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Introduction
t Emergence of dedicated AI accelerators 

› Optical neural network processor: light in and light out
» Speed-of-light floating point matrix-vector multiplication
» >100GHz detection rate 
» Ultra-low energy consumption if configured

› Great number of components, sensitivity to noise

[Shen+, Nature Photonics 2017]



Previous Optical Neural Network (ONN)

t SVD decompose W = U Σ V*
t U and V* are unitary matrices

› A unitary X satisfies XX* = I
› Implemented by Mach-Zehnder 

interferometers array 
t Σ is a diagonal matrix 

› Diagonal values are non-negative real
› Implemented by optical attenuators 

t σ is non-linear activation
› Implemented by saturable absorber 
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[Shen+, Nature Photonics 2017]
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t Mach-Zehnder interferometers (MZI) for U and V*
› A single MZI implements a 2-dim unitary

› An array of n(n-1)/2 MZIs implements an n-dim unitary

t Given an n-dim unitary, φ’s can be uniquely computed 

Implementing Unitary U and V*
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Previous ONN overview

t Layer size measured by # of MZIs = m(m-1)/2+n(n-1)/2
t Software training and hardware implementation

› Train W directly in software à SVD-decomp to obtain U, Σ, V*

(m x m)  (m x n) (n x n)

(n x 1) (m x 1)

(m x n)

V*U ΣW

SVD
decomp

Software
Training

Optical
Implementation

V*U Σin   σ out

W



t T: sparse tree network 
t U: unitary network
t Σ: diagonal network
t Use less # of MZIs = n(n-1)/2

› 1 unitary matrix to maintain the expressivity 
› An area-efficient tree network to match the dimension

Slimmed Architecture
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t An arbitrary weight W is not TUΣ-decomposable
t Co-design solution: training and implementation are coupled

› T and Σ: Train the device parameters, constraints embedded
› U: Add unitary regularization then approximate with true unitary
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Sparse Tree Network
t Sparse Tree network (T) to match the different dimension

› Suppose in-dim > out-dim
› α: linear transfer coefficient
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Sparse Tree Network Implementation

t Implemented with MZIs or directional couplers
t A 2 x 1 subtree

can be Implemented with a single-out MZI or directional coupler
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Sparse Tree Network Implementation

t Any N-input subtree with arbitrary α’s satisfying energy conservation

can be implemented it by cascading (N-1) single-out MZIs.
t Energy conservation embedded in training
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Unitary Network in Training

t For unitary network U satisfying UU* = I, add the regularization
reg = ∥UU* − I ∥F

t Training loss function
Loss = Data Loss + Regularization Loss

leading to a near-implementable ONN with high accuracy

t Trained Ut ~ unitary but only true unitary is implementable by MZIs
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Unitary Network in Implementation
t Approximate Ut by a true unitary Ua
t SVD-decompose Ut = PSQ* à Ua = PQ*

t Claim. Minimize the regularization ⇔ find the best approximation
Min. reg⇔ Min. || Ut - Ua ||F
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t Implemented in TensorFlow for various ONN setup 

t Tested it on Intel Core i9-7900X CPU and an NVIDIA TitanXp GPU

t Performed on the handwritten digit dataset MNIST

Simulation Results
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N1: (14�14)-100-10 N4: (14�14)-150-150-10 N7: (14�14)-150-150-150-10    

N2: (14�14)-150-10    N5: (28�28)-400-400-10 N8: (28�28)-400-400-200-10

N3: (28�28)-400-10 N6: (28�28)-600-300-10 N9: (28�28)-600-600-300-10



Simulation Results

• N1~N9: network configurations

• Our architecture uses 15%-38% less MZIs

• Similar accuracy (~0 accuracy loss)

• Maximum loss is 0.0088

• Average is 0.0058
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t Better resilience due to less cascaded components

Previous ONN Our ONN

Noise Robustness
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Training Curve
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• Converged in 300 epochs
• Balance of the accuracy and the unitary 

approximation
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Contributions of This Work

t An new architecture for ONN 
› Area-efficiency
› ~0 accuracy loss
› Better robustness to noise

t Hardware and software co-design methodology 
› Software-embedded hardware parameters 
› Hardware constraints guaranteed by software
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Future Work
t Better MZI pruning methods

› ~0 phase MZI à pruned + accuracy recover 

› MZI-sparse unitary matrix 

t Design for robustness 

› Adjust noise distribution in training

t Online training 

t ONN for other neural network architectures

› CNN, RNN, etc. 
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