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Why 3D IC Liquid Cooling?

I Power is the number one problem in chip design

I 3D IC is promising for increasing computer performance
I But 3D IC worsens power problem by

I higher heat dissipation density
I larger thermal resistance from junction to ambient

I Microchannel-based liquid cooling is proposed as a
solution
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Challenges for 3D IC Liquid Cooling

I Hot downstream and cool upstream =⇒
large thermal gradient =⇒
reliability and timing issues

I limited channel diameter =⇒
high pumping requirement =⇒
overhead to whole system

I Limitation of previous work
I No considering thermal gradient
I Assuming unidirectional straight channels
I Assuming unrealistic constant-temperature heat source
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Thermal Modeling Background

I Most existing models assume unidirectional straight channels

I 4-register model (4RM) in 3D-ICE [Sridhar+, TOC’14]

I Accurate
I Has been extended for flexible topology
I Slow

I We construct a fast 2-register model (2RM) for cooling network
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Thermal Modeling Basics

I Divide channel layer into basic cells with a 2D grid

I Solve local pressure and flow rate from a linear system
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4RM Model

I Thermal cell = basic cell
I Solve temperature from a linear system

considering three kinds of heat transfer
I Solid-solid
I Solid-liquid
I Liquid-liquid
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Faster 2RM Model
I No conforming channel geometry =⇒ larger and fewer thermal cells =⇒

speed-up
I In solid layers, m×m basic cells = a thermal node
I In channel layers, m×m basic cells = a solid thermal node + a liquid one
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Problem Formulations

Decision variables

I Cooling network topology N

I System pressure drop Psys

Metrics
I Pumping power Wpump =

Psys·Qsys

η
I Qsys: system flow rate; η: efficiency term

I Thermal gradient ∆T = maxi(∆Ti)
I ∆Ti: range of node temperatures in i-th source layer

I Peak temperature Tmax
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Problem Formulations

I Problem 1: Pumping Power Minimization

min Wpump,

s.t. Psys ∈ R+, N ∈ N , Tmax ≤ T ∗
max, ∆T ≤ ∆T ∗.

(1)

(N : all legal cooling networks)

I Problem 2: Thermal Gradient Minimization

min ∆T,

s.t. Psys ∈ R+, N ∈ N , Tmax ≤ T ∗
max, Wpump ≤W ∗

pump.
(2)

I Design rules from ICCAD 2015 Contest
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Pumping Power Minimization – Flow

Input: Ninit, ∆T ∗, T ∗max, stack description and floorplan files.
Output: N , Psys.
1: N ←Ninit;
2: while #iteration is within the limit do
3: Obtain neighboring network solution N ′;
4: W ′pump ← EvaluateNetwork (N ′, ∆T ∗, T ∗max);
5: N ←N ′ or not according to SA mechanism;
6: if W ′pump converges then return N and Psys;
7: end while

The problem is divided into two levels:

I Inner: Psys is varied to minimize Wpump for a specific N , which evaluates N

I Outer: simulated annealing (SA) searches for a good N
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Pumping Power Minimization – Temperature vs. Pressure

I As Psys increases, Tmax
decreases and finally
becomes approximately
constant

I ∆T = f(Psys) is either
uni-modal or
monotonically decreasing
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Pumping Power Minimization – Network Evaluation

I Replace Wpump by Psys, as
Wpump vs. Psys is monotonic
for a specific N

I Ignore Tmax first, as it is
easier to handle

I Step 1: solve the problem
without constraint T ∗max

I Step 2: check Tmax and
find optimal solution by
binary search

1: function EvaluateNetwork(N , ∆T ∗, T ∗max)
2: Minimize Wpump s.t. ∆T ≤ ∆T ∗;
3: if ∆T > ∆T ∗ then
4: return +∞;
5: else if Tmax > T ∗max then
6: Minimize Wpump s.t. Tmax ≤ T ∗max;
7: if ∆T > ∆T ∗ or Tmax > T ∗max then
8: return +∞;
9: else

10: return Wpump;
11: end if
12: else
13: return Wpump;
14: end if
15: end function
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Pumping Power Minimization – Network Evaluation

In step 1, by further substituting ∆T = f(Psys),
Problem 1 becomes single-variable:

min Psys,

s.t. Psys ∈ R+, f(Psys) ≤ ∆T ∗.
(3)

Solve (3) by searching (with three probing points):

