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Abstract— VLSI mask optimization is one of the
most critical stages in manufacturability aware design,
which is costly due to the complicated mask optimiza-
tion and lithography simulation. Recent researches
have shown prominent advantages of machine learn-
ing techniques dealing with complicated and big data
problems, which bring potential of dedicated machine
learning solution for DFM problems and facilitate the
VLSI design cycle. In this paper, we focus on a het-
erogeneous OPC framework that assists mask layout
optimization. Preliminary results show the efficiency
and effectiveness of proposed frameworks that have
the potential to be alternatives to existing EDA solu-
tions.

I Introduction

VLSI mask optimization is one of the most critical stages
in manufacturability aware design, which is costly due to
the complicated mask optimization and lithography simu-
lation. Recent studies have shown prominent advantages
of machine learning techniques dealing with complicated
and big data problems, which bring the potential of ded-
icated machine learning solution for DFM problems and
facilitate the VLSI design cycle [1, 2].
Related researches include layout hotspot detection

[3, 4, 5, 6, 7, 8, 9], mask optimization [10, 11, 9, 12, 13, 14]
and pattern generation [15], all of which contribute to
high performance mask optimization flow. Among the
above, layout hotspot detection tries to identify regions
that are sensitive to process variations and require addi-
tional care in OPC stage, defect prediction at OPC run-
time helps circumvent costly lithography simulation us-
ing efficient machine learning engine, and learning-based
mask optimization flows directly speed-up OPC by either
creating a good mask initialization for legacy OPC en-
gine that requires fewer iterations to converge, or cir-
cumventing costly lithography simulation with regres-
sion/classification model and yields faster mask update
in each iteration. These efforts not only bring benefits
for modern OPC flow, but also present the importance
of legacy OPC engines, which most, if not all, machine
learning solutions still rely on.
Inverse lithography technique (ILT) [16, 17, 11] and

model-based OPC [18, 19] are two representative mask
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Fig. 1.: A heterogeneous OPC framework. The classifica-
tion model identifies whether a design fits different OPC
engines.

optimization methodologies in literature. Compared to
model-based OPC, ILTs usually promise good mask print-
ability due to larger solution space. However, the conclu-
sion does not always hold as ILTs require to solve a highly
non-convex optimization problem which, sometimes, is
hard to converge. Apparently, different patterns match
different OPC engines as can be seen from a simple com-
parison between [19] and [16]. In this paper, we tackle the
possibility of machine learning assisting mask optimiza-
tion from a different perspective, where a deterministic
machine learning model is built to identify a better OPC
solution for a given design, as shown in Fig. 1. This paper
makes the following contributions:

• We conduct a survey on recent progress of deter-
ministic machine learning models assisting printabil-
ity estimation and generative models contributing to
direct-printable mask synthesis.

• We propose a heterogeneous OPC flow where a deter-
ministic machine learning model decides the proper
OPC engine for a given pattern.

• Experiments show that the proposed framework
takes advantage of both ILT and model-based OPC
with trivial model prediction overhead.

Rest of the paper is organized as follows: Section II dis-
cusses state-of-the-art researches on layout hotspot detec-
tion; Section III surveys recent progress of OPC and some
preliminary machine learning solutions; Section IV intro-
duce the development of the heterogeneous OPC frame-
work with preliminary experimental results followed by
conclusion in Section V.
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Fig. 2.: (a) Conventional hotspot detection flow vs. (b)
Region based hotspot detection flow as presented in [20].

II Hotspot Detection via Machine Learning

A Shallow Machine Learning Solutions

Before the exploding of deep neural networks, traditional
machine learning solutions have been deeply investigated
to detect lithography hotspots. Representative solutions
include decision tree [21], support vector machine (SVM)
[22, 23], artificial neural networks [22] and naive Bayes
[24], which all follows a standard detection flow as in
Fig. 2(a).

Ding et al. [22] introduce an SVM-based hotspot detec-
tion flow, which hierarchically narrows down the search
space for hotspot patterns. Layout designs are converted
into to feature space by capturing fragment-based fea-
tures. [23] further enhances the hotspot detection per-
formance using multiple SVM kernels that focus on dif-
ference hotspot clusters. Voting mechanism has made
ensemble learning a more promising candidate machine
learning framework. [21] incorporates Adaboost and de-
cision tree learner for efficient layout hotspot detection
and exhibits good trade-off between detection accuracy
and false positive penalty. Another representative en-
semble learning framework is proposed in [24], where
the information-theoretic approach is applied in the fea-
ture extraction module. The problem is solved by a
dynamic programming model and embedded into the
smooth boosting model with naive Bayes. The lithog-
raphy simulation overhead is further reduced.

