

2 / 22

ChatPattern: Layout Pattern Customization via
Natural Language

Zixiao Wang1, Yunheng Shen2, Xufeng Yao1, Wenqian Zhao1,
Yang Bai1, Farzan Farnia1, Bei Yu1

1Chinese University of Hong Kong
2Tsinghua University

Background

Existing Patterns Generated Patterns
VLSI layout patterns provide critical resources in various designs for manufacturability
research. Pattern Generation task aims to mimic the distribution of existing patterns.

4 / 22

Layout Pattern Generation

Existing Patterns

I need Patterns in upper row style with 4 times larger in size.
The design rule should be changed to XXX

Customized Patterns

User Requirement

The requirements on layout pattern distributions can vary in real cases. Pattern
Customization task aims to generate patterns to meet specialized requirements.

5 / 22

From Generation to Customization

• Training a LLM from scratch? NO, Too expensive.

• Utilizing Pre-trained LLM? Yes, but, how can LLM get access to the Layout
Patterns?

• Encoding a pattern as a sequence of direction and distance?
• Embedding a pattern as a pattern token?
• Manipulating pattern-generation tools?

Legal Pattern Tokenizer&Detokenizer Illegal Pattern

6 / 22

Let’s Employ a LLM

ChatPattern

Tools Experience

Requirement

LLM Agent

Task
Planning

Tools
Execution

Result

Further improvement

Front End
Conditional Generation

Pattern Modification

Pattern Extension

Legalization

…

Back End

An illustration of ChatPattern

ChatPattern seamlessly integrates a front-end powered by a Large Language Model with
a back-end that employs a conditional discrete diffusion model for layout pattern
generation.

8 / 22

ChatPattern

Tools Experience

Requirement

LLM Agent

Task
Planning

Tools
Execution

Result

Further improvement

Front End
Conditional Generation

Pattern Modification

Pattern Extension

…

Back End

Legalization

An illustration of ChatPattern

ChatPattern seamlessly integrates a front-end powered by a Large Language Model with
a back-end that employs a conditional discrete diffusion model for layout pattern
generation.

8 / 22

ChatPattern

The LLM agent is designed to communicate with users via natural language, and
is able to:

• Auto-Format Requirement

• Plan and Execute Task

• Learn and Apply Tool Functions

• Learn from Documents and Experience

9 / 22

The LLM agent

To construct a pattern library, certain fundamental tools or APIs are indispensable:

• Random Topology Generation

• Topology Legalization1

• Topology Modification

• Topology Extension

1Zixiao Wang et al. (2023). “Diffpattern: Layout pattern generation via discrete diffusion”. In:
2023 60th ACM/IEEE Design Automation Conference (DAC). IEEE, pp. 1–6.

10 / 22

Flexible Layout Pattern Generative Model

To construct a pattern library, certain fundamental tools or APIs are indispensable:

• Conditional Topology Generation

• Topology Legalization1

• Topology Modification

• Topology Extension

1Zixiao Wang et al. (2023). “Diffpattern: Layout pattern generation via discrete diffusion”. In:
2023 60th ACM/IEEE Design Automation Conference (DAC). IEEE, pp. 1–6.

10 / 22

Flexible Layout Pattern Generative Model

Layer
10003

TKTK

TkTk

TkTk

Tk−1Tk−1

Tk−1Tk−1

Layer
10001

q(Tk |Tk−1)q(Tk |Tk−1)

pθ(Tk−1 |Tk, c0)pθ(Tk−1 |Tk, c0)

pθ(Tk−1 |Tk, c1)pθ(Tk−1 |Tk, c1)

pθ(T0|TK, c) = pθ(T0|T1, c)
K∏

k=2

pθ(Tk−1|Tk, c), (1)

L = DKL (q (xk−1|xk, x0) ∥ pθ (xk−1|xk, c))− λ log pθ (x0|xk, c) . (2)

11 / 22

Property-Conditional Topology Generation

Layer
10003

TKTK

TkTk

TkTk

Tk−1Tk−1

Tk−1Tk−1

Layer
10001

q(Tk |Tk−1)q(Tk |Tk−1)

pθ(Tk−1 |Tk, c0)pθ(Tk−1 |Tk, c0)

pθ(Tk−1 |Tk, c1)pθ(Tk−1 |Tk, c1)

pθ(T0|TK, c) = pθ(T0|T1, c)
K∏

k=2

pθ(Tk−1|Tk, c), (1)

L = DKL (q (xk−1|xk, x0) ∥ pθ (xk−1|xk, c))− λ log pθ (x0|xk, c) . (2)

11 / 22

Property-Conditional Topology Generation

Existing Pattern w/ Mask

w/ (1-Mask)

Next Iteration

Tunknown
k−1 ∼ pθTunknown
k−1 ∼ pθ

Tk−1Tk−1

TkTk

Tknown
k−1 ∼ qTknown
k−1 ∼ q

Tknown
k−1 ∼ q

(
Tk−1|Tknown

0

)
,

Tunknown
k−1 ∼ pθ (Tk−1|Tk, c) ,

Tk−1 = M ⊙ Tknown
k−1 + (1 − M)⊙ Tunknown

k−1 ,

(3)

