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Optimality across EDA stages

Logic
Synthesis
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Design

No 1-1 mapping between metrics across various EDA stages.

» Optimality at one stage doesn’t guarantee the same in another stage
» Data-driven methodology, such as machine learning, becomes imminent
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Binary Adder Design

> Primary building blocks in the datapath logic of a microprocessor
» A fundamental problem in VLSI industry for last several decades
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Closing the gap across adder design stages

What is still unsolved?
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Parallel Prefix Adders

I(Logic Levels)

Parallel Prefix Adders
— Flexible delay-power trade-off

-1 Regular Adders

— Sub-optimal

Custom Adders
— High TAT

t(Wire Tracks)
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Parallel Prefix Adders
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Architectural Level: Mapped to Prefix Structures
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Prefix Graph Problem

Carry-computation can be mapped to prefix graph problem
yl-:X,'—l 0 Xi—1 0 Xi—2 0...X1 0 Xpo

X5 X4 X3 X2 X1 Xo

/ Size (s) = No. of prefix nodes = 7

Level (L) = maximum logic level = 3
Max-Fanout (mfo) = 2
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Classifying Prefix Graph Synthesis

Can be classified based on the solution#

Category 1: Limited number of solutions

» Example: [Matsunaga+,GLSVLSI'07], [Liu+,ICCAD’03], [Zhu+,ASPDAC’05],
[Roy+,ASPDAC’15]

- Not suitable for exploring data-driven methodologies
- No analytical model to physical design stage

Category 2: Innumerable solutions

» Example: [Roy+,TCAD’14]

- Not scalable for bounded fan-out
- Computationally expensive to run all solutions through full physical design flow
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Gap between Prefix Structure and Physical Design
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(a) (b)
(a) Architectural solution space; (b) Physical design space.
> G1 (less fan-out and high size); G2 (high fan-out and low size)

» When mapped to physical solution space

- Correlation between size and area
- Not completely reliable, G1 and G2 get mixed up in physical solution space
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(a) (b)
(a) Architectural solution space; (b) Physical design space.

> G1 (less fan-out and high size); G2 (high fan-out and low size)
» When mapped to physical solution space

- Correlation between size and area
- Not completely reliable, G1 and G2 get mixed up in physical solution space

What We Want to Search For:

All Pareto Frontier points with low area, low power, and low critical delay.
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Task 1: Prefix Adder Solution Exploration
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[Roy+,TCAD’14]- Summary

> G, = set of prefix graphs of bit-width n
» Prefix graphs of higher order generated in bottom-up fashion
» Several pruning strategies during G, — G, for scaling

- For bounded fan-out, these strategies compromises in size-optimality
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Enhancement 1: Imposing Semi-regularity

> The concept is derived from regular adders such as Brent-Kung, Sklansky.
> x; and x;1 combined to form prefix nodes, where i is even.

v

This regularity for only L = 1

v

For L > 1, regularity compromises size optimality (Forbidden).
» Observation: this semi-regularity doesn’t degrade size-optimality.
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Enhancement 2: Level restriction in Non-trivial Fan-in

v

Trivial fan-in having same MSB

» x4 and 7; are trivial and non-trivial fan-in of i,

v

Level (non-trivial fan-in) > level (trivial fan-in)

> Reduces search space without degrading size-optimality

X5 X4 Xz X2 X1 Xg

Ys
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Comparison at Prefix Graph Stage
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mfo Our Approach [Roy+,TCAD'14]
size [ Run-time (s) | size [ Run-time (s)

4 244 302 252 241

6 233 264 238 212

8 222 423 - -

12 201 193 - -

16 191 73 192 149

32 185 0.04 185 0.04

Table is for 64 bit adders
[Roy+,TCAD’14] cannot get solutions for all fanouts.

Our solutions are always more size-optimal.

Runtimes are comparable, adder synthesis is one-time.




Physical Solution Space Comparison

T T
TCAD14 -

r(
~
o
S
)
T

320 340 360 380 400 420
Critical Delay (ps)

Our solutions cover wider space in physical domain

> 7000 random samples from [Roy+,TCAD’14] vs. 3000 samples from us
» Reason: TCAD14 misses solutions for bounded fanout in a few cases
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Task 2: Pareto Frontier Driven Learning
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Quasi-Random Data Sampling

» Hundreds of thousands of solutions
> How to choose training data?
- Cannot run too many architectures as physical design flow costly.

- Too few will degrade model accuracy.
Quasi-Random Sampling

Create architectural bins based on mfo and s.
» Capture all architectural bins
» Select solutions from each bin randomly

Bin of solutions with s=246 and

mfo=4
| s=244 | | s=245 | |s=246 | eees  mio=4
| $=233 | | s=234 | | =235 | eeee  mio=6
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Feature Selection and Learning Model

v

Architectural attributes: s, mfo, sum-path-fanout (spfo)

v

Tool settings: Target delay

v

Best model fitting by support-vector-regression (SVR) with RBF kernel

v

Including spfo improves MSE score for delay from 0.232 to 0.164
> Note: linear models not sufficient for modeling delay

X3 X2 X Xo
Pfo(31) = spfolx0) + spfo(x1) + fo(x0) + folx1) =
0+0+1+1=2

spfo(il) = spfo(x3) + spfo(x2) + fo(x3) + fo(x2) =
0+04+1+2=3

spfo(y3) = spfo(il) + spfo(y1) + fo(il) + fo(y1) =
3424+1+2=28
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Pareto Frontier Driven Learning

» Conventional learning focusses on prediction accuracy

- Model accuracy improvement doesn’t guarantee Pareto-frontier improvement

- Need for learning integrated Pareto-frontier exploration

» Scalarization or c-sweep

- Learning output is a linear sum of delay and power (c x Power + Delay)
- Model-fitting done with different values of alpha

- Sweeping alpha from 0 to a large positive number
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Experimental Setup

Synthesis and placement/routing of adders
> Tools: Design Compiler/ IC Compiler
» Library: Non-linear-delay-model (NLDM) in 32nm SAED cell-library
> Tool settings: Target delay = 0.1ns, 0.2ns, 0.3 ns

Programming Language
» C++ for prefix adder synthesis

» Python based machine learning package scikit-learn
Machine Configurations

» 72GB RAM UNIX machine
» 2.8GHz CPU
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Pareto-frontier Comparison
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Predicted pareto-frontier almost matches actual pareto-frontier

> Training set is randomly selected from 300 samples.
> Rep. adders are quasi-random sampled from other 3000 samples
> Predicted frontier is from best 150 solutions (predicted)
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Pareto-frontier Comparison
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Predicted pareto-frontier almost matches actual pareto-frontier

> Training set is randomly selected from 300 samples.
> Rep. adders are quasi-random sampled from other 3000 samples
> Predicted frontier is from best 150 solutions (predicted)
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Comparison with Other Adders

Pareto-points derived from our approach beats other solutions in all metrics
(delay, area, power)

| Method | Delay (ps) | Area (um’) | Power (mW) |
Kogge-Stone 347.9 2563.7 8.78
Ours (P)) 340.0 2203.3 7.72
Sklansky 356.1 1792.5 6.1
Ours (P2) 353.0 1753.0 5.9
[Roy+,ASPDAC15] | 3487 19714 6.98
Ours (P3) 346.0 1848.6 6.67
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Conclusion

Machine learning guided design space exploration

» For power-efficient high-performance adders
» Bridge the gap between architectural and physical solution space

> Provide near-optimal power vs. delay trade-off
Our methodology excels

» State-of-the-art adder synthesis algorithms in power/delay/area metrics

» Readily adoptable for any cell-library
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Thank You
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