Different from learning-based model designed for spe-
cific manufacturing problem on hotspot detection, Jiang
et al. [9] proposed an independent mask printability eval-
uation framework which detects hotspots caused by EPE.
A second order maximal circular mutual information
scheme (SO-MCMI) is presented to select the circle sub-

set. The SO-MCMI is formulated as

max
w

w>Mw (1a)

s.t.

nc∑
i=1

wi = n∗c , wi ∈ {0, 1},∀i, (1b)

where wi in nc-dimensional vector w indicates whether
the ith circle is selected. To overcome the potential im-
pacts due to the complicated feature presentations, XG-
Boost is applied to handle EPE classification and intensity
regression modeling.

B Deep Learning Solutions
The fast development of deep neural networks brings new
opportunities for hotspot detection solutions. Yang et
al. [3] consider the limitation of conventional machine
learning on scalability requirements for printability esti-
mation and feature representation, a novel deep learning
based hotspot detection model is proposed. A feature
tensor extraction technology is approached to transform
origin features into lower scale representations where spa-
tial information is reserved. To facilitate the training pro-
cedure and find a better tradeoffs between accuracy and
false alarm, a batch biased learning (BBL) is presented.
BBL adjusts the bias for different instances dynamically
which improve the model performance. The bias function
is defined as:

ε(l) =

{ 1
1+exp(βl) , if l ≤ 0.3,

0, if l > 0.3,
(2)

where l is the training loss of the current instance or batch
in terms of the unbiased ground truth and β is a manually
determined hyper-parameter that controls how much the
bias is affected by the loss.
Adaptive squish pattern is proposed in [4] to handle the

multilayer patterns. Compared with conventional squish
patterns presents, the adaptive squish pattern not only
reserves the property of lossless representation and store
layout topologies and geometry information separately in
a storage efficient format, but also provides a fixed size
format which is consistent with most manchine learning
models. To ensure the layout represented by the squish
pattern unchanged, the geometry information δ should be
scaled and duplicated. To obtain satisfactory s to change
the topology matrix to a desired size as well as attaining
low variance δ, the problem can be formulated as

min
s
||δ′||∞ (3a)

s.t. δ′i = δi/si,∀i, (3b)

si ∈ Z+,∀i, (3c)∑
i

si = d, (3d)

where the geometry information before and after scaling
are denoted as δ and δ′. Gradient vanishing problem dur-



ing the training is also considered and a specific residual
convolution block is used to enhance the performance.
Imbalance of positve and negative samples of layout

patterns are crital problem especially in machine learning
based methods. A robust performance metric is needed to
evaluate the model performance. ROC curve based mea-
sure for hotspot detection algorithm is proposed in [5],
which provides a holistic view of imbalance on hotspot
detection dataset. Multiple loss functions for neural net-
work models are applied to handle the imbalance problem
during training. A general loss function designed for max-
imize the AUC score can be expressed as

LΦ(f) =
1

N+N−

N+∑
i=1

N−∑
j=1

Φ
(
f
(
x+
i

)
− f

(
x−j
))
, (4)

where f(x+
i ) and f(x−j ) are the prediction output of posi-

tive and negative samples of model f respectively. N+ and
N− are number of positive and negative samples. The new
loss functions present in [5] outperform the traditional
cross-entropy loss on the state-of-the-art neural network
model.
While these works deal with the patterns in small clips,

the large regions with multiple hotspots cannot be han-
dled directly. Recently, a region based method proposed
by Chen et al. [20] solve this problem by enlarging the
small clip into large regions (as depicted in Fig. 2(b)).
Inspired by the object detection task in computer vision
field, a regression and classification multi-task framework
is designed to handle multiple hotspots in large regions
in a single epoch. The clip proposal network is applied
to sample hotspot and non-hotspot regions for both clas-
sification and regression training. The loss function for
regression on clip i can be written as

lloc(li, l
′
i) =


1

2
(li − l′i)2, if |li − l′i| < 1,

|li − l′i| − 0.5, otherwise,
(5)

where li and l′i are the coordinates of prediction and
ground truth respectively. The classification loss for clip
i can be formulated as

lhotspot(hi, h
′

i) = −(hi log h
′

i + h
′

i log hi), (6)

where hi is the prediction of the model and h′i is the la-
bel. Compared to the deterministic classification flow, the
performance in [20] got improved greatly.

