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Existing works focus on fixed-size layout pattern generation,
while the more practical free-size pattern generation receives lim-
ited attention. In this paper, we propose ChatPattern, a novel Large-
Language-Model (LLM) powered framework for flexible pattern cus-
tomization. ChatPattern utilizes a two-part system featuring an ex-
pert LLM agent and a highly controllable layout pattern generator.
The LLM agent can interpret natural language requirements and
operate design tools to meet specified needs, while the generator
excels in conditional layout generation, pattern modification, and
memory-friendly patterns extension. Experiments on challenging
pattern generation setting shows the ability of ChatPattern to syn-
thesize high-quality large-scale patterns.

1 Introduction

High-quality Very-Large-Scale Integration (VLSI) layout pattern
libraries are foundational to numerous Design for Manufacturability
(DFM) studies, such as refining design rules, formulating Optical
Proximity Correction (OPC) recipes [1], conducting lithography
simulations [2, 3], and detecting layout hotspots [4]. Contemporary
machine-learning-based lithography design applications typically
require an extensive array of layout patterns to train their networks,
yet assembling a large-scale pattern library is cost-prohibitive due
to the intricate logic-to-chip design cycle.

Prior to the advent of machine learning, rule-based methods [5]
were employed to synthesize layout patterns automatically, with
simple hand-drafted augmentations like flipping and rotation used to
expand the fundamental layout pattern units. These units would then
be assembled randomly to create larger designs. However, the diver-
sity and volume of patterns generated by these rule-based methods
often fell short of user expectations. Conversely, recent learning-
based methods [6-9] have demonstrated the ability to generate a
plethora of diverse layout patterns that closely match the dataset
distribution. One notable technique, the squish pattern trick [10], has
been instrumental in reducing computational and memory demands
by condensing a layout pattern patch into a compact 2D-topology
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Figure 1: An illustration of ChatPattern.
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matrix, upon which generative models are trained. Once the topol-
ogy matrices are generated, legalization technologies are employed
to recover the topology matrices to layout patterns.

Despite these advancements, learning-based methods still lack the
capability for fine-grained modifications. For instance, when a train-
ing set comprises various pattern categories, these methods cannot
determine the class of the generated pattern. Editing a specific sec-
tion of a layout according to particular rules is a frequent necessity,
especially with large layouts, to accommodate specific applications
[11, 12], but none of existing methods support pattern edition. And
the size of generated topology matrix is usually fixed due to the
limitation of network architecture and device memory. The fixed
pattern size restricts the application of the generated patterns in
downstream tasks which requires different pattern size.

Additionally, the task of manually synthesizing millions of desired
layout patterns using flexible generation tools can be labor-intensive.
Pattern library builders must not only master complex generation
tools but also comprehend the specialized requirements from down-
stream users, often communicated in a blend of natural language and
professional jargon. Moreover, builders may not always be available
or able to respond promptly. To bridge this gap, Large Language
Models (LLMs) have proven adept at handling complex tasks across
various domains [13, 14]. However, their application as layout pat-
tern library builders remains unexplored.

In response, this paper introduces ChatPattern, an indefatigable
layout pattern builder designed to tailor a pattern library to specific
requirements articulated in natural language. As illustrated in Fig-
ure 1, ChatPattern is composed of two principal components: an
expert LLM agent holding design tools and documentation, capable
of understanding and executing tasks based on natural language
instructions, and a flexible, controllable layout pattern generative
model that surpasses existing methods by offering conditional layout
generation, precise pattern modification, and unrestricted pattern
extension. The contributions of this work are fourfold:

o The presentation of ChatPattern, the inaugural LLM-powered
layout pattern generation framework.

e The integration of an expert LLM agent as a pattern library
builder, proficient in processing natural language inputs and au-
tonomously operating the necessary tools to fulfill requirements.
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e The development of a versatile layout pattern generative model
that outperforms existing methods in conditional pattern gener-
ation, layout modification, and free-size pattern extension.

o The expansion of the scope of the layout pattern generation task,
prompting researchers to focus on more realistic yet challenging
tasks such as free-size layout pattern generation.

2 Preliminaries

ChatPattern is an Al agent that offers a conversational interface,
enabling users to use natural language to guide the creation of pat-
tern libraries that meet their specific layout generation needs.

