DeePattern: Layout Pattern Generation with Transforming Convolutional Auto-Encoder

cādence

Haoyu Yang¹, Piyush Pathak², Frank Gennari², Ya-Chieh Lai² and Bei Yu¹

¹Department of Computer Science and Engineering, The Chinese University of Hong Kong ²Cadence Design Systems, Inc.

Backgrounds

Moore's Law to Extreme Scaling

EUV Brings Challenges in DFM

- ► Hotspot detection and fix
- ▶ Previous researches show the significance of a diverse and balanced training data set. [Yang+,SPIE'17]
- ► Hotspot pattern library covering the design space required by machine learning and pattern matching solutions.
- ▶ Lithographic simulation challenge due to complicated computational lithography model under EUV nodes. [Levinson+,SPIE'18]
- ► Early technology node development
- ▶ Due to long logic to layout cycle, test layout patterns are not usually available.
- ► OPC convergence problem.
- ▶ Patterns are required to massage Design rule, OPC recipe, ...

Related Works on Pattern Generation

- ► Transferring from previous technology node. (not applicable for large technology node gap) [Zhuang+,ICSICT'16]
- ► Randomly placing patterns according to certain constraints. (limited diversity)
- ► Generative machine learning models. (violating design rules) [Alec+,ICLR'16]

Preliminaries

Pattern Generation Challenges

- > 7nm EUV metal layer unidirectional on-track shapes.
- \triangleright Pitch, denoted as p, measures the distance between two adjacent tracks that contain shapes.
- \triangleright T2T, denoted as t, measures the line-end-to-line-end distance between two adjacent shapes in a track. ▶ Wire length I and width w measure the shape size along and against the design track.

Evaluation of Pattern Library

All shape edges in a fixed-size window are aligned with x-axis and y-axis. If we extend all horizontal and vertical edges infinitely into scan lines, more non-overlapping scan lines always come with more complex patterns. We hence define the complexity of a layout pattern as follows.

Pattern Complexity. The complexity of a pattern in x and y directions (denoted as c_x and c_y) are defined as the number of scan lines subtracted by one along x-axis and y-axis, respectively.

We also introduce the concept of pattern diversity (denoted as H) to measure how are the pattern complexities distributed in a given library. A larger H implies the library contains patterns that are more evenly distributed, as in the following definition.

▶ Pattern Diversity. The diversity of a pattern library is given by the Shannon Entropy of the pattern complexity sampled from the library,

$$\mathsf{H} = -\sum_{i}\sum_{j}P(c_{xi},c_{yj})\log P(c_{xi},c_{yj}),$$

where $P(c_{xi}, c_{yi})$ is the probability of a pattern sampled from the library has complexities of c_{xi} and c_{yi} in x and y directions respectively.

Problem (Pattern Generation)

Given a set of layout design rules, the objective of pattern generation is to generate a pattern library such that the pattern diversity and the number of unique DRC-clean patterns in the library is maximized.

Methods

Squish Representation Example

$$\tau = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix}
\delta_x = \begin{bmatrix} x_1 - x_0 & x_2 - x_1 & x_3 - x_2 & x_4 - x_3 \end{bmatrix}
\delta_y = \begin{bmatrix} y_1 - y_0 & y_2 - y_1 & y_3 - y_2 \end{bmatrix}$$

- Scan line-based representation, naturally supports easy computation of pattern complexity.
- ► Lossless feature representation.
- ► Easily feed into convolutional neural networks.

Problem Simplification

Legal topology generation.

The Overall Flow

Methods

Transforming Convolutional Auto-Encoder

Perturbing the Latent Space

TCAE-Combine

► Generalization from existing topologies

$$T_g = g(\sum_i \alpha_i f(T_i)),$$

where $0 < \alpha_i < 1, \forall i$ are combination coefficients and satisfy $\sum_{i} \alpha_{i} = 1$.

► Sample results

Legal Pattern Assessment

Creating DRC constraints for legal δ_{x} s and δ_{v} s,

$$y_{i+1} - y_i = \frac{p}{2},$$
 $x_i - x_j = t_{\min},$
 $x_i - x_j = l_{\min},$
 $x_{i+1} - x_i > 0,$
 $x_{\max} - x_0 = d_x, y_{\max} - y_0 = d_y.$

Input pattern to latent space,

$$I = f(T; W_f)$$

Topology reconstruction,

$$oldsymbol{\mathcal{T}'} = g(oldsymbol{I} + \Delta oldsymbol{I}; oldsymbol{\mathcal{W}}_g)$$

Training objective,

$$\min_{oldsymbol{W}_f, oldsymbol{W}_g} ||oldsymbol{T} - oldsymbol{T'}||, ext{ s.t. } \Delta oldsymbol{I} = oldsymbol{0}$$

- ► Inspired from TAE. [Hinton+,ICANN'11]
- ► Feature instantiation attains data set domain properties.
- ► All capsules contribute together to produce variations of any input objects.
- ► The transformation in our framework applies directly on the latent vector space that promises a much larger diversity of the generated patterns compared to the limited transformation on the coordinate system only in TAEs.
- ► Identity mapping in the training phase helps the TCAE capture the design rule properties of existing patterns.

TCAE-Random

► Introducing perturbation from certain distribution randomly

$$T_g = g(f(T_i) + \Delta x),$$

where $\Delta x \sim \mathcal{N}$.

▶ Feature Sensitivity. Let $I = \begin{bmatrix} I_1 & I_2 & ... & I_n \end{bmatrix}^T$ be the output of the layer associated with the latent vector space. The sensitivity s_i of a latent vector node l_i is defined as the probability of reconstructed pattern being invalid when a perturbation $\Delta l_i \in [-t, t]$ is added up on l_i with everything else unchanged.

Results and Conclusion

Understanding Features in TCAE

Transformations	Reconstructed Topologies				
Extend or pull back line-ends					
Create or destroy shapes					
Control shape directions					

TCAE-Random

Comparison with State-of-the-Art

Perturbation with Gaussian exhibits greatest pattern generation power with around 30% generated patterns are unique and DRC clean.

Conclusion

E-Mail: hyyang@cse.cuhk.edu.hk

- ► Address the pattern library requirements in DFM flows/researches under advanced technology nodes.
- ▶ Propose a TCAE framework that can capture layout design rule characteristics.
- ▶ We show auto-learned features contribute to layout space locally or globally.