C Overcome Imbalance: Pattern Generation
In real VLSI manufacturing scenario, hotspot patterns
are usually fetal but rare in a design. This brings chal-
lenge for most learning-based solutions which require mas-
sive and diverse hotspot data to get a machine learning
model well trained. [15] studies the possibility of gen-
erating DRC-clean test layout patterns with a genera-
tive machine learning model called transforming convolu-
tional auto-encoder (TCAE). Derived from transforming

auto-encoder (TAE) [25], TCAE replaces capsule units
with simpler latent vector nodes to represent part-whole
feature representation. The identity mapping in TCAE-
training allows a neural network to capture certain design
rules. Dedicated perturbations on latent vectors create
diverse and DRC-clean patterns.

III Mask Optimization via Machine Learning
Mask optimization ensures good mask printability and
hence improves chip manufacturing yield. In ad-
vanced technology nodes, the conventional mask opti-
mization processes including model-based and ILT-based
approaches consume increasingly more computational re-
sources. The flows of model-based and ILT-based ap-
proaches are shown in Fig. 3. In this section, we will
discuss several machine learning-based alternatives that
assist traditional mask optimization flow.
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Fig. 3.: The flows of conventional OPC approaches: (a)
model-based; (b) ILT-based.

A Machine Learning-based OPC
The superiority of machine learning-based solutions has
been evaluated in OPC [12]. However, the lack of scala-
bility under advanced technology nodes becomes the main
issue hindering the widespread deployment of a model-
based OPC framework. Aiming at addressing the scal-
ability issue, a fast machine learning-based mask print-
ability prediction (MPP) framework [9] for lithography-
related applications has bee proposed. What’s more, the
work can be extended to improve the scalability for differ-
ent lithography-related applications. To enable the per-
formance of the machine learning-based flow, a matrix-
based concentric circle sampling (MCCS) method and a
second-order circle subset selection algorithm for feature
extraction are designed in [9]. The MPP framework has
been demonstrated its effectiveness by being applied to a
conventional mask optimization tool.
Existing machine learning models [26, 27, 12] can only

perform pixel-wise or segment-wise mask calibration that
is not computationally efficient. In accordance with the



critical problem, [11] proposes a generative adversar-
ial network (GAN) based mask optimization flow that
takes target circuit patterns as input and generates quasi-
optimal masks for further inverse lithography technique
(ILT) refinement.
To enhance the computational efficiency and allevi-

ate the over-fitting issue, training topologies are synthe-
sized. For a faster training procedure, an ILT-guided pre-
training flow is proposed in [11] to initialize the generator
with intermediate ILT results. Besides, the authors design
new objectives of the discriminator to ensure the model
is trained toward a target-mask mapping instead of a dis-
tribution. The new objective function is as follows:

min
G

max
D

EZt∼Z [1− log(D(Zt,G(Zt)))

+ ||M∗ −G(Zt)||nn] + EZt∼Z [log(D(Zt,M
∗))],

where Zt represents the target layout, G for the generator
output, D for the discriminator output, px for some dis-
tribution, M∗ for the reference mask, and a set of target
patterns Z = {Zt,i, i = 1, 2, . . . , N} and a corresponding
reference mask set M = {M∗

i , i = 1, 2, . . . , N}. Exper-
imental results have verified that this flow can facilitate
the mask optimization process as well as ensure a better
printability.

B Machine Learning-based SRAF Insertion

Although conventional OPC can size the mask to give
the correct critical dimension (CD) on the wafer, it can-
not make the isolated target pattern become dense [28].
As a result, sub-resolution assist feature (SRAF) [29] in-
sertion is proposed. There is a wealth of literature on
the topic of SRAF insertion for mask optimization, which
can be roughly divided into three categories: rule-based
approach, model-based approach, and machine learning-
based approach. However, prior machine learning-based
approaches [30, 13] lack well-discrimination feature ex-
traction techniques as well as a global view in SRAF de-
signs, which leads to unsatisfied simulation results.
Geng et al. firstly revise conventional concentric cir-

