10, OCTOBER 2018

High

[0A97T uonsaguo)

Low

(b) (©) (d)

Fig. 9. Congestion estimation on a design by (a) Vivado and (b) ours, and
on another design by (c) Vivado and (d) ours.

where NW is the net weight related to the pin number [51], N;
is the set of nets intersecting with g-cell i, and G, is the set
of g-cells covered by net m. As Fig. 9 shows, our model can
estimate routing congestion quite accurately comparing with
that reported by Vivado.

Based on the congestion estimation, we focus on routing
congestion when maintaining previous good HPWL in some
later GP iterations. More BLEs are placed to regions with
low congestion to save wirelength, while congested regions
should be sparser. Therefore, in each iteration, the sizes of
BLEs placed in congested and uncongested regions are inflated
and shrunk, respectively. After changing the areas of the BLEs,
a short GP with high pseudo net weight is executed to adjust
the positions of the BLEs and alleviate routing congestion.
Since shrinking BLEs may result in placing too many BLEs
in a region and thus cause large displacement during LG. LG
is applied at the beginning of each iteration, and cells with
large displacement are not allowed to shrink. By the proce-
dure above, routing congestion can be distributed more evenly
across the chip.

D. Bipartite-Matching-Based DSP/RAM Legalization

Inspired by [40], RippleFPGA legalizes DSP/RAMs before
BLEs, because legalizing DSP/RAMs incurs much larger dis-
turbance to GP than BLEs. As Fig. 10(a) shows, with the same
displacement, DSP/RAMs will increase the wirelength much
more than BLEs due to their high connectivity. Moreover,
since DSP/RAMs are much bigger, legalizing them tends to
induce more displacement, as in Fig. 10(b). However, instead
of two consecutive batches of DSP/RAM LG and BLE LG
used in [40], we put DSP/RAM LG even earlier and in the
middle of BLE GP (stage 3). In this way, after legalizing and
fixing DSP/RAMs, BLEs can move during a few GP iterations
to repair the wirelength degradation.

Further inspired by [23], bipartite matching is adopted
in our DSP/RAM LG. Nevertheless, different from their
displacement-driven window-by-window LG, our LG opti-
mizes HPWL (with displacement constraint) in the full chip
scale.

In the bipartite graph G3(X3, Y3, E3) constructed, X3 are
blocks to be legalized and Y3 are all legal sites available. For
each block x € X3, a number of (e.g., 10) sites nearest to it are
candidates, the cost of which is the HPWL when x is assigned
to y with all other blocks staying at GP locations. Different
from the bipartite complete graph used in [23], we limit the
number candidate sites for each block with three motivations.

CHEN et al.: RIPPLEFPGA: ROUTABILITY-DRIVEN SIMULTANEOUS PACKING AND PLACEMENT FOR MODERN FPGAs

l. |
W @'

— [|
(L il =

@ (b)

Fig. 10. Larger disturbance to GP when legalizing DSP/RAMs due to their
(a) higher connectivity and (b) larger area.

N
. DSP/RAM

First, the displacement in LG should be limited in order to
increase the fidelity of HPWL estimation, which assumes all
other blocks are not moved. In this way, the final HPWL
improvement may still not correspond to the edges by exactly
the same value, but the error is under control. Second, limit-
ing displacement avoids significant disturbance to GP result.
Third, the runtime is improved by having significantly fewer
edges.

To guarantee that a legal solution always exists, edges cor-
responding to the assignment in a trial LG (by Tetris) are
also added into E3. After constructing the bipartite graph Gs,
its min-cost matching, which can be solved by the min-cost
network flow, provides a LG solution with minimized HPWL
cost.

E. Congestion-Aware Two-Level Detailed Placement

In stage 5, multiple DP techniques are applied in both
block (i.e., CLB, DSP, and RAM) and BLE levels to improve
wirelength and routability. In general, two types of moves
are used: 1) DSP/RAM bipartite matching and 2) CLB/BLE
global move/swap toward the optimal region [52]. Both are
performed in each round and many rounds are carried out
until no improvement.

DSP/RAM bipartite matching DP borrows the idea of
DSP/RAM LG in Section V-D with two modification. First,
the initial block positions are already legal positions instead
of those generated by GP. Therefore, the edges added by trial
LG to guarantee a legal solution are no longer needed, since
the nearest sites of a block definitely include the site that is
solely occupied by itself. Second, to avoid ruining the cell den-
sity optimized for routability, candidate sites of a block cannot
simultaneously: 1) have congestion level higher than the cur-
rent site and 2) be in the congested regions. The first condition
restricts the movement worsening congestion. There is, how-
ever, no need to restrict movement in uncongested regions,
which is the purpose of the second condition.

In global move/swap, we move a CLB to an empty
site within its optimal region if there is. Otherwise, it is
swapped with a CLB in its optimal region if the HPWL
can be improved. For a BLE, all CLB sites in its optimal
region are attempted by the incremental legality checking in
Section IV-B. Besides, same as bipartite matching DP, moves
that are not beneficial to routability are forbidden in global
move/swap.

