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ABSTRACT

As technology nodes continues shrinking, layout patterns become more sensitive to lithography processes, result-
ing in lithography hotspots that need to be identified and eliminated during physical verification. In this paper,
we propose an accurate hotspot detection approach based on PCA (principle component analysis)-SVM (sup-
port vector machine) classifier. Several techniques, including hierarchical data clustering, data balancing, and
multi-level training, are provided to enhance performance of the proposed approach. Our approach is accurate
and more efficient than conventional time-consuming lithography simulation; in the meanwhile, provides high
flexibility to adapt to new lithography processes and rules.

1. INTRODUCTION

With the continuous shrinking of technology nodes, layout patterns become more sensitive to lithography pro-
cesses and degrade manufacturing yield. Lithography hotspots are forbidden topologies that need to be identified
and eliminated during physical verification. Various design for manufacturing (DFM) techniques1,2 have been
proposed to avoid these hotspots. In the meantime, there are resolution enhancement techniques (RET), such as
optical proximity correction,3 phase-shift mask, and off-axis illumination, to improve the printability of problem-
atic topologies. However, for deep sub-wavelength process, preventing lithography hotspots is still challenging
and it requires accurate physical verification to identify these hotspots for yield improving.

In physical design and verification stages, the hotspot detection problem is to locate hotspots on a given
layout with fast turn-around-time. Conventional lithography simulation4,5 obtains pattern images by complicated
lithography models. Although it is accurate, full-chip lithography simulation is computational expensive, and
thus cannot provide quick feedback to guide the early physical design stages.

Recently, pattern matching based6,7 and machine learning based8–13 hotspot detection have become popular
candidates. In pattern matching based approaches, a hotspot pattern is defined by its geometric characteristics,
and the detection process involves matching the hotspot patterns with all layout patterns. This method relies
on a set of pre-defined hotspot patterns, and patterns outside of the scope of this set may all be viewed as
non-hotspots. Defining too many hotspot patterns would lead to over-estimation and over-optimization; while
defining too few would limit the design space too aggressively. Although pattern matching based methods are
accurate and fast, how to properly define hotspot patterns is still the main issue. In machine learning based
approaches, a regression model is constructed according to a given training data, which includes hotspot and
non-hotspot patterns. The model is then used to identify hotspots on a given testing layout. Machine learning
based approaches enlarge the possible topologies for hotspots, therefore can improve the detection rate. However,
it also increase the false alarms, which means some reported hotspots are not real hotspots.

Effective representation of layout data is essential for hotspot detection problem and there have been several
encoding methods proposed. Kahng et al. presented an early hotspot detection6 that builds a graph for the full
layout to reflect pattern-related CD variation. This method depends on a limited set of CD variation evaluation
methods, and thus false alarms may be generated. Yu et al. proposed a DRC-based hotspot detection7 by
extracting critical topological features and modeling them as design rules. How to extract critical design rules
is a crucial process for its performance because excessive rules would lead to numerous false alarms, while too
few rules would lead to missed real hotspots. Range pattern14,15 is proposed to incorporate process-dependent
specifications, which then can be used to identify hotspots by performing a string matching. Recently, Support
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Vector Machine (SVM) has become a popular data learning model for hotspot detection. Drmanac et al.8

utilize Support Vector Machine (SVM) to train patterns represented by the histogram extracted from pixel-
based layout images. In Ref. 10, layout density-based metrics are extracted to train the SVM kernel. A hybrid
pattern matching and machine learning based approach11 is proposed to take the advantages of both techniques.

In this paper, we propose a high performance hotspot detection approach based on PCA-SVM classifier.
Principle component analysis (PCA) is a technique for feature extraction and data reduction; combining PCA
with SVM helps to improve the detection accuracy significantly. Besides, our approach integrates the advantages
of pattern matching and data learning, where pattern matching techniques enable high accuracy and data learning
algorithms provide high flexibility to adapt to new lithography processes and rules. The main contributions
include:

• We propose a multi-level PCA-SVM based data learning flow that can extract critical layout information
through mathematical analysis.

