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Moore’s Law to Extreme Scaling
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Lithography Hotspot Detection

» What you see # what you get 5: : e reductiont

> Evenw. RET: OPC, SRAF, MPL ] —

» Still hotspot: low fidelity patterns gi% I

» Simulations: extremely CPU intensive %Eé Z - I
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Layout Verification Hierarchy
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» Sampling:

scan and rule check each region
» Hotspot Detection:

verify the sampled regions and report potential hotspots
» Lithography Simulation:

final verification on the reported hotspots
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Pattern Matching based Hotspot Detection
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Pattern Matching based Hotspot Detection
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Machine Learning based Hotspot Detection
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Machine Learning based Hotspot Detection

u H Hotspot
i i detection
il
model

Extract layout
features
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Predict new patterns
Decision-tree, ANN, SVM, Boosting ...

[Drmanac+,DAC’09] [Ding+, TCAD'12] [Yu+,JM3'15] [Matsunawa+,SPIE’15]
[Yu+, TCAD’15][Zhang+,|ICCAD’16]

v

v

v

Crafted features are not satisfactory

v

Hard to handle ultra-large datasets.
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Why Deep Learning?

» Feature Crafting v.s. Feature Learning
Although prior knowledge is considered during manually feature
design, information loss is inevitable.
Feature learned from mass dataset is more reliable.

» Scalability
With shrinking down circuit feature size, mask layout becomes
more complicated. Deep learning has the potential to handle
ultra-large-scale instances while traditional machine learning may
suffer from performance degradation.

» Mature Libraries
Caffe [Jia+,ACMMM14] and Tensorflow [Martin+,TR'15]
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Hotspot-Oriented Deep Learning

Deep Learning has been widely appied in object recognition tasks.
Nature of mask layout impedes the availability of existing frameworks.

» Imbalanced Dataset
Lithographic hotspots are always the minority.

» Larger Image Size
Effective clip region (> 1000 x 1000 pixels) is much larger than
the image size in traditional computer vision problems.

» Sensitive to Scaling
Scaling of mask layout patterns modifies its attributes.
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Deep Learning based Hostpot Detection Flow
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Outline

Network Architecture
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CNN Architecture Overview

» Convolution Layer

» Rectified Linear Unit (ReLU)
» Pooling Layer

» Fully Connected Layer
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Convolution Layer

Convolution Operation:
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Convolution Layer (cont.)

Effect of different convolution kernel sizes:
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| Kernel Size | Padding | Test Accuracy |

7 x7 3 87.50%
5x5 2 93.75%
3x3 1 96.25%

+Stop after 5000 iterations.
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Rectified Linear Unit
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> Alleviate overfitting with sparse feature map
» Avoid gradient vanishing problem

| Activation Function [  Expression | Validation Loss
RelLU max{x, 0} 0.16
Sigmoid m 87.0
TanH e 0.32
BNLL log(1 + exp(x)) 87.0
WOAF NULL 87.0
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Pooling Layer
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Pooling Layer (cont.)

» Translation invarient (X)

» Dimension reduction

Effect of pooling methods:

Pooling Method | Kernel | Test Accuracy

Max 2 %2 96.25%
Ave 2x2 96.25%
Stochastic 2x2 90.00%
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Fully Connected Layer

» Fully connected layer transforms high dimension feature maps
into flattened vector.
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Fully Connected Layer (cont.)

» A percentage of nodes are dropped out (i.e. set to zero)

» avoid overfitting

Effect of dropout ratio:
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Fully Connected Layer (cont.)

» A percentage of nodes are dropped out (i.e. set to zero)
» avoid overfitting

Dropout Ratio
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Architecture Summary

» Total 21 layers with 13 convolution layers and 5 pooling layers.

» A RelU is applied after each convolution layer.

SPIE.
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Architecture Summary
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Imbalance Aware Learning
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Minority Upsampling

Layout datasets are highly imbalanced as after resolution
enhancement techniques (RETs) the lithographic hotspots are always
the minority.
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Minority Upsampling

Layout datasets are highly imbalanced as after resolution
enhancement techniques (RETs) the lithographic hotspots are always
the minority.

