

A New Lithography Hotspot Detection Framework Based on AdaBoost Classifier and Simplified Feature Extraction

Tetsuaki Matsunawa¹, Jhih-Rong Gao², Bei Yu² and David Z. Pan²

¹Toshiba Corporation

²The University of Texas at Austin

Outline

- Background
- Simplified Feature Extraction
- AdaBoost Classifier
- Experimental results
- Conclusion

Hotspot detection

Leading Innovation >>>

- Issue: Lithography simulation is time consuming
- Goal: High accurate hotspot detection in short runtime

Two major simulation-less approaches

Issues of conventional methods

- Lithography Simulation-based
 - Time consuming

- Pattern Matching-based
 - Cannot detect unknown hotspot

- Machine Learning-based
 - Trade off relation between accuracy and false-alarm

Machine learning based hotspot detection

Model training

Training data

Abstracted vector data

$$x_1 = (0, 1, 0, 1.5, \cdots)$$

$$x_2 = (2, 0.5, 0.1, -1, \cdots)$$

$$x_3 = (1, -1, 0, 0.3, \cdots)$$

Labels

$$y_1 = -1$$

$$y_2 = -1$$

$$y_3 = 1$$

Testing data

Feature extraction

$$\hat{y}_3 = -1$$

$$\dot{i}_1 = -1$$

icted labels

$$y_2 = -1$$

$$\hat{y}_3 = 1$$

$$\hat{y}_1 = 1$$

$$\hat{y}_2 = 0$$

$$\hat{y}_3 = 1$$

New hotspot detection framework

State-of-the-art approach

Our framework

Outline

- Background
- Simplified Feature Extraction
- AdaBoost Classifier
- Experimental results
- Conclusion

What is a "Simplified Feature"

Optimized layout feature to make model training easier

and parameters

Layout features

Fragmentation-based

Higher order local auto-correlation

Density-based

Feature space analysis

- Principal Component Analysis (PCA)
 - Dimensionality reduction based on orthogonal transformation
- Mahalanobis Distance
 - Normalized Euclidean distance

Feature space analysis for generalization capability

Comparison of different features

Outline

- Background
- Simplified Feature Extraction
- AdaBoost Classifier
- Experimental results
- Conclusion

Machine learning algorithms

LR (Logistic Regression)

$$y(\mathbf{x}) = \sigma(\mathbf{w}^{\mathrm{T}}\mathbf{x})$$

$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$

SVM(Support Vector Machine)

How to learn hotpot features

Why AdaBoost algorithm?

Hotspot detection is extremely complicated multiclassclassification problem

> Hotspot has many defect mode

Conventional method is hard to generalize all variations of hotspot features

> Accuracy limitation because of too many factors of hotspot

AdaBoost can simultaneously learn many factors of hotspot

Utilize boosting algorithm in conjunction with several classifiers

AdaBoost Classifier

Generalize final classifier in conjunction with base classifiers corresponding to many defect modes

Outline

- Background
- Simplified Feature Extraction
- AdaBoost Classifier
- Experimental results
- Conclusion

Detection model training

ICCAD 2012 Benchmark Problem3*

*http://cad_contest.cs.nctu.edu.tw/CAD-contest-at-ICCAD2012/problems/p3/p3.html

Data	Size(KB)	#of HS	#of NHS
	Train/Predict	Train/Predict	Train/Predict
Benchmark1	918 / 1112	99 / 226	340 / 319
Benchmark2	31655 / 28043	174 / 498	5285 / 4145
Benchmark3	29933 / 33333	909 / 1808	4643 / 3541
Benchmark4	12320 / 10072	95 / 177	4451/ 3386
Benchmark5	5726 / 4893	26 / 41	2716 / 2111

Comparison experiments

- Comparison with related detection methods:
 - > [1] Topological classification and critical feature extraction, Yen Ting et. al., (DAC'13)
 - [2] Fuzzy matching model,S. Y. Lin et. al., (DAC'13)
- Comparison of different algorithms:
 - Logistic Regression and Support Vector Machine

Comparison with state-of-the-art methods

Detection Accuracy

(#correctly detected hotspots/#total hotspots)

False Alarm

(#of falsely detected patterns as hotspots)

Average 95% accuracy with almost 0 false alarm

Comparison of different algorithms

Detection Accuracy

(#correctly detected hotspots/#total hotspots)

False Alarm

(#of falsely detected patterns as hotspots)

Average 95% accuracy with almost 0 false alarm

Conclusion

 Toshiba and UTDA developed a new hotspot detection framework.

 Our method utilizes AdaBoost classifier and simplified feature extraction method.

 Experimental results show that our method can achieve over 95% accuracy with almost 0 falsealarm.