12 / 22

Pattern Modification

Existing Pattern w/ Mask

w/ (1-Mask)

Next Iteration

Tunknown
k−1 ∼ pθTunknown
k−1 ∼ pθ

Tk−1Tk−1

TkTk

Tknown
k−1 ∼ qTknown
k−1 ∼ q

Tknown
k−1 ∼ q

(
Tk−1|Tknown

0

)
,

Tunknown
k−1 ∼ pθ (Tk−1|Tk, c) ,

Tk−1 = M ⊙ Tknown
k−1 + (1 − M)⊙ Tunknown

k−1 ,

(3)

12 / 22

Pattern Modification

Existing Pattern w/ Mask

w/ (1-Mask)

Next Iteration

Tunknown
k−1 ∼ pθTunknown
k−1 ∼ pθ

Tk−1Tk−1

TkTk

Tknown
k−1 ∼ qTknown
k−1 ∼ q

Tknown
k−1 ∼ q

(
Tk−1|Tknown

0

)
,

Tunknown
k−1 ∼ pθ (Tk−1|Tk, c) ,

Tk−1 = M ⊙ Tknown
k−1 + (1 − M)⊙ Tunknown

k−1 ,

(3)

12 / 22

Pattern Modification

Working Space Existing Pattern Newly Generated

Extend by Out-Painting Extend by In-Painting

13 / 22

Pattern Extension

#7 Finished
Summary results and return, save history if necessary

#5.2 Standard Arguments
Physical size:
[1500,1500] nm
Topology size: [500,500]
Style: Layer-10001
Count: 50000
Extending Method: None
Drop Allowed: True

#5.1 Standard Arguments
Physical size:
[1500,1500] nm
Topology size: [200,200]
Style: Layer-10001
Count: 50000
Extending Method: Out
Drop Allowed: True

#1 Agent Setting
You are a layout designer and are
required to produce a well-designed layout
pattern according to the user's requirements.
There are some rules you must follow:(Rules)

#2 Tool Learning
During the design process, you have
access to the following functions:
(functions and descriptions)

#6.2 Task Planning and Function Call

(When Processing Finished) Return layout

#3 Document Learning
There is a standard working pipeline
your can refer to: (Standard Pipeline)
There are some experience you can refer to:
(Documents)

#4 User Requirement
Generate a layout pattern library, there are 100k layout patterns in total. The physical
size fixed as 1.5um * 1.5um. The topology size should be chosen from 200*200 and 500*500.
They should be in style of 'Layer-10001'.

#6.1 Task Planning and Function Call

(When Processing Finished) Return layout

generate basic topology with fixed size
topology = topology_gen(seed, style)

extend topology to desired size
topology = extension(topology, [200,200])

first attempt to legalize the topology
layout, failed, log = legalize(topology,[1500,1500])

modification un-solvable region for failed case
topology = modification(failed_topology, style)

14 / 22

Example-Pipeline

#7 Finished
Summary results and return, save history if necessary

#5.2 Standard Arguments
Physical size:
[1500,1500] nm
Topology size: [500,500]
Style: Layer-10001
Count: 50000
Extending Method: None
Drop Allowed: True

#5.1 Standard Arguments
Physical size:
[1500,1500] nm
Topology size: [200,200]
Style: Layer-10001
Count: 50000
Extending Method: Out
Drop Allowed: True

#1 Agent Setting
You are a layout designer and are
required to produce a well-designed layout
pattern according to the user's requirements.
There are some rules you must follow:(Rules)

#2 Tool Learning
During the design process, you have
access to the following functions:
(functions and descriptions)

#6.2 Task Planning and Function Call

(When Processing Finished) Return layout

#3 Document Learning
There is a standard working pipeline
your can refer to: (Standard Pipeline)
There are some experience you can refer to:
(Documents)

#4 User Requirement
Generate a layout pattern library, there are 100k layout patterns in total. The physical
size fixed as 1.5um * 1.5um. The topology size should be chosen from 200*200 and 500*500.
They should be in style of 'Layer-10001'.

#6.1 Task Planning and Function Call

(When Processing Finished) Return layout

generate basic topology with fixed size
topology = topology_gen(seed, style)

extend topology to desired size
topology = extension(topology, [200,200])

first attempt to legalize the topology
layout, failed, log = legalize(topology,[1500,1500])

modification un-solvable region for failed case
topology = modification(failed_topology, style)

14 / 22

Example-Pipeline

#7 Finished
Summary results and return, save history if necessary

#5.2 Standard Arguments
Physical size:
[1500,1500] nm
Topology size: [500,500]
Style: Layer-10001
Count: 50000
Extending Method: None
Drop Allowed: True

#5.1 Standard Arguments
Physical size:
[1500,1500] nm
Topology size: [200,200]
Style: Layer-10001
Count: 50000
Extending Method: Out
Drop Allowed: True

#1 Agent Setting
You are a layout designer and are
required to produce a well-designed layout
pattern according to the user's requirements.
There are some rules you must follow:(Rules)

#2 Tool Learning
During the design process, you have
access to the following functions:
(functions and descriptions)

#6.2 Task Planning and Function Call

(When Processing Finished) Return layout

#3 Document Learning
There is a standard working pipeline
your can refer to: (Standard Pipeline)
There are some experience you can refer to:
(Documents)

#4 User Requirement
Generate a layout pattern library, there are 100k layout patterns in total. The physical
size fixed as 1.5um * 1.5um. The topology size should be chosen from 200*200 and 500*500.
They should be in style of 'Layer-10001'.