The above DP moves can be purely HPWL-driven under
the congestion constraint. But the discrete nature of the
switch-box-based FPGA routing is not captured by HPWL.
The situation is demonstrated by Fig. 11. In all three cases,
the HPWL (measured by the grid of switch boxes) is
exactly the same (i.e., two). However, when the two pins
are aligned horizontally or vertically, the connection proba-
bly will be routed via two switch boxes and a two-hop wire

2031

. BLE . Switch Box
[N
= Hle=
P [kl e s |kl
(a) (b) (c)

Fig. 11. Three cases with the same switch-box HPWL but different
alignment. (a) Horizontal alignment. (b) Vertical alignment. (c) No alignment.

!
=
}

N B

.-

TABLE I
STATISTICS ABOUT ISPD 2016 CONTEST BENCHMARKS

Design | # LUT | # FF | # RAM | # DSP | # Net | Cb?;m’l
FPGA-1 | 50K | 55K 0 0 [105K 2
FPGA-2 | 100K | 66K | 100 | 100 | 168K 121
FPGA-3 | 250K | 170K | 600 | 500 | 429K | 1281
FPGA-4 | 250K | 172K | 600 | 500 | 430K | 1281
FPGA-5 | 250K | 174K | 600 | 500 | 433K | 1281
FPGA-6 | 350K |352K | 1000 | 600 | 713K | 2541
FPGA-7 | 350K | 355K | 1000 | 600 | 716K | 2541
FPGA-8 | 500K | 216K | 600 | 500 | 725K | 1281
FPGA-9 | 500K | 366K | 1000 | 600 | 877K | 2541

FPGA-10 | 350K | 600K | 1000 | 600 | 961K | 2541
FPGA-11 | 480K [363K | 1000 | 400 | 851K | 2091
FPGA-12 | 500K | 600K | 600 | 500 | 111K | 1281

segment [Fig. 11(a) and (b)]. Without alignment, at least three
switch boxes and two wire segments are required [Fig. 11(c)].
Therefore, an alignment score is calculated for each candidate
site, besides the HPWL score. Basically, a unit score is added
for each alignment between the cell to move and its connected
cell. Due to the preciousness of routing resources in verti-
cal direction as Section V-B mentions, horizontal alignment
is encouraged more by a larger unit score. By incorporating
the alignment score into DP objective, the placement thus has
better routability for the switch-box-based routing.

VI. SPEEDUP TECHNIQUES

We have made many optimizations for runtime compared
to [47]. For instance, the slot assignment is separated from
the legality checking and deferred to the end of the flow, as
mentioned in Section IV-B. In this section, we discuss two
additional techniques applied in our placer.

In the quadratic programming of GP, we change the repre-
sentation of a large sparse matrix from the list of list (LIL)
to the compressed column storage (CCS) [53]. In LIL, an ele-
ment can be easily queried, modified, inserted and removed.
But these operations are of no need during the intensive com-
putation of quadratic programming. By ignoring the efficiency
of the single-element query and update, CCS stores a matrix
in three compact arrays and need much less storage. As a
result, the critical low-level matrix operations (e.g., matrix-
vector multiplication) are significantly accelerated, due to the
reduced memory bandwidth demand and cache miss rate.

In the optimal region calculation for DP, quickselect [54]
replaces sorting for finding the medians of x and y-coordinates
of pins. As the optimal regions of all BLEs and CLBs need to
be obtained in each DP round (for global move/swap), the run-
time of optimal region calculation is originally a bottleneck in
DP. The best sorting algorithms can achieve O(nlogn) com-
plexity both in worst case and in average. Despite O(n?) in the
worst case, quickselect has much better average performance
of O(n) with small constant.