cle area sampling (CCAS) feature construction method,
by proposing a supervised online dictionary learning al-
gorithm for simultaneous feature extraction and dimen-
sionality reduction [10]. In other words, label informa-
tion is not only utilized in learning stage but also im-
posed in feature extraction stage, which in turn bene-
fits the learning counterpart. Equation (7) is the main
objective function for supervised feature revision, where
yt ∈ Rn refers to an input CCAS feature vector, qt ∈ Rs
for discriminative sparse code of t-th input feature vector,
ht ∈ R for the label of input, xt ∈ Rs for sparse codes,
D = {dj}sj=1 ,dj ∈ Rn for the dictionary made up of
atoms to encode input features, A ∈ Rs×s for a matrix
transforming original sparse code xt into discriminative
sparse code, W ∈ R1×s the related weight vector, α and

with SRAFs). Towards this end, layout files are mapped into
images in a novel encoding scheme that captures the layout
details. This scheme incorporates a multi-channel heatmap
encoding of different layout objects into different layers of an
image [14]–[17]. Additionally, this encoding is accompanied
by a fast GPU-accelerated decoding scheme to recover layout
schemes from images generated by CGAN. With our proposed
encoding/decoding framework, a CGAN is trained to generate
layouts with SRAF inserted using a labeled data set. Once
trained, the CGAN can take an original layout image as an
input and generate a new image with SRAFs inserted. These
generated images can be eventually get mapped back to layout
files.

In this SRAF generation framework, our main contributions
are summarized as follows:

• A conditional generative adversarial network is used for
the first time for SRAF generation.

• We cast the SRAF generation problem as an image-to-
image translation task where the layout is translated from
its original domain to layout with SRAFs domain.

• A novel multi-channel heatmap encoding/decoding
scheme is used to map layouts to images suitable for
CGAN training while preserving the layout details.

• Our proposed framework achieves ⇠14.6⇥ speed-up
with comparable lithographic performance when com-
pared with state-of-art machine learning based approach
and ⇠144⇥ speed-up over the model-based approach
in commercial tool Mentor/Calibre [3] while achieving
comparable results.

The remainder of this paper is organized as follows. In
Section II we review the technical background and then present
the proposed approach in Section III. Section IV presents
numerical results demonstrating the efficacy of our method,
and conclusions are presented in Section V.

II. PROBLEM FORMULATION

The objective of the SRAF generation framework is to insert
SRAFs on any given layout in a manner that mimics the SRAF
scheme generated from model-based techniques. Practically,
the input is a layout clip with target patterns only as shown in
Fig. 1a, and the expected output is a new layout clip similar
to the one shown in Fig. 1b where SRAFs are generated to aid
the printing of target patterns. In other words, the objective is
to train a CGAN to translate images from the target domain,
DTrgt, (Fig. 1a) to the SRAF domain, DSRAF , (Fig. 1b).

In the training phase, each training sample consists of a
pair of images representing the original layout in DTrgt and
its corresponding layout in DSRAF . Based on the training
data, the CGAN model is trained to map images from DTrgt

to DSRAF . Then, the trained model can be used to gener-
ate SRAFs from layouts with target patterns. However, two
challenges should be addressed here. The first is that proper
image encoding/decoding is needed to aid the CGAN training
scheme. Secondly, the generated SRAF scheme may violate
some of the manufacturing rules; hence, a post-processing step
is needed to generate a final layout with SRAFs while abiding
by the specified rules.

To evaluate our proposed SRAF generation method, we
use two metrics to assess the performance of the mask
optimization results: (i) process variation (PV) band and (ii)
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Fig. 1 SRAF generation task can be cast as an image
translation problem where layout with target contacts (a) are
translated to ones with SRAF generated (b) .

edge placement error (EPE). These metrics are defined in a
way analogous to the definitions used in [3].

III. SRAF INSERTION USING CGAN

A. Data Preparation using Heatmap Encoding

As shown in Fig 1, the layouts from both domains DTrgt

and DSRAF can be treated directly as images. However,
this direct image representation is not suitable for the SRAF
generation using CGAN because the expected output cannot
be directly mapped to layout files due to two major limitations.
First, the trained CGAN is not guaranteed to generate ‘clean’
rectangular shapes for the SRAFs. In practice, images gener-
ated from generative adversarial networks (GANs) tend to be
blurry and GANs exhibit inherent limitation in detecting sharp
edges [12]. In addition, and even under the assumption that
the CGAN model can generate sharp-edged rectangles for the
SRAFs, extracting the SRAF information from the image to be
mapped back to the layout file can be prohibitively expensive.
Such mapping requires obtaining both SRAF locations and
sizes from the image generated by the CGAN model. Hence,
the direct image representation similar to that shown is Fig. 1
is ill-equipped for SRAF generation using CGAN.