2.1 Fixed-size Layout Pattern Generation

Contemporary research in layout pattern synthesis predominantly
focuses on creating patterns of a predetermined dimension. This re-
search domain has witnessed significant contributions that leverage
squish-pattern representation [6, 7, 9]. These methods learn to fit
the distribution of the binary topology matrix of Squish Pattern [10].
And the generated topology matrix will be further legalized in post-
processing to yield a legal layout pattern.

Squish Pattern Representation. A layout pattern, comprising a
series of non-overlapping polygons, can be effectively modeled using
a squish pattern. The squish pattern is a compact representation of
layout pattern that encodes layout topology and geometry into a
matrix T and vectors Ay, Ay. It divides the layout into grids using
scan lines along polygon edges, storing intervals in the A vectors.
Matrix entries are binary, denoting shapes or emptiness. Topology
matrix will be further normalized to a fixed-size square for uniformity
as introduced in [15]. Figure 2 illustrates how squish pattern works.

Topology Generation via Unconditional Discrete Diffusion.
Discrete diffusion model [16] is a type of generative model where the
value of every image pixel is limited in a pre-defined discrete space.
Similar to normal diffusion models [17, 18], noise is added to input
images in forward process, and a model with learnable parameter
0 learns to remove noise in reverse process. Given that x; € {0,1}
is an entry in the topology matrix T, a transition probability ma-
trix [Qglij = q(xx = jlxg_1 = i) is defined to describe the state
transition probability for each x at the k-th of K forward step,

=xk-1Qk), (1

where Cat(x|p) denote the categorical distribution of x given p. And
the forward process can be defined as,

q (Xk | Xg—1) = Cat (xg;p

q (x¢|xo) = Cat (Xk;P = Xo@k) , (2
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Figure 3: Design rule illustrations. ‘Space’ means distance be-
tween adjacent polygons. ‘Width’ measures shape size in one
direction. ‘Area’ denotes area of a polygon.

where Gk =0Q1Q2...0Q and f; and Pk are hyper-parameters.

After sampling a noised topology Ty from the input topology
Ty via Equation (2), the model learns to denoise the topology and
predicts the logits of the posterior distribution pg (xo|x ). Therefore,
the k-th reverse step can be calculated as following:

Po (Xk—11xk) = D q (X1 /%4 %0) po (Rolxc) 5)
Xo
where the term X will visit every possible state of x. Finally, we

can denoise a sampled noise T and synthesize a topology T with
the well-trained model by recursively calling the reverse step,

K
Po(TolTk) = po(To|T1) [ | po(Ti—1|Th)- (©)
k=2

Topology Legalization. The generated topology matrix will be fur-
ther enriched to patterns by matching them with suitable geometry
vectors. The generated patterns should satisfy several pre-defined
design rules of IC layout [7, 8] as illustrated in Figure 3.

Definition 1 (Legality). We treat a layout pattern as a legal one if
the layout pattern is DRC-clean, given the design rules.

#Legal Patterns

Legality = (7)

#Generated Patterns

2.2 Free-size Layout Pattern Generation

Compared with fixed-size layout pattern generation task, we aim
to synthesize layout patterns with any given size, which is a more
challenging task given the limited model output size, device mem-
ory, and varied requirements. We adopt the widely-used evaluation
metric [6-9], Diversity, to evaluate the quality of generated pat-
tern library. A greater pattern diversity H indicates that the library
contains more widely distributed patterns.

Definition 2 (Diversity). The diversity of the patterns library, de-
noted by H, is defined as the Shannon Entropy of the distribution of
the pattern complexities as follows:

H=- Z Z P(cxis cyj) log P(exis cy)), (8)
ij

where P(cxi,cyj) is the probability of a pattern with complexity
(cxi> ¢yj) sampled from the library, and cx and ¢y, are the numbers of
scan lines subtracted by one along the x-axis and y-axis, respectively.

Based on the above evaluation metrics, the pattern generation
problem can be formulated as follows,

Problem 1 (Free-size Layout Pattern Extension). Given a set of de-
sign rules and target pattern size, the objective of pattern generation
is to synthesize a legal pattern library such that the pattern diversity
of the layout patterns in the library is maximized.
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required to produce a well-designed layout
pattern according to the user's requirements.

o #4 User Requirement

You are a layout designer and are A Generate a layout pattern library, there are 100k layout patterns in total. The physical
size fixed as 1.5um * 1.5um. The topology size should be chosen from 200%200 and 500*500.
They should be in style of 'Layer-10001".
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#6.1 Task Planning and Function Call

During the design process, you have
access to the following functions:
(functions and descriptions)