2032 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 10, OCTOBER 2018
TABLE II
IMPACT OF MATCHING-BASED LEGALITY CHECKING AND ILP-BASED SLOT ASSIGNMENT
RippleFPGA w/ Legality Checking in [50] RippleFPGA
Desien Wirelength Impact Runtime Impact Wirelength Impact Runtime Impact
g % LG Routed Legality Checking Total % LG Routed Legality Checking Slot Assignment Total
Success Wirelength # Call Runtime Runtime Success Wirelength # Call Runtime % ILP Runtime Runtime
FPGA-1 32.16% 350749 2716687 2 34 43.40% 352628 438418 0.3 3.99% 1 31
FPGA-2 43.39% 645618 3739596 3 61 46.11% 645400 563878 0.5 3.39% 1 58
FPGA-3 10.31% 3333579 13553726 10 212 10.57% 3262106 4709863 3 1.33% 2 203
FPGA-4 9.37% 5555391 14386077 10 237 9.35% 5509661 5500975 4 0.54% 2 227
FPGA-5 23.18% 9908559 13121108 11 284 23.59% 9968955 4255253 3 0.66% 2 273
FPGA-6 2.72% 6270243 37533293 21 447 2.77 % 6180104 21860787 12 0.89% 3 437
FPGA-7 233% 9672488 36735440 19 488 2.40% 9639639 26722085 16 1.49% 4 499
FPGA-8 39.59% 8170991 14590118 13 439 39.83% 8156951 3521360 3 0.27% 3 421
FPGA-9 4.04% 12472932 36144354 23 625 4.54% 12305192 18795015 11 1.79% 6 594
FPGA-10 t T T t t 1.80% 7139694 43532711 21 3.78% 13 673
FPGA-11 4.06% 11147130 41969816 28 571 4.25% 11022815 21019965 12 1.74% 5 554
FPGA-12 t il T T T 4.86% 7363451 19381135 11 5.04% 14 665
Avg. Ratio 0.943 1.006 3.256 3.604 1.039 1.000 1.000 1.000 1.000 - - 1.000
tCannot legalize all BLEs
R TABLE III
O @ flat GP (1@ BLE packing B @ BLE GP ROUTED WIRELENGTH IMPACT OF PA AND CGP
O@ CLB packing M@ two-level DP E1 @ slot assignment
[Design | Baseline | PA [CGP [PA+CGP]

FPGA-1
FPGA-2
FPGA-3
FPGA-4
FPGA-5
FPGA-6
FPGA-7
FPGA-8
FPGA-9
FPGA-10
FPGA-11
FPGA-12

| | | | | | |
0 100 200 300 400 500 600 700

T T T T T T T
D. .
) -

I T

I T

I |

T e

I S——— |

I | a

[T
[

T

[

Runtime (s)

Fig. 12. Runtime breakdown of RippleFPGA.

FPGA-1
FPGA-2
FPGA-3
FPGA-4
FPGA-5
FPGA-6
FPGA-7
FPGA-8
FPGA-9
FPGA-10
FPGA-11
FPGA-12

Fig. 13.

T T R E—
B B CCS | |
- EmLIL ||
_ [— -
_ |— -
| |
_ |— I ' |
_ — II [

| | |

0 500 1,000 1,500

Runtime (s)

Runtime impact of sparse matrix representation: CCS is more

efficient than LIL.

VII. EXPERIMENTAL RESULTS

To evaluate our proposed method, the algorithms are imple-
mented in C++. Patoh [55], Ipsolve [56] and boost graph

FPGA-1 356314 353516 356081 352628
FPGA-2 669133 649051 655740 645400
FPGA-3 3532052 3277033 3533351 3262106
FPGA-4 5556177 5508595 5531058 5509661
FPGA-5 * * 10120061 9968955
FPGA-6 6549187 6238933 6521672 6180104
FPGA-7 9723248 9500233 9933324 9639639
FPGA-8 8423217 8122288 8409769 8156951
FPGA-9 12050941 | 12044246 | 12104565 | 12305192
FPGA-10 7820378 7308750 7682063 7139694
FPGA-11 11172550 | 10672421 | 11528235 | 11022815
FPGA-12 8464954 * 8105645 7363451

[Avg. Ratio | 1043 [0997 [1.038 [1.000 |

*Unroutable placement

TABLE IV
ROUTED WIRELENGTH IMPACT OF BIPARTITE-MATCHING-BASED
DSP/RAM LG AND DP

[Design [Neither | LG [DP [Both |
FPGA-1 352628 352628 352628 352628
FPGA-2 656531 645384 645877 645400
FPGA-3 3429419 3268983 3278954 3262106
FPGA-4 5665941 5514118 5526963 5509661
FPGA-5 10087236 10009207 9944421 9968955
FPGA-6 6279386 6191009 6206049 6180104
FPGA-7 9760486 9643013 9673528 9639639
FPGA-8 8206043 8159135 8151310 8156951
FPGA-9 12386444 12303073 12326051 12305192
FPGA-10 7214541 7141872 7142227 7139694
FPGA-11 11084104 11021053 11035423 11022815
FPGA-12 7429943 7362895 7386437 7363451

Avg Ratio | 1.015 | 1001 | 1.002 | 1.000

library [57] are used for solving hypergraph partitioning, ILP,
and min-cost network flow, respectively.

Experiments were performed on a 64-bit Linux worksta-
tion with Intel Xeon 3.4 GHz CPU and 32 GB memory. Even
though RippleFPGA can be multithreading, only single thread
is used here for a fair comparison with the previous placers.
Benchmarks are from ISPD 2016 Routability-Driven FPGA
Placement Contest [5], the statistics of which is shown in
Table I, where a control set means a kind of configuration

CHEN et al.: RIPPLEFPGA: ROUTABILITY-DRIVEN SIMULTANEOUS PACKING AND PLACEMENT FOR MODERN FPGAs 2033
TABLE V
ROUTED WIRELENGTH COMPARISON WITH STATE-OF-THE-ART FPGA PLACERS ON ISPD 2016 BENCHMARKS