I If a feasible Psys exists, return optimal Psys
I Otherwise, return the Psys for minimum f

(show the nonexistence of feasible Psys)
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Pumping Power Minimization – Tree-like Cooling Network

Hierarchical tree-like structure is simple and can balance cooling:

I Between upstream and downstream

I Among different trees
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Pumping Power Minimization – Network Topology Optimization

Stage # Step Size Objective Function Simulator Runtime for an Iteration
1 10 ∆T 2RM short
2 10 W ′

pump 2RM medium

3 2 W ′
pump 2RM medium

4 2 W ′
pump 4RM long

I In stage 1, ∆T under a fixed Psys is used as cost function to accelerate

I Eight types of global flow directions are attempted
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Thermal Gradient Minimization – Network Evaluation

Problem for a specific N can be similarly solved:

I Its simplified form becomes:

min f(Psys),

s.t. Psys ∈ R+, Psys ≤ P ∗
sys,

(4)

I Solving (4) is simpler:
I If P ∗sys locates on falling side of f , it is optimal already
I Otherwise, adopt golden section search
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Thermal Gradient Minimization – Network Topology

Optimization

Stage # Step Size Objective Function Simulator Runtime for an Iteration

1 10 ∆T ′ 2RM short
2 10 ∆T ′ 4RM medium
3 2 ∆T ′ 4RM medium

Minimizing Wpump under a fixed Psys is unrelated to temperature and meaningless,
but minimizing ∆T under a fixed Psys is safe =⇒ speed-up

I Some iterations are evaluated by one simulation under a fixed Psys
I The original stage 1 is no longer needed
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Experimental Results – Faster 2RM Model

20
0

30
0

40
0

60
0

80
0

11
00

0

2

4

6

Thermal Cell Size (µm)

E
rr
or

(%
)

all networks

tree-like networks

straight channels

20
0

30
0

40
0

60
0

80
0

11
00

0.001

0.01

0.1

1

Thermal Cell Size (µm)

N
or
m
a
li
ze
d
R
u
n
ti
m
e total time

solver time

I 5 benchmarks, 40 network samples, 6 thermal cell sizes and 13 pressures

I Tree-like networks, 400µm thermal cells: 0.52% errors (compared to 4RM),
runtime reduced from 3.37s to 0.07s
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Experimental Results – Pumping Power Minimization

Case # 1 2 3 4 5

Baseline

Psys (kPa) 12.98 6.23 7.85 9.71 N/A
Tmax (K) 322 314 321 314 N/A
∆T (K) 15.0 10.0 15.0 10.0 N/A

Wpump (mW ) 10.41 6.91 8.34 11.65 N/A
Manual Psys (kPa) 8.86 5.54 6.98 9.45 40.1

(1st place Tmax (K) 357 336 328 336 338
in ICCAD ∆T (K) 15.0 10.0 15.0 10.0 10.0
Contest) Wpump (mW ) 1.72 1.51 3.36 2.96 113.96

Ours

Psys (kPa) 8.72 5.13 5.81 8.27 40.10
Psystem (kPa) 358 336 337 335 338

∆T (K) 15.00 10.0 15.0 10.00 10.00
Wpump (mW ) 1.66 1.37 1.90 2.68 113.96

I 79.61% better than baseline (unidirectional straight channels)

I 16.35% better than 1st place in ICCAD 2015 Contest
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Experimental Results – Thermal Gradient Minimization

Case # 1 2 3 4 5

Baseline

Psys (kPa) 26.08 14.43 17.82 26.51 45.81
Tmax (K) 316 309 316 308 338

Wpump (mW ) 42.0 37.0 43.0 43.4 148.2
∆T (K) 8.75 5.42 11.42 4.76 26.48

Ours

Psys (kPa) 16.51 8.96 11.46 13.80 40.06
Tmax (K) 338 319 327 321 338

Wpump (mW ) 5.67 5.66 6.56 4.16 113.80
∆T (K) 5.54 3.81 7.12 3.87 9.64

I Constraint W ∗
pump on Wpump is set to 0.1% of die power

I 37.27% better than baseline
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Experimental Results – Example Temperature Maps

20 40 60 80 100

20

40

60

80

100

20 40 60 80 100

20

40

60

80

100

 

 

T
em

pe
ra

tu
re

 (
K

)

300

310

320

330

340

350

bottom source layer channel layer

(a) Puming power minimization
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(b) Thermal gradient minimization
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