• We present a two-stage hierarchical data clustering approach to partition the layout data, such that irrel-
evant data can be processed by different classifiers for both efficiency and accuracy improvement.

• We apply several data compression techniques to enhance the performance of PCA-SVM, including data
sampling for hotspot/non-hotspot imbalance, and dimension reduction for encoded layout data.

• The experimental results show that our approach effectively maximizes accuracy and minimizes false alarms
at the same time, where more than 80% of hotspots on all given testing layouts can be identified successfully.

The rest of the paper is organized as follows. We will first give the problem formulation in Sec. 2. Our
proposed hotspot model calibration will be explained in Sec. 3. Finally, we will show our experimental results
and performance analysis in Sec. 4, followed by the conclusion in Sec. 5.

2. PROBLEM FORMULATION

The hotspot detection problem can be formulated as follows. Given two sets of verified layout clips, a set of
hotspots and a set of non-hotspots, construct a system/model that can be used to identify unknown hotspots
on a testing layout. The objective is to increase the number of true hotspots (Hit) and decrease the number of
false hotspots (Extra).

A sample of the input layout clip is shown in Fig. 1. A Frame corresponds to the ambit or context area
associated to its center. A Core, if indicated, corresponds to the central location where a hotspot appeared;
otherwise the clip is free of hotspots. When given a testing layout with unknown hotspots, the hotspot detection
engine should report all possible hotspot locations. However, excessive false hotspots reported would cause
over-optimization for the later hotspot fixing stage, thus should be minimized.

Frame

Core

(a) (b)

Figure 1. Examples of hotspot patterns marked in red. (a) Hotspot resulted from 1D patterns only. (b) Hotspot resulted from
complex 1D and 2D patterns.
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Hanan grids

(a)
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(b)

Figure 2. Fragmentation based hotspot signature extraction. (a) Layout patterns and the Hanan grids shown in dashed lines. (b)
Fragmentation based context characterization within the effective radius.

2.1 Layout pattern representation

A layout pattern becomes a hotspot not only because of the shape itself, but also because of the combined
impact of its neighboring patterns. One fundamental step for the hotspot detection problem is to represent layout
patterns with certain format that can well describe the layout environment. In this paper, we adopt the concept of
the fragmentation based context characterization16 to encode the layout patterns. This characterization method
provides important layout information that is sufficient to describe a hotspot/non-hotspot, including pattern
shapes, the distance between patterns, corner information (convex or concave), and etc.

Fgiure 2 (a) shows the contour of three layout patterns and their corresponding Hanan grids. Fragments
are generated based on these grids as shown in (b). For each fragment f , an effective radius r is defined to
cover the neighboring fragments which need to be considered in the context characterization of f . The radius
r is process-dependent, which relates to how neighboring patterns can affect the fragment of interest f . We
then extract all fragments fr covered by r as shown in blue in Fig. 2 (b) and their properties. A complete
representation of f includes the geometric characteristic of each fr, such as the length, corner, space, etc, which
is stored as a vector for each fragment. In the following paper, we refer to the characterized vector of a fragment
as Fragment V ector (FV).

The fragment generation in16 is done by Calibre.17 Since our hotspot detection flow is independent of Calibre,
we generate fragments based on the Hanan grids in a Frame. All fragments inside a Core are viewed as hotspot
patterns, and the rest of the fragments are viewed as non-hotspot patterns.

3. HOTSPOT MODEL CALIBRATION

The hotspot detection is essentially composed of two steps: hotspot model calibration with known patterns,
and hotspot detection on testing layouts. In this section, we will introduce our approaches to calibrate accurate
hotspot classification models, which will be used in the hotspot detection process.