Desien 1st Place 2nd Place 3rd Place [50] [24] RippleFPGA
g Wirelength [Ratio [Wirelength [Ratio [Wirelength [Ratio | Wirelength [Ratio [Wirelength [Ratio [Wirelength [Ratio
FPGA-1 i T 379932 1.077 581975 1.650 362563 1.028 384709 1.091 352628 1.000
FPGA-2 677877 1.050 679878 1.053 1046859 1.622 677563 1.050 652690 1.011 645400 1.000
FPGA-3 3223042 0.988 3660659 1.122 5029157 1.542 3617466 1.109 3181331 0.975 3262106 1.000
FPGA-4 5628519 1.022 6497023 1.179 7247233 1.315 6037293 1.096 5504083 0.999 5509661 1.000
FPGA-5 10264769 1.030 * * * ® 10455204 1.049 10068879 1.010 9968955 1.000
FPGA-6 6330179 1.024 7008525 1.134 6822707 1.104 6960037 1.126 6411247 1.037 6180104 1.000
FPGA-7 10236827 1.062 10415871 1.081 10973376 1.138 10248020 1.063 10040562 1.042 9639639 1.000
FPGA-8 8384338 1.028 8986361 1.102 12299898 1.508 8874454 1.088 8113483 0.995 8156951 1.000
FPGA-9 #* * 13908997 1.130 * * 12954350 1.053 13616625 1.107 12305192 1.000
FPGA-10 T T T i * * 8564363 1.200 8866049 1.242 7139694 1.000
FPGA-11 11091383 1.006 11713479 1.063 * ® 11226088 1.018 10834629 | 0.983 11022815 1.000
FPGA-12 9021768 1.225 T i * g 8928528 1.213 8246410 1.120 7363451 1.000

[Avg. [[1.048 [[1.105 [[1411 [[1.091 [[1.051 [[1.000]
*Unroutable placement {Placement error
TABLE VI
RUNTIME (SECONDS) COMPARISON WITH STATE-OF-THE-ART FPGA PLACERS ON ISPD 2016 BENCHMARKS

Desien 1st Place 2nd Place 3rd Place [50] [24] RippleFPGA
g Runtime [Ratio Runtime [Ratio Runtime [Ratio Runtime [Ratio Runtime [Ratio Runtime [Ratio
FPGA-1 T T 118 3.862 97 3.175 74 2422 215 7.036 31 1.000
FPGA-2 435 7.689 208 3.677 191 3.376 167 2.952 399 7.053 57 1.000
FPGA-3 1527 7.600 1159 5.768 862 4.290 1037 5.161 1555 7.739 201 1.000
FPGA-4 1257 5.608 1449 6.464 88! 3.966 621 2.770 1289 5.751 224 1.000
FPGA-5 1266 4.691 * * * * 1012 3.750 1237 4.584 270 1.000
FPGA-6 2920 6.879 4166 9.815 8613 20.291 2772 6.531 2827 6.660 424 1.000
FPGA-7 2703 5.481 4572 9.271 9196 18.647 2170 4.400 2588 5.248 493 1.000
FPGA-8 264 6.229 2942 6.929 2741 6.456 1426 3.358 2705 6.371 425 1.000
FPGA-9 * * 5833 9.901 * * 2683 4.554 3407 5.783 589 1.000
FPGA-10 T T i T * * 5555 8.555 4091 6.300 649 1.000
FPGA-11 3227 5.953 7331 13.524 * * 3636 6.708 3267 6.027 542 1.000
FPGA-12 4539 6.986 i i * * 9748 15.004 4625 7.119 650 1.000

Avg. [[6.346 [[7.690 [[8.600 [[5.514 [[6.306 [[1.000]

*Unroutable placement {Placement error

of CK, SR, and CE. The routing evaluation is conducted by
Xilinx Vivado.

A. Effectiveness of Our Techniques

Table II shows the strength our new legality checking and
slot assignment scheme compared to [47]. First, the matching-
base legality checking not only is optimal but also increases
flexibility, which is evidenced by the 6% higher success rate
in BLE LG (corresponding to Algorithm 2, line 11). Second,
without false alarm, some scenarios (e.g., removing a BLE
out of a CLB) need no legality checking now, which further
reduces times of invoking incremental legality checking. Third,
deferring slot assignment to the end itself also benefits the
runtime. In general, both wirelength and runtime are improved.
Besides, note that only a small ratio of CLBs are difficult
instances and require solving by ILP, making the whole slot
assignment very efficient.

Fig. 12 illustrates the runtime breakdown of RippleFPGA,
where we can see that GP dominates. Actually, before the
implementation optimization on GP engine, both GP runtime
percentage and total runtime were significantly larger. For
example, the previous sparse matrix storage scheme of LIL
is much more timing-consuming than CCS, as in Fig. 13.

