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Moore’s Law to Extreme Scaling
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Lithographic Mechanism
I light diffraction when through photomask
I May cause performance degradation, or even yield loss
I What you see 6= what you get

Dispearance
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Lithography Hotspot Detection

I RET: OPC, SRAF, MPL
I Still hotspot: low fidelity patterns
I Simulations: extremely CPU intensive

Ra
#o

%o
f%l
ith

og
ra
ph

y%
sim

ul
a#

on
%#
m
e%

(n
or
m
al
ize

d%
by
%4
0n

m
%n
od

e)
%

Technology%node�

Required(computa/onal(
/me(reduc/on!�

6 / 28



Layout Verification Hierarchy

Increasing 
verification
accuracy 

Sampling

Hotspot Detection

Lithography Simulation

(Relative) CPU runtime at each level

I Sampling:
scan and rule check each region

I Hotspot Detection:
verify the sampled regions and report potential hotspots

I Lithography Simulation:
final verification on the reported hotspots
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Pattern Matching based Hotspot Detection

library'
hotspot&

Pa)ern'
matching'

hotspot&hotspot&

I Fast and accurate
I [Yu+,ICCAD’14] [Nosato+,JM3’14] [Su+,TCAD’15]

I Fuzzy pattern matching [Wen+,TCAD’14]

I Hard to detect non-seen pattern
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Machine Learning based Hotspot Detection

Hotspot&
detec*on&
model&

Classifica*on&

Extract&layout&
features&

I Predict new patterns
I Decision-tree, ANN, SVM, Boosting ...
I [Drmanac+,DAC’09] [Ding+,TCAD’12] [Yu+,JM3’15] [Matsunawa+,SPIE’15]

[Yu+,TCAD’15]

I Hard to balance accuracy and false-alarm
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Rethinking Performance Metrics

I Accuracy: The rate of correctly predicted hotspots among the set
of actual hotspots.

I False Alarm: The number of incorrectly predicted non-hotspots.

I Detection Runtime: CPU runtime of hotspot detection.

Overall Detection and Simulation Time (ODST)

Includes: (1) Detection runtime; (2) Lithography simulation time for
hotspots in testing.

*Transfer false alarm into equivelent lithography simulation time.
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Rethinking Hotspot Detection Framework

training data model

-1 +1

NHS HS

lithography

simulationonly send HS

...

testing data

......

... training feature

testing feature

prediction

check

result

correct 

hotspot

layout

batch learning

I Conventional framework: supervised learning.
I Two stages: training and testing.
I Testing hotspot (HS) is verified by litho simulator.

Proposed New Framework:

I Feature optimization.
I Online model learning.
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Conventional Feature Extraction
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[ASPDAC’12][JM3’15]

HLAC
[JM3’14]
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I Hard to be adaptive to different layout designs
I Too many parameters to tune
I Sometimes very complex and may cause over fitting
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Rethinking CCAS

Training Layout Clips Dense Circuit Sampling CCAS

I Concentric Circle Area Sampling (CCAS) [Matsunawa+,JM3’16].
I Capture the affects of light diffraction.
I Simple rule to select circles from dense samples.

Question:
Can we find correlation between circles and hotspots, and select
circles samrtly?
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Rethinking CCAS

Measure correlation between circle and the hotspot.

Mutual Information

I(Ci;Y) =
∑
ci∈C

∑
y∈Y

p(ci, y) log
p(ci, y)

p(ci)p(y)

I ci: one encoded decimal number in circle C
I p(ci): probability of ci

I y: each classification label
I p(y): probability of y

Decimal number encoding
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Smart CCAS Circle Selection
Higer Mutual Information

More correlation between circle and label variable.

I Mutual information curve can be drawn based on training data
I We donot want to sample circles too dense
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Smart CCAS Circle Selection

Mathematical Formulation

max vᵀw
s.t. vi = I(Ci;Y), ∀vi ∈ v,
||wi||0 = nc, ∀ i, wi ∈ {0, 1},
|i− j| ≥ d, ∀ i 6= j, wi = wj = 1
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D[i, j] = max{v[i] + D[i− d, j − 1],D[i− 1, j]}}
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Performance of Feature Optimization

I Smart Circle Selection v.s. Conventional CCAS.
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(a) The impact on accuracy; (b) The impact on false alarm.
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Review of the Feature Optimization Framework

I Firstly, we densely sample the circles from the training data.
I Secondly, we optimally select circles by DP algorithm.
I Thirdly, we use the obtained circle index to extract features.

...
training layout clips

circle 
sampling & 
feature 
optimization

densely circle sampling feature optimization & circle index  circle information encodeing

binary
00011101

29

encode
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Motivation of Online Hotspot Detection

I In (a), all testing hotspots and non-hotspots can be correctly
detected.