3.1 Overall data calibration flow

Fig. 3 shows our hotspot calibration flow. Given the training layout clips, we first decompose the layout
patterns into small fragments based on Hanan grids, and collect a set of hotspot fragments and a set of non-
hotspot fragments. We adopt the fragmentation based pattern characterization method16 to encode fragments,
in which each fragment is represented by a Fragment V ector (FV). This characterization method provides
layout information that is sufficient to describe a hotspot/non-hotspot environment, such as pattern shapes, the
distance between patterns, corner information (convex or concave), and etc. Next, we apply hierarchical data
clustering to group similar fragments together based on their topological information (Sec. 3.2). Fragments in
each cluster are sampled for data balancing (Sec. 3.3) and then sent to our PCA-SVM based learning process
(Sec. 3.4). Finally, a set of hotspot classification models will be calculated for the use of the detection process.
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Figure 3. Hotspot model calibration flow.

3.2 Hierarchical layout data clustering

The main objective of the hotspot calibration process is to build a model that can distinguish hotspots and non-
hotspots. We observe that the accuracy of the calibrated model highly depends on the simplicity of the data. If
the training data is very complicated, finding a general rule to classify them would be difficult and inaccurate.
Fig. 1 shows two hotspot examples highlighted in red slashed rectangles; the hotspot in (a) simply results from
1D patterns, while the one in (b) involves several 2D patterns. Putting these two types of data in one classifier is
already a challenge, not to mention there are much more types of hotspots. Training all data in a single classifier
not only is time-consuming but also degrades the classification performance. Therefore, we propose a two-stage
hierarchical layout data clustering approach to group the training data (fragments) according to their topological
information.

The first-level clustering try to cluster fragments by capturing the global view of the pattern environment;
and the second-level clustering further cluster the fragments within each global cluster based on FV to reflect
the local view. By applying our clustering approach, the whole calibration process can be done in a divide-and-
conquer manner. We will show that this clustering approach helps to improve the model accuracy and reduce
the overall runtime in our experimental results.

3.3 Non-hotspot data balancing

There are numerous various-shaped patterns in a layout, and the problem is that non-hotspot patterns greatly
outnumbers hotspot patterns.18 For example, for a layout with hundreds of millions patterns per mm2, the
amount of hotspots may be less than 100. The imbalance between hotspot and non-hotspot data is called
imbalanced populations, which critically affect the success of SVM learning.19 In addition, since we decompose
the layout patterns as fragments and represent them by FV s, the size of the training data increases rapidly. It
is important to shrink the data size to speed up the later data learning process. To enhance both accuracy and
efficiency, we propose a data sampling technique to reduce the number of non-hotpot data.

In simple random sampling, every element in the given data set has an equal chance to be chosen. However,
this method is vulnerable to sampling error because the random selection may not reflect the real data distribu-
tion. In systematic sampling, on the other hand, elements of the given data set are first sorted in a certain order,
and each element at a regular interval is selected. The difficulty of sampling FV s with systematic sampling
is that the dimension d of each FV may be very high. In our experience, we may need a FV with d = 250
to well describe the property of a fragment. The sorting process for all fragments would be time-consuming.
Besides, FV s are usually not evenly distributed in the d-dimensional space, which can result in over- or under-
represented of the data.
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Our data reduction approach utilize k-means clustering to group together data with similar geographical
information. By doing this, we can choose the center of each cluster as the sampled data of the corresponding
cluster, where the center is the mean of the data within a cluster.

3.4 Multi-level PCA-SVM based classification

3.4.1 Dimension reduction with PCA

PCA20 is a statistical technique that analyzes a set of data composed of possibly inter-correlated variables.
The goal is to extract the important information of the original data and represent the data as a new set of
uncorrelated variables, called principle components. The number of principle components s is less than or equal
to the number of the original variables. In Computer Vision field, the combination of PCA and SVM21,22 has
been proven to improve the performance of pattern recognition. We apply PCA in front of our SVM process,
which has the advantages of reducing the data size and increasing the hotspot classification accuracy.