Table III shows the effectiveness of two routability
optimization techniques, routing-architecture-aware PA and
congestion-driven GP (CGP). PA improves the routed wire-
length for all benchmarks with only one exception (PA+CGP
versus CGP for FPGA-9) by resolving the problem of

unbalanced routing supply. Even for FPGA-9, there is still
improvement by using PA only, compared with the baseline.
For CGP, it makes all designs routable. Even though the cur-
rent CGP worsens wirelength on some designs, it probably
would not be the case if the global router of Vivado can be
accessed for congestion estimation.

The effectiveness of bipartite-matching-based method for
DSP/RAM LG and DP is illustrated by Table IV. In the
baseline [47], DSP/RAM blocks are manipulated by Tetris-
like LG and global move/swap in DP. It can be seen that
the bipartite-matching-based LG and DP help the routed
wirelength by 1.5%.

B. Comparison With State-of-the-Art FPGA Placers

Tables V and VI show our routed wirelength and runtime
compared with [23] and [47] as well as the winners of ISPD
2016 Contest. The result of contest winners comes from the
contest organizer. When we test the binary of the second place
on our machine, exactly the same wirelength and similar run-
time result can be reproduced, in spite of the different machine
configurations.

For the routed wirelength, RippleFPGA not only generates
legal and routable solutions for all benchmarks but also has the
best average wirelength. To be more specific, our wirelength
is in average 5.1% better than the second best [23]. Note that
among all, FPGA-10 is the most difficult to pack/legalize,
on which, all winners of the contest failed to produce legal
and routable placement. Actually, FPGA-10 has the largest

2034

number of FFs and control sets (Table I), which also results
in the lowest success rate in LG for RippleFPGA (Table II). On
this particular design, RippleFPGA outperforms other placers
the most (24.2% better than the second [23]). That is, our
approach is much better on difficult designs. This demonstrates
the strength of the stair-step flow and implicit CLB packing,
which smoothly pack soft BLEs into CLBs.

For the runtime, as the fastest on all benchmarks,
RippleFPGA outperforms the second fastest placer with a
4.76x speedup. For the largest design (FPGA-12), the run-
time is reduced from hours to minutes, which is highly
desirable to the field programming need of FPGA. The runtime
superiority shows the effectiveness of our speedup techniques
illustrated by Section VL.

VIII. CONCLUSION

Facing the increasing complexity and scale of modern
FPGAs, the proposed RippleFPGA integrates FPGA packing
and placement together through a set of novel techniques, such
as a smooth stair-step flow, implicit CLB packing, and two-
level DP. The stair-step flow consists of six stages: 1) flat GP;
2) soft BLE packing; 3) BLE GP; 4) implicit CLB packing;
5) two-level DP; and 6) slot assignment in CLB. To improve
routability, both ASIC-like congestion alleviation methods
and FPGA-routing-architecture-aware optimization techniques
are applied. The experimental results show that RippleFPGA
achieves the best routed wirelength and runtime compared to
all the state-of-the-art academic placers.

REFERENCES

[1] R. Aggarwal, “FPGA place & route challenges,” in Proc. ACM Int.
Symp. Phys. Design (ISPD), Petaluma, CA, USA, 2014, pp. 45-46.

[2] G. A. Constantinides, “FPGAs in the cloud,” in Proc. ACM Symp.
FPGAs, Monterey, CA, USA, 2017, p. 167.

[3] A. Ling and J. Anderson, “The role of FPGAs in deep learning,” in
Proc. ACM Symp. FPGAs, Monterey, CA, USA, 2017, p. 3.

[4] Virtex UltraScale Product Table. Accessed: Dec. 5, 2017. [Online].
Available: http://www.xilinx.com/products/silicon-devices/fpga/virtex-
ultrascale.html#productTable

[5] S. Yang, A. Gayasen, C. Mulpuri, S. Reddy, and R. Aggarwal,
“Routability-driven FPGA placement contest,” in Proc. ACM Int. Symp.
Phys. Design (ISPD), Santa Rosa, CA, USA, 2016, pp. 139-143.

[6] H. Bian, A. C. Ling, A. Choong, and J. Zhu, “Towards scalable place-
ment for FPGAs,” in Proc. ACM Symp. FPGAs, Monterey, CA, USA,
2010, pp. 147-156.

[7]1 C.1J. Alpert, D. P. Mehta, and S. S. Sapatnekar, Handbook of Algorithms
for Physical Design Automation. Boca Raton, FL, USA: CRC Press,
2008.

[8] V. Betz and J. Rose, “Cluster-based logic blocks for FPGAs: Area-
efficiency vs. input sharing and size,” in Proc. IEEE Custom Integr.
Circuits Conf. (CICC), Santa Clara, CA, USA, 1997, pp. 551-554.

[91 A.S. Marquardt, V. Betz, and J. Rose, “Using cluster-based logic blocks
and timing-driven packing to improve FPGA speed and density,” in Proc.
ACM Symp. FPGAs, Monterey, CA, USA, 1999, pp. 37-46.