#3 Document Learning

There is a standard working pipeline
your can refer to: (Standard Pipeline)

There are some experience you can refer to:

Physical size:
[1500,1500] nm

Count: 50000

#5.1 Standard Arguments
Topology size: [200,200]
Style: Layer-10001

Extending Method: Out
Drop Allowed: True

=l

# generate basic topology with fixed size
topology = topology_gen(seed, style)

# extend topology to desired size
topology = extension(topology, [200,200])

# first attempt to legalize the topology
layout, failed, log = legalize(topology,[1500,1500])

#7 Finished
Summary results and return, save history if necessary

7
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# modification un-solvable region for failed case
topology = modification(failed_topology, style)

| (When Processing Finished) Return layout —

Figure 4: A working pipeline of LLM agent in ChatPattern. Dash lines denote the optional paths.

3 Algorithm

ChatPattern seamlessly integrates a front-end powered by a Large
Language Model with a back-end that employs a conditional discrete-
diffusion model for layout pattern generation.

3.1 Pattern Customization via Expert LLM agent

ChatPattern, leveraging LLM technology, automates pattern li-
brary customization. Its primary function is to interpret user require-
ments expressed in natural language, breaking down complex de-
mands into manageable sub-tasks. These sub-tasks are subsequently
processed using specialized pattern generation tools. The detailed
operational pipeline of ChatPattern is illustrated in Figure 4.

Requirement Auto-Formatting. Given the complexity of user
requests in the Layout Pattern Generation workflow, the LLM agent
first translates these requests into a structured format using a pre-
defined template. This template contains all relevant parameters and
requirements for utilization by the pattern generation API functions.
The template can be summarized by the LLM agent according to
the description of functions or provided by the function provider.
The arguments can be further divided into required ones, which
decide the basic parameter (e.g., pattern count and size) of this task,
and optional ones, which are for fine-grained control. An impor-
tant thing is that one task given by a user can be decomposed into
several requirement lists, each for one simple sub-task, to limit the
complexity of one task and reduce mistakes. For example, the user
request shown in Figure 4 is factorized into two sub-tasks.

Task Planning and Execution. During the last step, ChatPattern
identifies and plans the necessary sub-tasks for fulfilling the user’s
request. For each planned sub-task, ChatPattern schedules a series of
structured tasks, which are then addressed using various pattern gen-
eration tools like topology generation and legalization. The task plan-
ning process is exemplified in Figure 4. For execution, ChatPattern
utilizes a Python interpreter or API calls, supported by the layout
pattern generation back-end model. Compared with a rule-based
arguments-program translator, the LLM agent can address failed
cases based on feedback or logs derived from function calls. For
example, in the legalization phase, the legalization can easily fail
especially for large topology matrices due to the violation of design
rules. Applying topology selection and dropping the failed cases

can guarantee the legality of the final result, while a lot of effort on
topology matrix generation is wasted. Alternative choices for LLM
agent are modifying the failed regions with different conditions and
trying different initial states, which save time and computation.

Tool Function Learning and Application. The core concept of
pattern generation through an LLM agent lies in its ability to op-
erate without directly accessing the generated matrix of zeros and
ones. This matrix could surpass the token length limit of the LLM,
rendering it incapable of extracting information from such low-level
data. The LLM agent instead relies on the route to the end results
and comprehension of select overarching characteristics, such as
complexity, physical dimensions, or error locations. To construct a
pattern library, certain fundamental tools or APIs are indispensable:
(1) Random Topology Generation, which creates random topologies
subject to specific conditions, and (2) Topology Legalization, which
transforms a topology into a compliant layout pattern. These func-
tions constitute the cornerstone for squish-pattern-based layout
pattern generation. Yet, the scope of the generated topology might
be constrained by the model size or device capacity, and it might not
always conform to the legalization process. Thus, supplementary
functions for advanced customization are available: (1) Topology
Extension augments a topology to a designated size within certain
parameters, and (2) Topology Modification revises parts of a topol-
ogy, offering a time-efficient alternative to discarding non-compliant
topologies, particularly for expansive patterns. Additional high-level
functions may be integrated to bolster the model’s capabilities, al-
lowing the LLM agent to capitalize on backend tool enhancements
with no need for internal changes.