I But in (b), all testing non-hotspots become false alarms.

(a)

Training HS Training NHS Testing HS Testing NHS

(b)
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Algorithm Flow of Smboost
Smooth Boosting [Servedio, JMLR’03]

Require: {(x1, y1), ..., (xm, ym)}, γ, θ = γ
2+γ , T .

1: for i← 1 to n do
2: M1(i)← 1;
3: N0(i)← 0;
4: end for
5: for t← 1 to T do
6: Run weak classifier to get ht such that

1
2
∑n

j=1 Mt(j)|ht(xj)− yj| ≤ 1
2 − γ;

7: for j ← 1 to n do
8: Nt(j)← Nt−1(j) + yjht(xj)− θ;
9: end for

10: for j ← 1 to n do
11: Mt+1(j)← min{1.0, (1− γ)

Nt(j)
2 };

12: end for
13: end for
14: return f ←sign( 1

T
∑T

t=1 ht);
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Algorithm Flow of Online Smboost

I Extend conventional smboost to the online scenario.

Online Smooth Boosting

Require: Streaming instance (x, y), batch smboost classifier.
1: M1 ← 1,N0 ← 0;
2: for t← 1 to T do
3: online update ht(x, y);
4: Nt ← Nt−1 + yht(x)− θ;
5: Mt+1 ← min{1.0, (1− γ)

Nt
2 };

6: end for
7: return f ←sign( 1

T
∑T

t=1 ht);
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Online Weak Classifier

I Use Naive Bayes (NB) as weak classifier [Chen+,ICML’12].
I NB is a lossless [Oza, ICSMC’05] online weak classifier.
I Modify NB to work better with our proposed feature.

Circle
Decomposition
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Comparison with [Matsunawa+,SPIE’15]

I Verified in ICCAD-2012 contest benchmark
I 4x speed-up due to the simple feature.
I Increase detection accuracy from 95.13% to 97.95%.

[Matsunawa+,SPIE’15] batch
FA# CPU(s) Accuracy FA# CPU(s) Accuracy

Case1 0 7 100.00% 0 7 100.00%
Case2 0 351 98.60% 0 53 99.40%
Case3 0 297 97.20% 3 66 97.51%
Case4 1 170 87.01% 0 49 97.74%
Case5 0 69 92.86% 0 27 95.12%
avg. 0.2 178.8 95.13% 0.6 40.4 97.95%
ratio - 4.43 0.97 - 1.0 1.0%
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Comparisons with [Wen+,TCAD’14] [Yu+,TCAD’15]

I ODST = Overall Detection and Simulation Time
I Increase detection accuracy by at least 3.47% on average.
I Improve the performance of ODST by at least 58.80% on average.

[Wen+,TCAD’14] [Yu+,TCAD’15] batch
ODST(s) Accuracy ODST(s) Accuracy ODST(s) Accuracy

Case1 17151 100.00% 14968 94.69% 7890 100.00%
Case2 40867 99.80% 118574 98.20% 5572 99.40%
Case3 95277 93.80% 139278 91.88% 20660 97.51%
Case4 11302 91.00% 36996 85.94% 33526 97.74%
Case5 2039 87.80% 12070 92.86% 1005 95.12%
avg. 33327.2 94.48% 64377.2 92.71% 13730.6 97.95%
ratio 2.43 0.96 4.69 0.95 1.0 1.0
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Batch Learning v.s. Online Learning

I Further improve the detection accuracy from 97.95% to 98.45%.
I Further reduce ODST by 26.1%.

batch online
FA# CPU(s) ODST(s) Acccuracy FA# CPU(s) ODST(s) Accuracy

Case1 788 10 7890 100.00% 704 13 7050 100.00%
Case2 544 132 5572 99.40% 308 152 3251 99.40%
Case3 2052 140 20660 97.51% 1819 180 18379 97.57%
Case4 3341 116 33526 97.74% 2096 158 21148 97.74%
Case5 94 76 1005 95.12% 82 78 910 97.56%
avg. 1363.8 94.8 13730.6 97.95% 1008.8 116.4 10147.6 98.45%
ratio - - 1.35 0.99 - - 1.0 1.0
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Runtime Breakdown for ICCAD Benchmark
I Online updating is only a small portion of the whole detection flow.
I False alarms of Case 2 and Case 5 are dramatically reduced.
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Conclusion
training data model
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A New Hotspot Detection Framework
I New performance metric: runtime & performance trade-off
I Feature optimization based on mutual information
I Online learning

Future work

I Further improve the accuracy
I Hardware or parallel speedup of hotspot detector
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Thank You

Hang Zhang (byu@cse.cuhk.edu.hk)

Bei Yu (byu@cse.cuhk.edu.hk)

Evangeline F. Y. Young (fyyoung@cse.cuhk.edu.hk)
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