[10] E. Bozorgzadeh, S. Ogrenci-Memik, and M. Sarrafzadeh, “RPack:
Routability-driven packing for cluster-based FPGAs,” in Proc.
IEEE/ACM Asia South Pac. Design Autom. Conf. (ASPDAC), Yokohama,
Japan, 2001, pp. 629-634.

[11] A. Singh, G. Parthasarathy, and M. Marek-Sadowska, “Efficient circuit
clustering for area and power reduction in FPGAs,” ACM Trans. Design
Autom. Electron. Syst., vol. 7, no. 4, pp. 643—-663, 2002.

[12] S. T. Rajavel and A. Akoglu, “MO-pack: Many-objective clustering
for FPGA CAD,” in Proc. ACM/IEEE Design Autom. Conf. (DAC),
New York, NY, USA, 2011, pp. 818-823.

[13] J. Luu, J. Rose, and J. Anderson, “Towards interconnect-adaptive pack-
ing for FPGAs,” in Proc. ACM Symp. FPGAs, Monterey, CA, USA,
2014, pp. 21-30.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 37, NO. 10, OCTOBER 2018

[14] S.-K. Wu, P-Y. Hsu, and W.-K. Mak, “A novel wirelength-driven
packing algorithm for FPGAs with adaptive logic modules,” in Proc.
IEEE/ACM Asia South Pac. Design Autom. Conf. (ASPDAC), Singapore,
2014, pp. 501-506.

[15] K. E. Murray, S. Whitty, S. Liu, J. Luu, and V. Betz, “Timing-driven
titan: Enabling large benchmarks and exploring the gap between aca-
demic and commercial CAD,” ACM Trans. Reconfigurable Technol.
Syst., vol. 8, no. 2, pp. 1-18, 2015.

[16] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Multilevel hyper-
graph partitioning: Applications in VLSI domain,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 7, no. 1, pp. 69-79, Mar. 1999.

[17] G. Karypis and V. Kumar, “Multilevel k-way hypergraph partitioning,”
VLSI Design, vol. 11, no. 3, pp. 285-300, 2000.

[18] J. Cong and S. K. Lim, “Edge separability-based circuit cluster-
ing with application to multilevel circuit partitioning,” [EEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 23, no. 3, pp. 346-357,
Mar. 2004.

[19] C. Alpert, A. Kahng, G.-J. Nam, S. Reda, and P. Villarrubia, “A semi-
persistent clustering technique for vlsi circuit placement,” in Proc.
ACM Int. Symp. Phys. Design (ISPD), San Francisco, CA, USA, 2005,
pp. 200-207.

[20] J. Z. Yan, C. Chu, and W.-K. Mak, “SafeChoice: A novel approach
to hypergraph clustering for wirelength-driven placement,” [EEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 30, no. 7,
pp. 1020-1033, Jul. 2011.

[21] N. Viswanathan, M. Pan, and C. Chu, “FastPlace 3.0: A fast multilevel
quadratic placement algorithm with placement congestion control,” in
Proc. IEEE/ACM Asia South Pac. Design Autom. Conf. (ASPDAC),
Yokohama, Japan, 2007, pp. 135-140.

[22] D. T. Chen, K. Vorwerk, and A. Kennings, “Improving timing-driven
FPGA packing with physical information,” in Proc. IEEE Int. Conf.
Field Program. Logic Appl. (FPL), Amsterdam, The Netherlands, 2007,
pp. 117-123.

[23] W. Li, S. Dhar, and D. Z. Pan, “UTPlaceF: A routability-driven FPGA
placer with physical and congestion aware packing,” in Proc. IEEE/ACM
Int. Conf. Comput.-Aided Design (ICCAD), Austin, TX, USA, 2016,
pp. 1-7.

[24] C.J. Alpert and A. B. Kahng, “Recent directions in netlist partitioning:
A survey,” Integr. VLSI J., vol. 19, nos. 1-2, pp. 1-81, 1995.

[25] P. Maidee, C. Ababei, and K. Bazargan, “Timing-driven partitioning-
based placement for island style FPGAs,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 24, no. 3, pp. 395-406, Mar. 2005.

[26] Z. Marrakchi, H. Mrabet, and H. Mehrez, “Hierarchical FPGA clus-
tering based on multilevel partitioning approach to improve routability
and reduce power dissipation,” in Proc. IEEE Reconfigurable Comput.
FPGAs, Puebla, Mexico, 2005, pp. 1-4.

[27] W. Feng, “K-way partitioning based packing for FPGA logic blocks
without input bandwidth constraint,” in Proc. IEEE Int. Conf. Field
Program. Technol. (FPT), Seoul, South Korea, 2012, pp. 8-15.

[28] R. Pattison, Z. Abuowaimer, S. Areibi, G. Gréwal, and A. Vannelli,
“GPlace: A congestion-aware placement tool for ultrascale FPGAs,” in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Design (ICCAD), Austin,
TX, USA, 2016, pp. 1-7.