Learning from Documents and Experience. Documents are reser-
voirs of high-level knowledge, instrumental in the pattern design
process. In the free-size layout pattern generation task, the selection
of the extension algorithm plays a pivotal role in determining the
quality of the output. Informed algorithm selection can be enhanced
through statistical analysis of historical data. Additionally, equip-
ping a model with a standardized operational pipeline at inception
can lead to a marked increase in performance. The practice of docu-
menting work history and scrutinizing exceptional cases is equally
valuable, laying the groundwork for the model’s ongoing refinement.
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3.2 Flexible Layout Pattern Generative Model

The pattern generator provides tool support for LLM agent front-
end. Our generative model utilizes a conditional discrete diffusion
model to fit the topology distributions from multi-source and syn-
thesize topology for further legalization. However, compared with
previous work, ChatPattern leverages three novel characters to en-
able the ability to generate complex topology matrix and meet highly
customized requirements.

Property-Conditional Topology Generation. Patterns in a dataset
do not always share the design rules or physical properties. For ex-
ample, the distribution of patterns from the 7-nm manufacturing
process is different from that of 130-nm. The diversity of materials
and design rules etc. enlarges the difference. Establishing a dataset
and training individual models for each kind of patterns is not a
sound choice, while directly training a model on the mixture dataset
will raise some concerns about the design rules conflict. To address
this issue, we add conditions to the reverse process of the diffusion
model and the distribution of the generated topology matrix can
be specified. Different from the cases in normal image generation,
the condition design in pattern generation should consider the de-
sign rules, materials, and manufacturing process. The k-th step of
distribution specified reverse process can be defined as,

Po (Xk—1%6, ) = > q (k15 %0) po Rolxpo ), (9)
X0
where ¢ denotes the conditions. An illustration of the training and

sampling process is shown in Figure 5. During the training process,
the model optimizes the loss function,

L = Dy (q (xk—11%k> %0) || Po (Xk—11%k, €)) — Alog pg (x0x €) -
(10)
When the training process is finished, a topology matrix with condi-
tion ¢ can be generated by a K-step reverse process,

K
po(To[Tx, ©) = po(TolT1, ) [ | po(Tei|Tie), (1)
k=2

where Tk is a randomly-sampled noise.
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Extend by In-Painting

Pattern Modification. Given an existing pattern topology matrix
Tlgnown, making modifications to any desired region on it can be
useful when dealing with failed topology. We denote kept pixels
asMo Tlgnown and denote the masked pixels as (1 - M) © Tlgnown.
Since in every reverse step of Equation (11), Tx_; depends solely on
Ty, we replace the kept region in Ty by the noised pixels in given
topology, M © T]]znown. The noised topology Tllz“"wn is obtained by

the forward process in Equation (2). And (1 - M) © TErlklnown will

be generated by the model with the condition of M © T]I:“"Wn. And
different with general image generation[17, 19], the modification of
patterns should consider the design rules and the condition ¢ should
match the distribution of given topology matrix T]g“"wn,

Tl]zriolwn ~q (Tk—l |Tlgnown) i
TRKROWR L b (Teoy| Tk ), (12)
Teo1 = MO TET™ + (1 - M) o Tmknews,

where Tlgnown shares the design rules with patterns in condition c.
An illustration of pattern modification can be found in Figure 6.

Pattern Extension. Extending a given pattern to a larger one is a
practical function since the model output usually takes a fixed size
while the required patterns can vary among a large range. Pattern
extension can be achieved via In-Painting and Out-Painting with
pattern modification techniques. An illustration of In-Painting ex-
tension and Out-Painting extension can be found in Figure 7. By
modifying the adjacency border and corner of a concatenated topol-
ogy matrix, we can merge the shape from both sides and synthesize
a larger topology matrix, which we denoted as In-Painting. We treat
the extending method that directly generates a new border of an
existing pattern as Out-Painting.

By recursively extending a given pattern, we can extend the pat-
tern to any desired size without considering memory limitation, since
only the region in working space will be taken into computation. If
we assume the target size of topology is [W, H] and the window size
of the model is [L, L], the number of sampling for In-Painting can be
calculated by, Ny, = (2[%] - 1)(2[%] —1). With a stride S, the num-
ber of sampling for Out-Painting is Ny, = ([%] +1)( [%] +1).

Legalization. We utilize the non-linear legalization function pro-
posed in DiffPattern[9] and denoted it as,

Legalization(-) = f (F, T), (13)

where R is the set of design rules, T is the topology and F is the
physical size of layout pattern. When the legalization fails, the un-
reasonable region can be located and returned due to the explainable
feature of the legalization function.
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Table 1: Comparison on Legality and Diversity on legal patterns. ‘/’ refers to not applicable.