The PCA problem is defined as follows. Given a data set x ∈ Rd, transform x into a new data set y ∈ Rs:

yi,1 = A11xi,1 +A12xi,2 + ...+A1sxi,s
yi,2 = A21xi,1 +A22xi,2 + ...+A2sxi,s
...
yi,s = As1xi,1 +As2xi,2 + ...+Assxi,s

∀xi = (xi,1, xi,2, ..., xi,d)
T ∈ x, i = 1, ..., n

(1)

such that each yi ∈ y explains as much as possible of the variance in the original data set and that elements in
y is uncorrelated. The correlation matrix A is is a d× d matrix, which defines the new coordinate system. Each
i-th column Ai = (Ai1, Ai2, ...Ais) is the i-th eigenvector of the data covariance matrix C.

C =
1

n

n∑
i=1

xix
T
i (2)

PCA starts from calculating the covariance matrix C and then solve the eigenvector problem:

CAi = λiAi, i = 1, ..., n (3)

to obtain eigenvalues λ and their corresponding eigenvectors. The eigenvector with the largest eigenvalue captures
the most variation among the training vectors x, while the eigenvector with the smallest eigenvalue has the least
variation.

Geometrically, PCA enables us to calculate a projection of the data to a subspace formed by eigenvectors
corresponding to the most dominant eigenvalues. By sorting the eigenvalues in descending order, we can choose
the first s principle components to represent the original data. This allows us to reduce our high-dimensional
FV into a much shorter and more unique vector.

3.4.2 SVM with Polynomial kernel

SVM is a machine learning method for classification and learning tasks. In SVM, data vectors are mapped into
a higher-dimensional space using a kernel function, and an optimal linear discrimination function in the space
or an optimal hyperplane that fits the training data is built. The objective is to maximize the margin between
the separating hyper-plane and the nearest data vectors from both classes.

We adopt C-type SVM.23,24 Given training vectors xi ∈ Rd, i = 1, ..., n, and an indicator vector z ∈ {1,−1}
for 2-class SVM, the problem formulation is briefed as follows.

min
α

: 1
2α

TQα− eTα
subject to zTα = 0

0 6 αi 6 C, i = 1, ..., n

(4)

Proc. of SPIE Vol. 9053  90530E-5

Downloaded From: http://proceedings.spiedigitallibrary.org/ on 03/31/2014 Terms of Use: http://spiedl.org/terms



where e is the vector of all ones, Q is an n×n positive semidefinite matrix, Qij = zizjK(xi, xj). The parameter C
controls the trade-off between allowing training errors and forcing rigid separating margins. The kernel function
K maps the data into the different space so a hyperplane can be used to do the separation. We use polynomial
kernel function in our implementation, which achieves the best results in our experiments.

3.4.3 Multi-level training for false alarm minimization

We obtain several clusters from the clustering step explained in Sec. 3.2 and train a kernel for each cluster
individually. The fact that hotspot data is far less than non-hotspot data significantly affect the performance
of SVM. We find that although our trained models can successfully identify true hotspots, numerous false
alarms (Extra) are also reported. In order to reduce the number of false alarms, we adopt a multi-level self
validation kernel structure. Conceptually, we verify our trained model using known data and collect false alarm
information. These false alarms are fed into the training process in the next level, where the SVM model can
focus on eliminating those false alarms.

Our multi-level kernel training flow is shown in Fig. 4. In Level 1, all data within a cluster is sent to the
SVM kernel training process, where a classification model will be calculated. The classification model is tested
with the same data used for training, and thus we can verify the performance of the model by the number of
Hit and Extra. If the number of Extra exceeds a certain threshold, we train another SVM kernel in the next
level, where the input data will be only Hit and Extra data. Eq. (5) is used to determine if the training process
is continued, where α is a user-define parameter for the false alarm rate.

#Extra

#Total Non-hotspots
> α (5)

The larger α is, the more Hit; however, the number of false alarms also goes up. In our implementation, α is
set as 5%.