With this in mind, we propose using a special encoding
scheme, typically used in keypoint estimation [14]–[17], that
can overcome the aforementioned limitations. The proposed
scheme is based on multi-channel heatmaps which associates
each object type with one channel in the image [16], [17].
Specifically, a multi-channel image is a simple representation
where the number of channels is equal to that of the object
types in the problem. On each particular channel, the first step
is to obtain the locations of its corresponding objects in the
original image. Next, a Gaussian noise circle is centered at the
obtained locations on the channel [16], [17].

To elaborate on this, we consider the example shown in Fig.
2 where an original layout is shown in Fig. 2a and the multi-
channel heatmap representation is shown in Fig. 2b. In this
example, we limit the number of channels to 3 to visualize
the encoded representation through a red-green-blue (RGB)
image. These three types are : (i) target patterns (in red), (ii)
horizontal SRAFs (in green) and (ii) vertical SRAFs (in blue).
Similar encoding can be done for images in DTrgt where only
one non-empty channel contains the target patterns.

The representation shown in Fig. 2 has two main ad-
vantages. First, learning sharp edges, which is a hard task
in GANs, is not needed. Instead, training-friendly Guassian
objects are used to encode the objects in the original image.
Secondly, and most importantly, with this representation the
images generated by the CGAN model can be easily mapped
back to layout files. In practice, since each channel represents
a well-defined type of SRAFs, it suffices to detect the location
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(b)
Target SRAF

Fig. 4.: The visualization of the SRAF image transla-
tion in [14]: (a) Original layout with target contacts; (b)
SRAFed layout.

β for the balancing hyper-parameters.

min
x,D,A,W

1

N

N∑
t=1

{1
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(
y>t ,
√
αq>t ,

√
βht

)>
−

 D√
αA√
βW

xt
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2

2

+ λ‖xt‖p}. (7)

To consider SRAF design rules in a global view, the
authors construct an integer linear programming (ILP)
model in the post-processing stage of their SRAF insertion
framework. Experimental results demonstrate the efficacy
of the proposed SRAF insertion flow in [10].
However, [10] lies on raw CCAS feature which is

manually-crafted but not automatically learnt by the
learning model yet. Besides, the grid-based ILP method
lacks efficiency, especially for large designs. So there still
exists big room to improve. Very recently, GAN-SRAF
[14] casts the original SRAF insertion as an image-to-
image translation problem where a layout is translated
from its original domain to SRAFed layout domain. The
visualization of the SRAF image translation is shown in
Fig. 4. To achieve this formulation, Alawieh et al. firstly
adopt conditional generative adversarial network (CGAN)
in SRAF insertion. In addition, to fit CGAN training, a
novel multi-channel heatmap encoding/decoding scheme
is proposed to map layouts to images without information
loss. The loss function is designed as Equation (8):

min
G

max
D

Ex,y[logD(x,y)] + Ex,z[log(1−D(x, G(x, z)))]

+ λL1Ex,z,y [‖y −G(x, z)‖1] , (8)

where x is an observed image, y an output image, z a
random noise vector. G and D refer to the generator and
discriminator in CGAN respectively. To further reduce
blurring, the authors adopt L1-norm rather than L2-nom.
With comparable lithographic performance, GAN-SRAF
framework surpasses prior works on insertion speed.

C OPC in Multiple Patterning Scenarios
In advanced technology nodes, layout decomposition and
mask optimization are two of the most critical RET
stages. In layout decomposition, a target image is divided
into several masks, while in mask optimization, each de-
composed mask is optimized by some RET techniques like
OPC [31].
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Fig. 5.: Performance gap between model-based OPC and
ILT on ten designs from ICCAD2013 CAD Contest [33].