. " . Layer-10001 Layer-10003 Total®
‘ Task ‘ Set/Method Training Set ‘ Size Legality (%I) Diversity (7) | Legality (%I) Diversity (T) “ Legality (T) Diversity ()
Real Patterns / / 10.731 / 8.769 / 10.625
8 CAE+LegalGAN [7] Layer-10001 3.74% 5.814 / / / /
j VCAE+LegalGAN [7] Layer-10001 128 84.51% 9.867 / / / /
% | LayouTransformer [8] Layer-10001 89.73% 10.527 / / / /
= DiffPattern [9] Layer-10001/10003 99.97% 10.711 99.98% 8.578 99.98% 10.633
ChatPattern Layer-10001/10003 99.97% 10.796 99.99% 8.625 99.98% 10.650
Real Patterns / / 12.702 / 10.696 / 12.695
[9] w/ Concatenation | Layer-10001/10003 2562 57.78% 10.719 93.69% 10.511 75.74% 11.706
ChatPattern Layer-10001/10003 87.36% 11.154 99.78% 10.556 93.57% 11.830
8 Real Patterns ] ] 13.435 / 12.139 / 13.787
éﬁ [9] w/ Concatenation | Layer-10001/10003 5122 0.29% 5.714 40.83% 11.555 20.56% 11.359
fiay ChatPattern Layer-10001/10003 36.42% 10.401 98.86% 11.620 67.64% 12.133
Real Patterns / / 13.573 / 12.644 / 14.109
[9] w/ Concatenation | Layer-10001/10003 10242 0.00% 0.000 0.64% 6.926 0.32% 6.926
ChatPattern Layer-10001/10003 1.19% 6.438 94.96% 11.981 47.80% 11.992

* All training datasets are the 128x128 version.

T We collected generated samples from both Layer-10001/10003 and evaluated them together.

(a) Layer-10001 style (b) Layer-10003 style
Figure 8: 256x256 topology matrix generated by In-Painting.

4 Experimental Results

4.1 Layout Pattern Generation

Datasets. We follow previous works [8, 9] to obtain the dataset
of small layout pattern images with the size of 2048x2048 nm? by
splitting the layout map from ICCAD contest 2014. The size of the
extracted topology matrix is fixed as 128x128 in squish pattern
representation in the baseline setting. There are two different style
layouts, denoted as Layer-10001 and Layer-10003. Layer-10001 is
widely used in previous methods and we introduce layer-10003 to
evaluate the model ability of style specification. Furthermore, by
splitting the layout map into 4%, 16X and 64X larger size with overlap,
we also obtained 4X, 16X and 64x larger topology matrix in squish
pattern representation correspondingly.

Diffusion Model Configuration. Following the common settings [16,
17], we use a U-Net [20] as our backbone in the conditional discrete
diffusion model. The implementation of U-net follows that in [17].
To extract the embedding of the condition, we use a stack of 3 linear
layers. The condition embedding is added into the embedding of the
time step to control the style of the generated patterns.

Training & Testing Details. To keep the same size with previous
squish-pattern-based methods [7, 9], we train ChatPattern on the
128128 union-datasets (Layer-10001 and Layer-10003) with class
conditions for 1.0M iterations with a batch size of 128. The network
is optimized by an Adam optimizer with a learning rate 2e-4. Drop
out is 0.1 the grad clip is set to 1, and the loss coefficient A is set
to 1le-3. Diffusion length K = 1000 and the noise schedule f is lin-
early increased from 0.01 to 0.5. The training procedure takes about
250 GPU hours in total. The back-end of ChatPattern is trained on
128x128 dataset and the size of directly generated typologies is fixed
at 128x128. The topology matrix sampled from the network will

. 128X128; (Previous work)

256X256
256X256

512X512 512X512
(a) Layer-10001 style (b) Layer-10003 style
Figure 9: 512x512 topology matrix generated by Out-Painting.

be further legalized as explained in Section 3.2. We have noticed
previous work [9] applies topology selection and pushes the legal-
ity to 100%. Since every squish-pattern-based method can reach
100% legality via selection, we remove the selection step from all
methods when evaluating their performance to compare the model
directly. We further forbid our pattern modification function calling
in both fixed-size and free-size pattern generation tasks to have a
fair comparison.

