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Introduction: Technology Scaling
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Technology Scaling: Fewer Tracks

Track # per row decreases:

I From 10 to 7.5
I Exploring 7.5T for 7nm technology node
I Even with EUV, additional metal layer may be required

(a) And-or-invert (AOI); (b) 2-finger inverter [Liebman+,SPIE’15].
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Motivation of Multiple-Row Cells 1
I Complex standard cells, such as flip-flops, MUXes, etc.
I Intra-Cell Routability

(a) Cell size 54 grids

(b) Cell size 48 grids
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Motivation of Multiple-Row Cells 2

Pin access problem [Taghavi+,ICCAD’10]

V1M1 pin M2 M3V2 Blocked pin

Cell 1 Cell 2

(a)

Cell 1 Cell 2

(b)

(a) pin access failure; (b) pin access success. [Xu+,DAC’14]
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Motivation of Multiple-Row Cells 3

Multi-bit flip-flops (MBFF)

[Jiang+,ISPD’11]

[Pokala+,ASIC’92]
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Power Line Alignment

Odd-row height cells
I Misalignment fixable with vertical flipping

Even-row height cells
I Misalignment NOT fixable with vertical flipping
I New placement techniques are highly necessary
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Previous Works

Double-row height cells [Wu+,TCAD’15]
I Group and extend single-row height cells into double-row height blocks

I Re-use existing detailed placement frameworks

I Incapable to handle three- and four-row height cells

I Power alignment not addressed

Legalization for Multiple-row height cells [Chow+,DAC’16]
I General to heterogeneous-sized cells

I Minimize total displacement while removing overlaps

I Power alignment addressed

I No performance optimization
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Wirelength and Density Metrics

Cell Density: ABU [ICCAD’13 Contest]

overflowγ = max (0, ABUγ

dt
− 1)

ABU =

∑
γ∈Γ wγ · overflowγ∑

γ∈Γ wγ
,Γ ∈ {2, 5, 10, 20}

Scaled wirelength (sHPWL)

sHPWL = HPWL · (1 + ABU)

APU
Average Pin Utilization: capture pin distribution of the layout.
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Problem Formulation: MrDP

Multi-row Detailed Placement (MrDP)
Input:

I A netlist with heterogeneous-sized cells
I Initial placement with fixed macro blocks

Output:
I Legal placement
I Minimize wirelength and density cost, i.e., sHPWL and APU
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Conventional Global Move

I Pick a cell and move to better position
I More difficult with heterogeneous-sized cells
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Chain Move

I Cell Pool:
A queue structure used for temporary storage of cells within a chain move

I Scoreboard:
Consists of an array of chain move entries with corresponding changes in
wirelength cost for each chain move

I Inspired by KL and FM algorithms in partitioning [KL’70][FM,DAC’82]
I Look for cumulatively good cost
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Chain Move Discussion

I Order is important
I Max prefix sum of wirelength improvement
I Discard long chains

Cost for a Cell:
cost = ∆WL · (1 + α · cd) + β · cov

I ∆ WL: wirelength cost
I cd: density cost (average of cell and pin densities)
I cov: overlap cost

Theorem
If the input is legal, then the output is guaranteed legal
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Ordered Single-Row (OSR) Placement

Well explored for single-row height cells
I Free-to-move [Vygen,DATE’98] [Kahng+,ASPDAC’99]
I Max displacement [Taghavi+,ICCAD’10] [Lin+,ASPDAC’16]

How to deal with multiple-row height cells?
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Limited movements by multiple rows.
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Ordered Double-Row (ODR) Placement

I Extend single-row to double-row placement
I Some definitions
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Problem Formulation: ODR Placement

Ordered Double-Row (ODR) Placement
Input:

I Two rows of cells in a double-row region
I Ordered from left to right within each row
I Maximum displacement M for each cell
I All other cells outside double-row region are fixed

Output:
I Horizontally shift cells
I Optimize HPWL while keep the order of cells within each row
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ODR Placement: Ideal Cases

I Only double-row splitting cells
I No crossing cells
I No inter-row connection within double-row region
I Solve ideal case optimally
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Nested Dynamic Programming
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Nested Dynamic Programming

I Any shortest path algorithm can be applied

I Adopt dynamic programming [Lin+,ASPDAC’16]

I O(nM) for single-row placement

I O(nM2) for double-row placement

I Flexible to any cost that only depends on cell itself
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ODR Placement: General Cases

I Multiple-row height splitting cells

I Multiple-row height crossing cells: Add overlap cost

I Inter-row connections within double-row region: Lose optimality
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Experimental Setup

I Implemented in C++

I 8-Core 3.4GHz Linux server

I 32GB RAM

I ISPD 2005 Contest Benchmark:
I Double-row height cells [Wu+,TCAD’15]
I Benchmark sizes: 200K to 2M
I Utilization: 67% to 91%
I Double-Row Ratio: around 30%

I ICCAD 2014 Contest Benchmark:
I Multiple-row height cells (2–4 rows)
I Benchmark sizes: 133K to 961K
I Utilization: 47% to 65%
I Multiple-Row Ratio: 15% to 41%
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Results on Double-row Height Cells

(a) Normalized sHPWL (b) APU penalty

(c) Runtime (s)

MrDP v.s. [Wu+,TCAD’15]

I 3% better sHPWL
I 13.2% better APU
I 23.5% runtime overhead
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Results on Heterogeneous-sized Cells

(a) Normalized sHPWL (b) APU penalty

(c) Runtime (s)

MrDP v.s. GP
I 3.7% better sHPWL
I 15.3% better APU
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Conclusion

Placement challenges with heterogeneous-sized standard cells in advanced
technology nodes

I A placement framework to optimize wirelength and congestion
I Chain move scheme
I Ordered double-row placement

Future work
I Explore the impacts of legalization step
I Different configurations of placement flows
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