It is worth mentioning that the data in each cluster is independent. Therefore we can perform the kernel
training and the later detection process in parallel. By taking advantage of multi-core machines, our approach
can be more efficient, which is a practical feature for modern complex layouts.

SVM Kernel 

Training

Classification 

Model 1
Hotspot Classification 

with Model 1
Clustered Data

Hit Extra
High 

Extra?
SVM Kernel 

Training

Classification 

Model 2
Hotspot Classification 

with Model 2

Start

Stop

...

Level1

Level2

Level3

...

Yes

No

Figure 4. SVM based data learning flow.

4. EXPERIMENTAL RESULTS

The proposed algorithms are implemented in C++ and tested on the machine with eight 3.0 GHz CPUs and
32 GB memory. The OpenMP25 library is used for our parallel implementation. We apply the same setting of
parameters in our approach for all benchmarks. The number of local clusters is set as 10; the maximum number
of sampled non-hotspot centers within a cluster is 500; and the number of principle components for FV is 80.

We test our approach on the industrial benchmarks released in.18 Table 1 shows the statistics of five bench-
marks, including 32nm and 28nm designs. The training layouts are the input of the hotspot calibration process,
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Table 1. ICCAD12 Benchmark statistics.

Tech Training Layouts Testing Layouts
Name #HS #NHS Name #HS Area (mm2)

32nm MX benchmark1 99 340 Array benchmark1 226 12516
28nm MX benchmark2 174 5285 Array benchmark2 498 106954
28nm MX benchmark3 909 4643 Array benchmark3 1808 122565
28nm MX benchmark4 95 4452 Array benchmark4 177 82010
28nm MX benchmark5 26 2716 Array benchmark5 41 49583

Table 2. Result comparison with Ref. 12.

Testing Layout Methods Accuracy H/E ratio CPU (s)
Array benchmark1 [12] 94.69% 0.143 38.1s∗

Ours 80.97% 0.253 63s+

Array benchmark2 [12] 98.20% 0.041 3m54s∗

Ours 81.12% 0.041 34m57s+

Array benchmark3 [12] 91.88% 0.123 14m58s∗

Ours 90.93% 0.098 29m42s+

Array benchmark4 [12] 85.94% 0.045 5m56s∗

Ours 87.01% 0.057 13m8s+

Array benchmark5 [12] 92.86% 0.032 20s∗

Ours 80.49% 0.049 8m26s+

Overall Impr. -9.0% 27.17%
* 2 Intel Xeon 2.3 GHz CPUs with 64 GB memory.
+ 8 Intel Xeon 3.0 GHz CPUs with 32 GB memory.

where hotspot and non-hotspot clips are given; while the testing layouts need to be verified by our hotspot
detection flow to report the locations of identified hotspots. The number of total hotspot clips and non-hotspot
clips are shown by #HS and #NHS, respectively. According to the definition in,18 a reported hotspot is a
Hit if it overlaps a real hotspot in the testing layout, otherwise it is an Extra. Here we define two important
criteria to evaluate the performance of hotspot identification as shown in Eq. (6) and (7). Both terms should be
maximized.

Accuracy =
#Hit

#HS
(6)

H/E Ratio =
#Hit

#Extra
(7)

Table 2 shows our results compared with Ref. 12. Note that although Ref. 13 also utilizes ICCAD12
benchmarks, their approach does not process a full layout but layout clips. Because of this fundamental difference,
we cannot provide a fair comparison with Ref. 13. From Table 2, we can see that our approach (Ours) steadily
identifies more than 80% hotspots on all benchmarks, and maintain good H/E ratio at the same time. H/E
ratio includes the information of both Hit and Extra. Since the hotspot detection problem requires both Hit
maximization and Extra minimization, H/E ratio can more generally represent the overall performance. On
average, our approach improves H/E ratio by 27.17% compared with Ref. 12.