Fixed-size Pattern Generation. We compare our method with
previous layout pattern generation methods, CAE [6], VCAE [7],
LegalGAN [7] and LayouTransformer [8] on the widely used bench-
mark 128x128 Layer-10001. And we further re-implemented the
previous SOTA, DiffPattern[9], on Layer-10001 and Layer-10003 in-
dividually since directly mixing patterns from different distributions
can easily lead to a conlflict for [9], as we discussed in Section 3.2.
We report the result on 10,000 samples generated by ChatPattern
for each class. The legality and the diversity of legal patterns on
each dataset are reported in Table 1. According to the results, on
the 128x128 pattern generation task, ChatPattern gets a reasonable
improvement compared with previous SOTA thanks to its ability to
utilize a multi-source training dataset. However, both ChatPattern
and the existing models have already fitted the distribution of real
patterns well in the simple 128128 benchmarks.

Free-size Pattern Generation. ChatPattern is specialized in free-
size pattern generation, a task highly applicable to real-world sce-
narios. For this task, we established three distinct experimental size
settings to quantitatively assess the model. The sizes of the target
topology matrices ranged from 2562 to 10242, We generated 10,000
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Figure 10: Evaluation of In-Painting and Out-Painting.

Layer-10003

samples for each class across all size levels, examining their Legality
and Diversity as we did in the fixed-size pattern generation tasks. Ad-
ditionally, patterns extracted from real datasets served as references
and are duly noted in the results table. The baseline is the SOTA in
fixed-size pattern generation, DiffPattern [9]. To create larger pat-
terns, the baseline method can only stitches together small patches
of the same class, but the method often breaches design rules. For
instance, when patch size reaches 5122, the legality of patterns gen-
erated by DiffPattern with concatenation plummets to nearly zero
(0.29%) and under half (40.83%) for the Layer-10001 and Layer-10003
datasets, respectively. Our tests with ChatPattern cover all the afore-
mentioned settings. ChatPattern leverages its extension function,
utilizing both out-painting and in-painting algorithms, to synthesize
high-quality patterns. We have illustrated some instances in Figure 8
and Figure 9. The LLM agent is initialized with a predefined working
pipeline, as depicted in Figure 4. The accompanying documentation
includes statistical data on pattern extension through various algo-
rithms, as seen in Figure 10. This documentation provides an insight
that out-painting typically yields better legality, while in-painting
excels in diversity under certain conditions. The user’s request was
simply to generate 10,000 patterns for each experimental setting.
Results tabulated in Table 1 demonstrate ChatPattern’s superiority
over the baseline, particularly in the demanding task of generating
large patterns of sizes 5122 and above.

4.2 Evaluation of LLM agent

We take the user requirement in Figure 4 as a running example to
show the LLM agent’s ability on requirement auto-formatting and
unseen mistake-processing.

Requirement Auto-formatting. The LLM agent is required to fill
out a standard requirement list to make sure the target of every
sub-task is specific and can be handled within a simpler script. An
example of the requirement list is following.

# Requirement - subtask 1

## Basic Part: Topology Size: [200, 200], Physical Size: [1500, 1500] nm,
Style: Layer-10001, Count: 50000,

## Advanced Part: Extension Method: Out (Default: Out), Drop Al-
lowed: True (Default: True), Time Limitation: None (Default: None).

Unseen Mistake-processing. As explored in Section 3, the genera-
tion of extensive topology matrices poses significant time demands.
Should the legalization process fail, the function earmarks the er-
rors within a log. We present a case where the LLM agent adeptly
navigates unanticipated mistakes during legalization. It is notewor-
thy that such error-handling expertise is not pre-coded within the
standard operational procedures or the experiential documentation.
This instance serves to highlight the LLM agent’s intrinsic capacity
to address unforeseen complications.
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% In previous attempts, one pattern can’t pass the legalization.
Thought: Since legalization has failed twice in the same region, I will
try to in-paint that specific area with the same style and then attempt
legalization again.

Action: Topology_Modification

Action Input: "topology_path":${path}, "upper": 12, "left": 56, "bottom":
33, "right": 73, "style": "Layer-10001", "seed": 42

% Continue Processing

5 Conclusion

In this paper, we introduced ChatPattern, a novel framework for
pattern generation utilizing a LLM. ChatPattern provides a user-
friendly interface that accepts natural language inputs to tailor the
pattern library to specific needs. And ChatPattern enables a flex-
ible pattern generation back-end and extends the task of pattern
generation to a more demanding yet challenging setting, free-size
pattern generation. Nonetheless, ChatPattern still lacks global guid-
ance when generating large patterns and can not handle complex
oversized patterns well, which we left for future exploration.
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