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On-chip Power Delivery Network

¢+ Power grid
> Multi-layer mesh structure
> Supply power for on-chip devices

+ Power grid verification
> Verify current density in metal wires (EM)
»  Verify voltage drop on the grids

> More expensive due to increasing sizes of grids
» e.g., 10M nodes, >3 days

. Power Lines

. Ground Lines .Vias

[Yassine+, ICCAD’16]



Modeling Power Grid

¢ Circuit modeling

Resistors to represent metal wires/vias

Current sources to represent current drawn by underlying devices
Voltage sources to represent external power supply

Transient: capacitors are attached from each node to ground

¢+ Port node: node attached current/voltage sources
¢+ Non-port node: only has internal connection
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Linear System of Power Grid

¢ Resistive grid model:
Lv=i

» L is nxn Laplacian matrix (symmetric and diagonally-

dominant):
T el ), if i # j
> g;j denotes a physical conductance between two nodes
i and j
¢ A power grid is safe, Iif Vi:
Vi < Vth

¢ Long runtime to solve Lv = i for large linear systems



Previous Work

¢+ Power grid reduction

» Reduce the size of power grid while preserving input-
output behavior

» Trade-off between accuracy and reduction size

¢ Topological methods

> TICER [Sheehan+, ICCAD’99]

> Multigrid [Su+, DAC’03]

» Effective resistance [Yassine+, ICCAD’16]
¢ Numerical methods

> PRIMA [Odabasioglu+, ICCAD’97]

> Random sampling [Zhao+, ICCAD’14]

» Convex optimization [Wang+, DAC’15]



Problem Definition

¢ Input:
» Large power grid
> Current source values
¢ Output: reduced power grid
> Small
» Sparse (as input grid)
> Keep all the port nodes
> Preserve the accuracy in terms of voltage drop error




Overall Flow

Node and edge set generation
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Node Elimination

¢ Linear system: Lv =i

¢ L can be represented as a 2x2 block-matrix:
_ Lq1 L12]
L€2 L22

¢+ v and i can be represented as follows:

v = [Zﬂ andi = [15]
¢ Applying Schur complement on the DC system:
L =Ly —LipL55L7,
which satisfies:
Lvy =14
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Node Elimination (cont’d)

¢ Output graph keeps all the nodes of interest
¢ Output graph is dense

¢+ Edge sparsification: sparsify the reduced Laplacian without losing
accuracy



Edge Sparsification

¢+ Goal of edge sparsification

> Accuracy

» Sparsity reduce the nonzero elements off-the-diagonal in L
¢ Formulation (1):

. I < > . . .
min - Z (X — L)vg||5|+ N X|d, s-t. X is a Laplacian matrix

XeRan

¢ Formulation (2): (wang+, DAC2014]

m

1

min, g o VX = Dhuel+ 41X,

XeRan
m

Y

S.t.

X is a Laplacian matrix

1
min Z (X — L)vgl|3 + )‘ZXl iy s.t. X is a Laplacian matrix

XGRan

L2 norm }

\d

d

L1 norm }

“




Edge Sparsification

¢ Formulation (2): [pAC2014 wang+]
1

m

min = — (X — L)vg||3+ A Z Xii, s.t. X is a Laplacian matrix

XeRnxn  2m
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jo > g, Vi=1,---,9

Problem: accuracy on the Vdd node does not
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guarantee accuracy on the current source nodes

¢ Formulation (3):

m

1
in X-L A>T X
DGR INE N IS

s.t. X is a Laplacian matrix

> Weight vector: wg=1/n,w; =1,Vi=1,--- ,n
»  Strongly convex and coordinate-wise Lipschitz smooth
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Coordinate Descent (CD) Method

¢+ Update one coordinate at each iteration

¢ Coordinate descent:
Sett=1and X1 =0

For a fixed number of iterations (or convergence is reached):
Choose a coordinate (i, j)

Compute the step size §* by minimizing
argmin f(X + de; ;)
5

Update X{1"' « X[ + &

¢+ How to decide the coordinate?
»  Cyclic (CCD)
> Random sampling (RCD)
> Greedy coordinate descent (GCD)
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CD vs Gradient Descent

¢ Gradient descent (GD) algorithm:
Xl « Xt — aVf(X)

+ GD/SGD update 0(n?) elements in X and gradient matrix
G at each iteration

¢+ CD updates 0(1) elements in X (Laplacian property)
¢ CD proves to update 0(n) elements in G for Formulation

(2) and (3).
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Greedy Coordinate Descent (GCD)

eeoeo (3,4):1
“ / N
S / (1,2):0 AN
Max-heap
Output X § 7 7
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GCD vs CCD

Input graph GCD: / O\O 4/\P § / 7
@ ,}) 0/P N
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-== Add an edge ° o° b
Update an edge lteration 1 lteration 2 lteration 3 [teration 4 Iteration T

¢+ GCD produces sparser results
> CCD (RCD) goes through all coordinates repeatedly
> GCD selects the most significant coordinates to update
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GCD Coordinate Selection

¢ General Gauss-Southwell Rule:
(¢*,7%) = argmax |G,
(i,5)€[n) x [n]

¢+ Observation: the objective function is quadratic w.r.t. the
chosen coordinate

¢ GCD is stuck for some corner cases:

¢ A new coordinate selection rule:
(¢*,57) = argmax |G, | s.t. G;; >0ory; ; #0
(i,7)€[n] x [n]
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GCD Speedup

+ Time complexity is 0(n?) per iteration
» traverse 0(n?) elements to get the best index
> As expensive as gradient descent

¢+ Observation: each node has at most n neighbors — heap

7* J"
+ Heap to store 0(n?) elements in G: i+ S
, Pick the largest gradient, 0(1)
» Update O0(n) elements, O(nlogn) o R
¢ Lookup table ! N

» 0(n?) space; 0(1) for each update
¢ Improved time complexity O(nlogn)
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Experimental Results

¢ Sparsity and accuracy trade-off
¢ Accuracy and runtime trade-off
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Gradient Descent Comparison
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Experimental Results

CKT ibmpg2 ibmpg3 ibmpg4 ibmpg5 ibmpg6
#Port Before 19,173 100,988 133,622 270,577 380,991
Nodes After 19,173 100,988 133,622 270,577 380,991
#Non-port Before 46,265 340,088 345,122 311,072 481,675
Nodes After 0 0 0 0 0
#Edges Before 106,607 724,184 779,946 871,182 1283,371
After 48,367 243,011 284,187 717,026 935,322
Error 1.2% 0.7% 4.8% 2.2% 2.0%
Runtime 38s 106s 132s 123s 281s
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Conclusion

¢ Main Contributions:

» An iterative power grid reduction framework
» Weighted convex optimization-based formulation

» A GCD algorithm with optimality guarantee and
runtime efficiency for edge sparsification

¢ Future Work:
» Extension to RC grid reduction
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