#6.1 Task Planning and Function Call

(When Processing Finished) Return layout

generate basic topology with fixed size
topology = topology_gen(seed, style)

extend topology to desired size
topology = extension(topology, [200,200])

first attempt to legalize the topology
layout, failed, log = legalize(topology,[1500,1500])

modification un-solvable region for failed case
topology = modification(failed_topology, style)

14 / 22

Example-Pipeline

Experiments

• Pattern Diversity. Shannon entropy of the pattern complexity.

H = −
∑

i

∑
j

P(cxi, cyj) logP(cxi, cyj), (4)

• Pattern Legality.

L =
Legal Patterns
All Patterns

. (5)

16 / 22

Evaluation

Task Set/Method Training Set∗ Size
Layer-10001 Layer-10003 Total†

Legality (↑) Diversity (↑) Legality (↑) Diversity (↑) Legality (↑) Diversity (↑)
Fi

xe
d-

si
ze

Real Patterns /

1282

/ 10.731 / 8.769 / 10.625
CAE+LegalGAN [ICCAD’20] Layer-10001 3.74% 5.814 / / / /

VCAE+LegalGAN [ICCAD’20] Layer-10001 84.51% 9.867 / / / /
LayouTransformer [ICCAD’22] Layer-10001 89.73% 10.527 / / / /

DiffPattern [DAC’23] Layer-10001/10003 99.97% 10.711 99.98% 8.578 99.98% 10.633
ChatPattern Layer-10001/10003 99.97% 10.796 99.99% 8.625 99.98% 10.650

Fr
ee

-s
iz

e

Real Patterns /
2562

/ 12.702 / 10.696 / 12.695
[DAC’23] w/ Concatenation Layer-10001/10003 57.78% 10.719 93.69% 10.511 75.74% 11.706

ChatPattern Layer-10001/10003 87.36% 11.154 99.78% 10.556 93.57% 11.830
Real Patterns /

5122
/ 13.435 / 12.139 / 13.787

[DAC’23] w/ Concatenation Layer-10001/10003 0.29% 5.714 40.83% 11.555 20.56% 11.359
ChatPattern Layer-10001/10003 36.42% 10.401 98.86% 11.620 67.64% 12.133

Real Patterns /
10242

/ 13.573 / 12.644 / 14.109
[DAC’23] w/ Concatenation Layer-10001/10003 0.00% 0.000 0.64% 6.926 0.32% 6.926

ChatPattern Layer-10001/10003 1.19% 6.438 94.96% 11.981 47.80% 11.992

Insights

When pattern size is larger than 2562, the legality of ChatPattern sometimes can reach
more than 100× higher than DiffPattern[DAC’23].

17 / 22

Free-size Pattern Generation

(a) Layer-10001 style (b) Layer-10003 style

Example of 256×256 topology matrix generated by In-Painting.

18 / 22

In-Painting

128X128 (Previous work)

25
6X

25
6

512X512
(a) Layer-10001 style

128X128 (Previous work)

25
6X

25
6

512X512
(b) Layer-10003 style

512×512 topology matrix generated by Out-Painting.

19 / 22

Out-Painting

User Input

Generate a layout pattern library, there are 100k layout patterns in total. The physical size
fixed as 1.5um * 1.5um. The topology size should be chosen from 200*200 and 500*500.
They should be in style of ’Layer-10001’.

Requirement - subtask 1
Basic Part: Topology Size: [200, 200], Physical Size: [1500, 1500] nm, Style: Layer-
10001, Count: 50000,
Advanced Part: Extension Method: Out (Default: Out), Drop Allowed: True (De-
fault: True), Time Limitation: None (Default: None).

20 / 22

Requirement Auto-formatting

We present a case where the LLM agent adeptly navigates unanticipated mistakes
during legalization. It is noteworthy that such error-handling expertise is not
pre-coded within the standard operational procedures or the experiential
documentation.

% In previous attempts, one pattern can’t pass the legalization.
Thought: Since legalization has failed twice in the same region, I will try to in-paint
that specific area with the same style and then attempt legalization again.
Action: Topology_Modification
Action Input: "topology_path":${path}, "upper": 12, "left": 56, "bottom": 33, "right":
73, "style": "Layer-10001", "seed": 42
% Continue Processing

21 / 22

Unseen Mistake-processing

Thanks!

	Background
	ChatPattern
	Experiments

