





# Performance-driven Analog Routing via Heterogeneous 3DGNN and Potential Relaxation

**Peng Xu**<sup>1,2</sup>, Guojin Chen<sup>1</sup>, Keren Zhu<sup>1</sup>, Tinghuan Chen<sup>2</sup>, Tsung-Yi Ho<sup>1</sup>, Bei Yu<sup>1</sup>

<sup>1</sup>Chinese University of Hong Kong

<sup>2</sup>Chinese University of Hong Kong, Shenzhen













### Outline

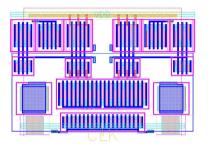
- Backgroud
- 2 Method
- 2.1 Performance-Driven Analog Routing
- 2.2 Non-uniform Routing Guidance
- 2.3 AnalogFold Framework for Performance Prediction and Relaxation
- 3 Experiments



# **Backgroud Knowledge**



### Analog Routing Problem



A result of the placed comparator.



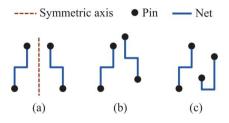
The routing solution.

Analog circuit routing is critical to optimal performance, but obtaining a decent circuit layout requires significant time and expertise.



## Existing Methods: Heuristic Constraint-based Methods

Ou et al. propose different levels of geometrical matching constraints<sup>1</sup>.



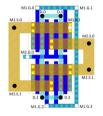
(a) Symmetric constraint. (b) Common-centroid constraint. (c) Topology-matching constraint.

<sup>&</sup>lt;sup>1</sup>H.-C. Ou *et al.*, "Non-uniform multilevel analog routing with matching constraints", in *Proceedings of the 49th Annual Design Automation Conference*, 2012, pp. 549–554.

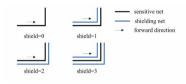


### Existing Methods: Heuristic Constraint-based Methods

There are other works that optimize power routing<sup>2</sup> and propose shielding critical nets<sup>3</sup>.



Optimize power routing.



Shielding critical nets.

<sup>&</sup>lt;sup>2</sup>R. Martins *et al.*, "Electromigration-aware and ir-drop avoidance routing in analog multiport terminal structures", in 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE), IEEE, 2014, pp. 1–6.

<sup>&</sup>lt;sup>3</sup>Q. Gao *et al.*, "Analog circuit shielding routing algorithm based on net classification", in *Proceedings of the 16th ACM/IEEE international symposium on Low power electronics and design*, 2010, pp. 123–128.

### A ML-Guided Analog Routing Problem

Can we automatically summarize the human layout intelligence leveraging MI.?<sup>4</sup>

Placement — Explicated Constraints — Routing

#### Heuristic constraints

Use a set of detailed heuristics as routing constraints.

Placement — Symmetric Constraints + Routing Guide

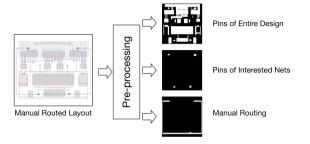
### Routing guidance

Routing strategies learned from human

<sup>4</sup>K. Zhu *et al.*, "Geniusroute: A new analog routing paradigm using generative neural network guidance", in *Proc. ICCAD*, 2019.



### Automatically Learn Guidance from Human Layouts

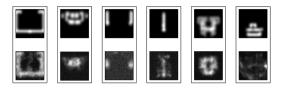


### Human Layout data

- Pre-process the GDS layouts into images
- Extract training data where the human would likely route the nets
- Problem #1 The human experts' layout data is **pretty scarce**.



### 2D Uniform Routing Guidance

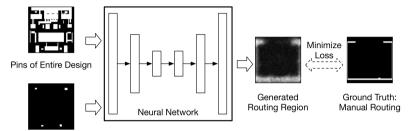


### 2D Uniform Routing Guidance

- Predict a 2D probability map of the routing likelihoods in each region.
- The 2D uniform routing guidance is honored via penalties in the cost function.
- Problem #2 Fail to deal with designs of different sizes or aspect ratios and resource competition between different pins close to each other.



#### **VAE-based Generation**



Pins of Interested Nets

### **VAE-based** Generation

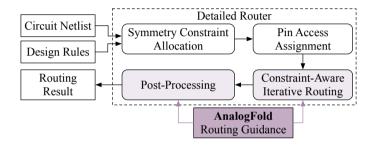
- Leveraging variational autoencoder (VAE) to reconstruct the routing solutions.
- Minize the distance between ground truth and inferred output.
- Problem #3 The generative model makes it hard to guarantee a **performance boost**.



# **Proposed Method: PARoute**



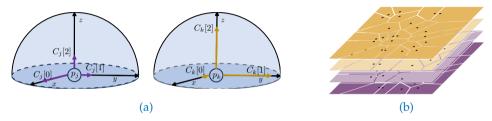
## Problem #1: Performance-Driven Analog Routing



- We introduce a performance-driven analog routing approach.
- Learn from the **automatically generated routing patterns** and their **simulation results** without **human labeling effort**.



### Problem #2: Non-uniform Routing Guidance

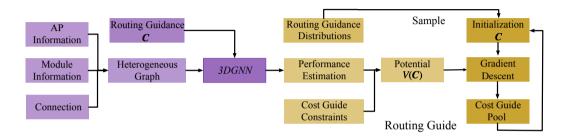


(a) Two examples of non-uniform routing guidance; (b) The 3D visualization.

- We propose a non-uniform and adaptive routing guidance, which assigns different routing guidance  $c_i$  along different directions for each net  $n_i$ .
- Adapt the route guide distribution to areas with different densities and support a 3D cost map.