[29] V. Betz and J. Rose, “VPR: A new packing, placement and routing tool
for FPGA research,” in Proc. IEEE Int. Conf. Field Program. Logic
Appl. (FPL), Heidelberg, Germany: 1997, pp. 213-222.

[30] J. Luu et al., “VTR 7.0: Next generation architecture and CAD system
for FPGAs,” ACM Trans. Reconfigurable Technol. Syst., vol. 7, no. 2,
pp. 1-30, 2014.

[31] X. He, T. Huang, L. Xiao, H. Tian, and E. F. Y. Young, “Ripple: A robust
and effective routability-driven placer,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 32, no. 10, pp. 1546-1556, Oct. 2013.

[32] T. Lin, C. Chu, J. R. Shinnerl, I. Bustany, and I. Nedelchev, “POLAR:
A high performance mixed-size wirelengh-driven placer with density
constraints,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 34, no. 3, pp. 447-459, Mar. 2015.

[33] J. Lu et al, “ePlace-MS: Electrostatics-based placement for mixed-
size circuits,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 34, no. 5, pp. 685-698, May 2015.

[34] I. L. Markov, J. Hu, and M.-C. Kim, “Progress and challenges in VLSI
placement research,” Proc. IEEE, vol. 103, no. 11, pp. 1985-2003,
Nov. 2015.

[35] T. Ahmed, P. D. Kundarewich, and J. H. Anderson, ‘“Packing techniques
for Virtex-5 FPGAs,” ACM Trans. Reconfigurable Technol. Syst., vol. 2,
no. 3, pp. 1-24, 2009.

CHEN et al.: RIPPLEFPGA: ROUTABILITY-DRIVEN SIMULTANEOUS PACKING AND PLACEMENT FOR MODERN FPGAs 2035

[36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]
[54]
[55]

[56]
(571

Y. Xu and M. A. S. Khalid, “QPF: Efficient quadratic placement for
FPGAS,” in Proc. IEEE Int. Conf. Field Program. Logic Appl. (FPL),
Tampere, Finland, 2005, pp. 555-558.

M. Xu, G. Gréwal, and S. Areibi, “StarPlace: A new analytic method
for FPGA placement,” Integr. VLSI J., vol. 44, no. 3, pp. 192-204, 2011.
M. Gort and J. H. Anderson, “Analytical placement for heterogeneous
FPGAS,” in Proc. IEEE Int. Conf. Field Program. Logic Appl. (FPL),
Oslo, Norway, 2012, pp. 143-150.

T.-H. Lin, P. Banerjee, and Y.-W. Chang, “An efficient and effective
analytical placer for FPGAs,” in Proc. ACM/IEEE Design Autom. Conf.
(DAC), Austin, TX, USA, 2013, pp. 1-6.

S.-Y. Chen and Y.-W. Chang, “Routing-architecture-aware analytical
placement for heterogeneous FPGAs,” in Proc. ACM/IEEE Design
Autom. Conf. (DAC), San Francisco, CA, USA, 2015, pp. 1-6.

P. Gopalakrishnan, X. Li, and L. Pileggi, “Architecture-aware FPGA
placement using metric embedding,” in Proc. ACM/IEEE Design Autom.
Conf. (DAC), San Francisco, CA, USA, 2006, pp. 460-465.

V. Manohararajah, G. R. Chiu, D. P. Singh, and S. D. Brown, “Difficulty
of predicting interconnect delay in a timing driven FPGA CAD flow,”
in Proc. ACM Workshop Syst. Level Interconnect Prediction (SLIP),
Munich, Germany, 2006, pp. 3-8.

G. Chen and J. Cong, “Simultaneous timing driven clustering and place-
ment for FPGAS,” in Proc. IEEE Int. Conf. Field Program. Logic Appl.
(FPL), Leuven, Belgium, 2004, pp. 158-167.

M. Tom, D. Leong, and G. Lemieux, “Un/DoPack: Re-clustering
of large system-on-chip designs with interconnect variation for low-
cost FPGAs,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design
(ICCAD), San Jose, CA, USA, 2006, pp. 680-687.

M. Hutton et al., “Improving FPGA performance and area using an
adaptive logic module,” in Proc. IEEE Int. Conf. Field Program. Logic
Appl. (FPL), Leuven, Belgium, 2004, pp. 135-144.

D. Hill, “Method and system for high speed detailed placement of cells
within an integrated circuit design,” U.S. Patent 6370673, Apr. 9, 2002.
C.-W. Pui et al., “RippleFPGA: A routability-driven placement for
large-scale heterogeneous FPGAs,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design (ICCAD), Austin, TX, USA, 2016, pp. 1-8.

S. Micali and V. V. Vazirani, “An O(V1/2E) algorithm for finding maxi-
mum matching in general graphs,” in Proc. IEEE Symp. Found. Comput.
Sci. (FOCS), Syracuse, NY, USA, 1980, pp. 17-27.