The CPU time in Table 2 is the overall runtime including training and detection process. Table 3 shows the
training time and detection time of our approach. It can be seen that the runtime spent on prediction is relatively
low. In real application, the training process takes one-time effort to build the classification model. Then the
obtained models can be repeatedly used for layouts with the same process parameters. It is worthwhile to obtain
an accurate model with affordable runtime effort considering the model determines the detection performance
and is built only once.
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Table 3. Runtime breakdown.

Benchmarks
CPU time B1 B2 B3 B4 B5
Training 55s 29m4s 23m34s 11m14s 7m21s
Detection 8s 5m53s 6m8s 1m54s 1m5s

4.1 Performance analysis of non-hotspot data balancing

In Sec. 3.3, we introduce our data sampling technique for non-hotspots to alleviate the imbalance between
hotspot and non-hotspot data. We adjust different sampling rates as Eq. (8) and see how the sampled data
affects the results.

Sampling Rate =
#Sampled fragments for the training process

#Total fragments
(8)

Fig. 5 shows the results of Array benchmark5 with different sampling rates, where the x-axis is the sampling
rate and the y-axis represents the values of the accuracy and the H/E ratio. One can observe that when the
sampling rate gets higher, the results have the trend of lower accuracy and higher H/E ratio. This is because
our training process needs to ensure the detection accuracy by the multi-level SVM kernels. When the number
of data is large, our training process would generate stricter detection models to prevent false alarms. The
trend of increasing H/E ratio and decreasing accuracy reflects the effect of the stricter models. The sampling
rate needs to be decided properly to maintain a good trade-off between the accuracy and the H/E ratio. In
our implementation, we set 80% accuracy as our main optimization objective, and then higher H/E ratio is
considered. As a result, the 1.56% compression rate in Fig. 5 is selected as our final parameter.

Selected

Figure 5. Results comparison with different sampling rates for Array benchmark5.

4.2 Performance analysis of PCA-based SVM

In order to understand the impact on SVM results by applying PCA, we implement two versions of our approach,
one uses the presented PCA-SVM (w/ PCA), and the other uses typical SVM (w/o PCA). The maximum length
of FV without PCA is 250, while the maximum length of FV with PCA is 80.

Table 4 shows the comparison of the five benchmarks in terms of accuracy, H/E ratio, and CPU Time. We
can see that the difference on the accuracy is little, showing that reducing the vector dimension does not lose
critical information. On the other hand, the H/E ratio are significantly improved in most cases, showing that
eliminating less-relevant information using PCA helps to reduce false alarms. The results show the effectiveness
of PCA-SVM on reducing the false alarms and runtime, while maintaining the accuracy at the same time.

5. CONCLUSIONS

Lithography hotspots have a great impact on the manufacturing yield. Identifying the forbidden pattern topolo-
gies in the physical verification or early physical design stage has become a critical problem. We present a high
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Table 4. Comparison of results with PCA and without PCA applied.

Benchmark w/o PCA w/ PCA
Accuracy H/E ratio CPU (s) Accuracy H/E ratio CPU (s)

B1 80.09% 0.217 69 80.97% 0.253 63
B2 81.73% 0.041 2005 81.12% 0.041 2097
B3 85.90% 0.074 1934 85.40% 0.092 1782
B4 87.57% 0.023 814 87.01% 0.057 788
B5 82.93% 0.036 496 80.49% 0.049 506

Average 1 1 1 0.99 1.45 0.97

performance hotspot detection approach based on PCA-SVM classifier. Several techniques, including hierarchical
data clustering, data balancing, and multi-level training, are provided to enhance performance of the proposed
approach. Pattern matching techniques enable high accuracy and data learning algorithms provide high flexi-
bility to adapt to new lithography processes and rules. Our data clustering and data compression techniques
help to improve the accuracy and reduce the false alarms. The experimental results show that our approach
effectively maximizes accuracy and minimizes false alarms at the same time, where more than 80% of hotspots
on all given testing layouts can be identified successfully.
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