[32] is a pioneer work that considers multiple exposure
effects in ILT framework. To automatically synthesize
the masks and then print the desired wafer pattern, [32]
first combines ILTs and double-exposure lithography. Via
inverting the forward model from mask to wafer, ILTs
synthesize the input mask to obtain the required wafer
pattern. On the other hand, double-exposure lithogra-
phy exploits two masks under two illumination settings
to print the desired wafer pattern. The objective func-
tion of [32] is shown in Equation (9), which is formulated
as minimizing the L2-norm of the difference between the
desired pattern z∗ and the aerial image |Ha|2 + |Hb|2.
H is a jinc function with cutoff frequency NA/λ, and a,
b are sampled from two input masks.

min
a,b

F (a, b) = argmin
a,b

∥∥z∗ − |Ha|2 − |Hb|2∥∥2

2
. (9)

However, [32] has not addressed the layout decompo-
sition problem yet. Ma et al. firstly develops a unified
optimization framework which solves layout decomposi-
tion and mask optimization simultaneously [17]. To com-
patible with the objective, an unified mathematical for-
mulation minM1,M2

F = ‖Zt −Z‖22 is proposed in [17],
where Zt represents the target image with Z the printed
image, M1 and M2 for output masks. A gradient-based
optimization approach with a set of discrete optimiza-
tion techniques is also proposed to solve the problem effi-
ciently. The experimental results in [17] demonstrate the
efficacy of the unified framework.

IV Heterogeneous OPC
Previous works have shown that different OPC engines
exhibit advantages on different designs. [16] and [19] are
two representative implementations of ILT and model-
based OPC engine. Fig. 5 depicts the performance gap
of two engines on ten designs from ICCAD2013 CAD
Contest [33]. Because in most cases model-based OPC
runs faster than ILT, if we can efficiently predict the be-
havior of different OPC engines and hence choose the
best one, meanwhile the throughput of mask optimiza-
tion flow can be significantly improved. The observation,

TABLE I
: Evaluation of the proposed H-OPC.

ID MB-OPC [19] ILT [16] H-OPC
MSE Time MSE Time MSE Time

1 53816 278 49893 1280 49893 1280
2 41382 142 50369 381 41382 142
3 79255 152 81007 1123 79255 152
4 21717 307 20044 1271 21717 307
5 48858 189 44656 1120 44656 1120
6 46320 353 57375 391 46320 353
7 31898 219 37221 406 31898 219
8 23312 99 19782 388 19782 388
9 55684 119 55399 1138 55684 119
10 19722 61 24381 387 19722 61

Avg. 42196.4 191.9 44012.7 788.5 41030.9 414.1
Ratio 1.03 0.46 1.07 1.90 1.00 1.00

therefore, inspires the design of a heterogeneous OPC
framework, which adopts a deterministic machine learn-
ing model identifies the best OPC engine for a given de-
sign with negligible overhead.
As a case study, in this paper, we adopt two OPC en-

gines that are based on ILT and compact model respec-
tively. We adopt the same training design set as used to
train GAN-OPC [11] which are fed into an ILT engine
[16] and a model-based OPC [19]. Each design in the
training set is labeled according to which OPC engine be-
haves best. For the classification neural networks, we use
the same architecture as in [3]. Layout images are also
converted to DCT format accordingly.
We evaluate the proposed framework using ten designs

from ICCAD2013 CAD Contest [33]. Each design is fed
into the trained CNN model before going through the
mask optimization stage. CNN predicts which OPC en-
gine behaves better on the given design. Detailed results
are listed in TABLE I, where “MB-OPC”, “ILT” and “H-
OPC” list the results of model-based OPC, inverse lithog-
raphy technique-based OPC and the proposed heteroge-
neous OPC respectively. In the table, column “ID” repre-
sents 10 designs included in the benchmark suite, columns
“MSE” indicate the mean square error between the simu-
lated wafer image and the design for each OPC solution,
and columns “Time” list the mask optimization runtime
of each design using three solutions. As can be seen, the
proposed heterogeneous OPC framework can assign bet-
ter OPC engines to 8 out of ten designs in the benchmark
suit, which hence results in better mask optimization per-
formance with average MSE reduced by ∼ 3%. Also, the
trade-off on runtime overhead is more balanced with the
help of a deterministic learning model.

V Conclusion and Discussion
In this paper, we study recent advances of machine learn-
ing techniques on VLSI mask optimization problems. We
show that both deterministic and generative machine
learning models assist to manufacturing-friendly layout



design. The former helps to identify process weak re-
gions in a design and can speed-up OPC by circumventing
costly lithography simulation. The latter focuses on gen-
eration of directly printable masks. Observing the impor-
tance of legacy OPC engines in machine learning-based
solutions, we propose a new methodology that a machine
learning model facilitates modern OPC flow. A determin-
istic classification model is designed to identify the best
OPC engine for a given design with negligible computing
overhead. We hope the study can motivate deeper ex-
plorations of machine learning solutions for VLSI mask
optimization, which should not only include research on
machine learning-based OPC engine itself but should also
dig into a flow control level.
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