» Multi-label learning
[Zhang+,lJCAI'15]

O non-hotspot

[ hotspot » Majority downsampling
< s = - = - [Ng+,TCYB'15]
by » Pseudo instance generation
g 50 [He+,IJCNN’08]
g Artifically generated instances might
E not be available because of mask
0% S R layout nature.
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Minority Upsampling

Layout datasets are highly imbalanced as after resolution
enhancement techniques (RETs) the lithographic hotspots are always
the minority.

Percentage (%)
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100

O non-hotspot
O hotspot

Multi-label learning
[Zhang+,lJCAI'15]

Majority downsampling
[Ng+,TCYB’'15]

Pseudo instance generation
[He+,IJCNN’08]

Artifically generated instances might
not be available because of mask

layout nature.
Naive upsampling (v')
1. Gradient descent
2. Insufficient training samples



Random Mirror Flipping

» Before fed into neural network
» Each instance is taking one of 4 orientations
» Resolve insufficient data
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Effectiveness of Upsampling
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Validation performance does not show further improvement when the
upsampling factor increases beyond a certain value. S e
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Learning Rate
~: defines how fast the neuron weights are updated
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Momentum and Weight Decay

» Momentum
Physical meaning is involved into gradient descent.

ol
’yawi’
Wi =w;+v.

V=LV —

» Weight Decay
An alternative to achieve L, regularization on neuron weights.

V=puv— — YA w;,

vﬁwi
Wi =w;+ V.
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Momentum and Weight Decay (cont.)

» Momentum Effects:

] 0 \ Learning Rate \ Validation Loss ‘
0.5 0.001 0.21

0.9 0.001 0.22

0.95 0.001 0.21

0.99 0.001 0.16

» Weight Decay Effects:

] A \Learning Rate | Momentum | Validation Loss

1073 0.001 0.99 0.95
10~ 0.001 0.99 1.19
1073 0.001 0.99 0.37
10~° 0.001 0.99 0.2

27/34



Weight Initialization

The weight initialization procedure determines what initial values
assigned to each neuron before the gradient descent update starts.

» Random Gaussian (X)

Cannot guarantee input &
output have similar variance.

28/34



Weight Initialization

The weight initialization procedure determines what initial values
assigned to each neuron before the gradient descent update starts.

— — — Gaussian_std=0.1
Gaussian_std=0.01
Gaussian_std=0.001
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» Random Gaussian (X)
Cannot guarantee input &
output have similar variance.

» Xavier [Xavier+ AISTATS'10] rsof-] ‘ ‘ ]
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Outline

Experimental Results
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Experimental Setup

» Based on Caffe [Jia+, ACMMM 14]
» Evaluated on ICCAD-2012 CAD contest benchmark

Evaluation metrics:

Accuracy

The ratio between the number of correctly detected hotspot clips and
the number of all hotspot clips.

ODST

The sum of all lithographic simulation time for false alarmt and the
deep learning model testing time.

ODST = Test Time + 10s x # of False Alarm

tFalse alarm: the number of non-hotspot clips that are reported as hotspots by
detector.
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Layer Visualization
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Compare Accuracy with State-of-the-Art1
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1JM3'16: CNN based; TCAD’15: SVM based; ICCAD’16: Boosting based.
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Compare ODST with State-of-the-Art

» Improve the performance of ODST by at least 24.80% on average.
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JM3'16: CNN based; TCAD’15: SVM based; ICCAD’16: Boosting based.
32/34



Conclusion
We explore the feasibility of deep learning as an alternative approach
for hotspot detection.
» Hotspot-detection-oriented hyper-parameter tuning
» Imbalance Issue: Upsampling & Random mirror flipping
» Outperform state-of-the-art solutions
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Conclusion
We explore the feasibility of deep learning as an alternative approach
for hotspot detection.
» Hotspot-detection-oriented hyper-parameter tuning
» Imbalance Issue: Upsampling & Random mirror flipping
» Outperform state-of-the-art solutions

Future Works

» Test on larger scale test cases
» Further simplify architecture to speedup

» Seek other VLSI layout applications (e.g., OPC, SRAF) PIE
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