# Problem #3: AnalogFold Framework for Performance Relaxation

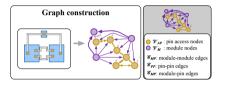


- We proposed a customized AnalogFold framework to enable accurate modeling of the performance potential of routing guidance.
- AnalogFold contains a heterogeneous routing graph, a protein-inspired 3DGNN network, and a pool-aided potential relaxation process.



# Heterogeneous Graph for Analog Routing

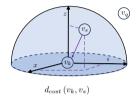
We design a heterogeneous graph  $\mathcal{G}_H = \langle \mathcal{V}_{AP}, \mathcal{V}_M, \mathcal{E}_{PP}, \mathcal{E}_{PM}, \mathcal{E}_{MM} \rangle$  to represent the interactions between pin access points and modules.



- The vertex sets  $\mathcal{V}_{AP}$  and  $\mathcal{V}_{M}$  correspond to the pin access points and modules.
- $\mathcal{E}_{PP}$  is designed to reflect the interactions between different pin access points.
- $\mathcal{E}_{MM}$  contains the edges that connect the modules according to the netlist.
- We add the edge  $\mathcal{E}_{PM}$  to model the relationship between the pin access points and the modules.



### Cost-aware Distance Augmented Module

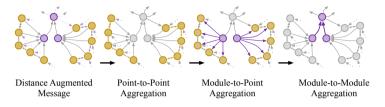


We can define the distance honors routing cost as follows:

$$d_{cost}(v_k, v_s) = \sqrt{(c[0] \cdot h_{ks})^2 + (c[1] \cdot w_{ks})^2 + (c[2] \cdot z_{ks})^2},$$
(1)

where c is the cost guide assigned for each access point,  $h_{ks}/w_{ks}/z_{ks}$  is the distance between  $v_k$  and  $v_s$  along horizontal/vertical/Z-axis direction. The distance between nodes is embedded to reflect the routing resource competition.

## Protein-inspired 3DGNN for Analog Routing



In 3D-GNN, the proposed cost-aware message passing can be defined as:

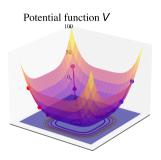
$$\mathbf{e}_{k}^{l} = \phi^{e} \left( \mathbf{e}_{k}, v_{r_{k}}, v_{s_{k}}, \mathcal{E}_{s_{k}}, \rho^{p \to e} \left( \left\{ \mathbf{r}_{h} \right\}_{h = r_{k} \cup s_{k}} \right) \right),$$

$$v_{i}^{l} = \phi^{v} \left( v_{i}, \rho^{e \to v} \left( \mathcal{E}_{i}^{l} \right) \right), \mathbf{u}^{l} = \phi^{u} \left( \mathbf{u}, \rho^{v \to u} \left( \mathcal{V}^{l} \right) \right),$$
(2)

where  $\phi^e$ ,  $\phi^v$ , and  $\phi^u$  are three information update functions on edges, pin access points/modules, and the whole graph, respectively. **Especially, the 3D** information in P is incorporated to update each message  $e_k$ .



### Routing Guide Performance Potential Modeling and Relaxation



- We created a differentiable model using the 3DGNN to predict the post-layout performance of the routing guidance.
- We then apply a gradient-based optimization of routing guidance potential **multiple times with different initialization** to derive the top-*N* routing guidance results.



# **Experiment Results**



# Post-layout Performance Comparisons on OTA benchamarks

Table: The comparisons between baseline methods and the proposed method.

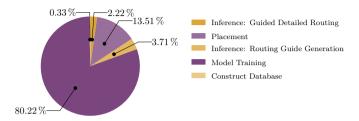
| Circuits |                                        | Schematic | MagicalRoute <sup>5</sup> | GeniusRoute <sup>6</sup> | PARoute (ours) |
|----------|----------------------------------------|-----------|---------------------------|--------------------------|----------------|
|          | Offset Voltage( $\mu V$ ) $\downarrow$ | -         | 1.000                     | 10.426                   | 0.546          |
|          | CMRR(dB) ↑                             | -         | 1.000                     | 0.998                    | 1.163          |
| Average  | BandWidth(MHz) $\uparrow$              | -         | 1.000                     | 1.002                    | 1.113          |
|          | DC Gain(dB)↑                           | -         | 1.000                     | 0.999                    | 2.368          |
|          | Noise( $\mu V_{rms}$ ) $\downarrow$    | -         | 1.000                     | 1.007                    | 0.787          |
|          | Runtime(s) $\downarrow$                | -         | 1.000                     | 17.147                   | 7.480          |

<sup>&</sup>lt;sup>6</sup>K. Zhu *et al.*, "Geniusroute: A new analog routing paradigm using generative neural network guidance", in *Proc. ICCAD*, 2019.



<sup>&</sup>lt;sup>5</sup>H. Chen *et al.*, "Toward silicon-proven detailed routing for analog and mixed-signal circuits", in *Proc. ICCAD*, 2020, pp. 1–8.

### Runtime Breakdown



- Althogh the average runtime of our proposed approach is  $7.48 \times$  slower than MagicalRoute<sup>7</sup>, it is nearly  $2.29 \times$  faster than GeniusRoute<sup>8</sup> due to the simplified 3D graph structure.
- The most consuming part is the model training part, which takes 80.22% of the total runtime and 3.71% of the total time for the routing cost generation.

22 / 23

<sup>&</sup>lt;sup>7</sup>H. Chen *et al.*, "Toward silicon-proven detailed routing for analog and mixed-signal circuits", in *Proc. ICCAD*, 2020, pp. 1–8.

<sup>&</sup>lt;sup>8</sup>K. Zhu *et al.*, "Geniusroute: A new analog routing paradigm using generative neural network guidance", in *Proc. ICCAD*, 2019.



MOSCONE WEST CENTER SAN FRANCISCO, CA. USA

# **THANK YOU!**