P. Spindler, U. Schlichtmann, and F. M. Johannes, “Kraftwerk2: A
fast force-directed quadratic placement approach using an accurate
net model,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 27, no. 8, pp. 1398-1411, Aug. 2008.

Y. Zhuo, H. Li, and S. P. Mohanty, “A congestion driven placement
algorithm for FPGA synthesis,” in Proc. IEEE Int. Conf. Field Program.
Logic Appl. (FPL), Madrid, Spain, 2006, pp. 1-4.

C.-L. E. Cheng, “Risa: Accurate and efficient placement routabil-
ity modeling,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design
(ICCAD), San Jose, CA, USA, 1994, pp. 690-695.

M. Pan, N. Viswanathan, and C. Chu, “An efficient and effective detailed
placement algorithm,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided
Design (ICCAD), San Jose, CA, USA, 2005, pp. 48-55.

L. S. Duff, R. G. Grimes, and J. G. Lewis, “Sparse matrix test problems,”
ACM Trans. Math. Softw., vol. 15, no. 1, pp. 1-14, 1989.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. Cambridge, MA, USA: MIT Press, 2009.

PaToH. [Online]. Available: http://bmi.osu.edu/umit/software.html
Ipsolve. [Online]. Available: http://Ipsolve.sourceforge.net/5.5/

Boost Graph Library. [Online]. Available: http://www.boost.org/
doc/libs/1_63_0/libs/graph/doc/

Gengjie Chen received the B.Sc. degree from
the Department of Electronic and Communication
Engineering, Sun Yat-sen University, Guangzhou,
China, in 2015. He is currently pursuing the Ph.D.
degree with the Department of Computer Science
and Engineering, Chinese University of Hong Kong,
Hong Kong.

His current research interests include combinato-
rial optimization and physical design.

Mr. Chen was a recipient of the Best Paper Award
in ICCAD 2017, the Hong Kong Ph.D. Fellowship

since 2015, and four ICCAD/ISPD contest awards.

Chak-Wa Pui received the B.Sc. degree in com-
puter science and technology from Shanghai Jiao
Tong University, Shanghai, China, in 2015. He
is currently pursuing the Ph.D. degree with the
Department of Computer Science and Engineering,
Chinese University of Hong Kong, Hong Kong,
under the supervision of Prof. E. F. Y. Young.

His current research interests include physical
design for both ASICs and FPGAs, Boolean match-
ing in logic synthesis, and machine learning in
physical design.

Mr. Pui was a recipient of the Best Paper Award nomination in DAC 2016
and three ISPD/ICCAD contest awards in 2016 and 2017.

Wing-Kai Chow received the bachelor’s
degree from Hong Kong Polytechnic University,
Hong Kong, in 2009 and the master’s degree in
Computer Science from the Chinese University of
Hong Kong, Hong Kong, where he is currently
pursuing the Ph.D. degree.

He was a Research Assistant with Hong Kong
Polytechnic University in 2010 and the Chinese
University of Hong Kong from 2010 to 2012. In
2016, he joined Cadence Design System, Inc.,
Austin, TX, USA, as a Lead Software Engineer.
His current research interest includes design automation of very large scale
integration, especially placement and routing.

Ka-Chun Lam received the B.E. and M.Phil.
degrees in computer science and engineering from
the Chinese University of Hong Kong, Hong Kong,
in 2011 and 2014, respectively.

Jian Kuang received the B.E. degree from Sun
Yat-sen University, Guangzhou, China, in 2012 and
the Ph.D. degree in computer science and engineer-
ing from the Chinese University of Hong Kong,
Hong Kong, in 2016.

He is currently with Cadence Design Systems,
San Jose, CA, USA. His current research interests
include very large scale integration computer-aided
design, physical design automation, and design for
manufacturability.

Evangeline F. Y. Young received the B.Sc. and
M.Phil. degrees in computer science from the
Chinese University of Hong Kong (CUHK),
Hong Kong, and the Ph.D. degree from the
University of Texas at Austin, Austin, TX, USA, in
1999.

She is currently a Professor with the Department
of Computer Science and Engineering, CUHK. She
is actively researching on floorplanning, placement,
routing, design for manufacturability, and algorith-
mic designs. Her current research interests include
algorithms and computer-aided design of very large scale integration circuits.

Bei Yu (S’11-M’14) received the Ph.D. degree from
the University of Texas at Austin, Austin, TX, USA,
in 2014.

He is currently an Assistant Professor with the
Department of Computer Science and Engineering,
Chinese University of Hong Kong, Hong Kong.

Dr. Yu was a recipient of four best paper awards
at International Symposium on Physical Design
2017, SPIE Advanced Lithography Conference
2016, International Conference on Computer Aided
Design 2013, and Asia and South Pacific Design
Automation Conference 2012, and four ICCAD/ISPD contest awards. He
has served in the editorial boards of Integration, the VLSI Journal and IET
Cyber-Physical Systems: Theory and Applications.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

