


2 / 20

PDRC: Package Design Rule Checking via GPU-Accelerated
Geometric Intersection Algorithms for Non-Manhattan Geometry

Jiaxi Jiang1, Lancheng Zou1, Wenqian Zhao1, Zhuolun He1,
Tinghuan Chen2, Bei Yu1

1Chinese University of Hong Kong
2Chinese University of Hong Kong, Shenzhen



1 Introduction

2 Algorithm: Iterative parallel sweepline algorithm

3 Experiments

3 / 20

Outline



Non-Manhattan geometry: X or any-angle shapes used in routing12.
Design rule checking (DRC): Verify a design’s layout against geometric rules.

The increasing size of package designs may impact the efficiency of DRC.

Curve-to-line
Spacing

Non-acute
Angle

Non-Manhattan
Spacing

Non-Manhattan geometry and design rules

1M.-H. Chung et al., “Any-Angle Routing for Redistribution Layers in 2.5D IC Packages”, in
Proc. DAC, 2023, pp. 1–6.

2T. Chen et al., “TRouter: Thermal-driven PCB Routing via Non-Local Crisscross Attention
Networks”, IEEE TCAD, 2023.

4 / 20

Introduction



PDRC deals with package/PCB designs featuring non-Manhattan geometry,
expanding layout shapes and employing GPU-accelerated geometric intersection
algorithms to finish design rule checking.

Violation Report 
Sweeplines

…
…

Parallel 

GPU 

Intersection

Package Layout
(Non-Manhattan)

5 / 20

Overview:PDRC



Previous researches use computational geometry tools to tackle design rule
checking345.

partition the input space and data
partition space Quad-tree recursively partitions the layout space.
partition data R-tree partitions layout objects, minimizing coverage

and overlap among subnodes.
spatial order The spatial order of line segments is determined by the coordinates

of their intersection points with the sweepline.

3G. G. Lai et al., “Hinted quad trees for VLSI geometry DRC based on efficient searching for
neighbors”, IEEE TCAD, vol. 15, no. 3, pp. 317–324, 1996.

4A. Guttman, “R-trees: A dynamic index structure for spatial searching”, in Proc. SIGMOD, 1984,
pp. 47–57.

5Bentley and Ottmann, “Algorithms for reporting and counting geometric intersections”, IEEE
TC, vol. 100, no. 9, pp. 643–647, 1979.

6 / 20

From a computational geometry perspective



X-Check6 utilizes the y-coordinates of horizontal segments to establish order, akin
to partitioning the layout along the y-axis.

6Z. He et al., “X-Check: GPU-Accelerated Design Rule Checking via Parallel Sweepline
Algorithms”, in Proc. ICCAD, 2022, pp. 1–9. 7 / 20

Special case:Manhattan geometry



sweepline: The efficiency of the sweepline algorithm is attained by limiting the
search space to immediate neighbors.
bounding box: The partitioning strategy employs bounding boxes to approximate
diagonal lines, creating empty spaces that reduce pruning efficiency.

Bounding Box

N

S

Sweepline

S

NNN

8 / 20

A rough comparison



Uniqueness Any vertical (horizontal) line through the objects intersects the object
exactly once.

Orderliness For objects intersecting the line, they can have a total order.
Computability Given two objects, it is possible to compute the intersection point.
All convex polygons exhibit Uniqueness property.
To have an order, points are preferred over segments.

Decompose

Convex Concave

X

Segment Point

9 / 20

Geometric intersection with sweepline



Decomposition prevents the detection of inclusion.

Reassemble the decomposed shapes by connecting the points.

Evaluate if any overlap exists between line segments on the same sweepline to
perform an inclusion check.

By sorting and scanning the endpoints of line segments, we can efficiently detect
overlapping segments with a single scan.

10 / 20

Issues come from decomposition



event Starting or ending points of segments, or intersection points.

Sweepline processes all events in order, maintaining the order of intersecting
objects with the sweepline using a binary tree, and utilizing a priority queue to
maintain the order of all events.

Observation7 that concurrently processing events yields the same results as
sequential execution.

7A. Paudel and S. Puri, “Openacc based gpu parallelization of plane sweep algorithm for
geometric intersection”, in Proc. WACCPS, 2019, pp. 114–135.

11 / 20

Iterative parallel sweepline algorithm



Initial Sweeplines

SL1 SL2 SL3 SL4 SL5 SL6

• The initial sweeplines are generated based on the x-coordinates of line segments

• While iterative sweeplines are produced from intersection points.

12 / 20

Iterative parallel sweepline algorithm



Initial Sweeplines

SL1 SL2 SL3 SL4 SL5 SL6

Iterative Sweeplines

SL1 SL2 SL3 SL4 SL5 SL6SI1

• The initial sweeplines are generated based on the x-coordinates of line segments

• While iterative sweeplines are produced from intersection points.

12 / 20

Iterative parallel sweepline algorithm



X

Naive Interval List

left pruned 
interval

right pruned
interval

pruned 
region

3 pruned

• Efficiently determining sets of segments intersected by the sweepline at each position
requires stab queries for line segments projected along the x-axis.

• We assign distinct hierarchical labels to line segments based on their lengths,
allowing for the organization of segments from each hierarchy into separate interval
lists.

13 / 20

Hierarchical Interval Lists for GPU



X

Naive Interval List

left pruned 
interval

right pruned
interval

pruned 
region

3 pruned
X

L3

L1

L2

 Hierarchical Interval Lists

7 pruned

• Efficiently determining sets of segments intersected by the sweepline at each position
requires stab queries for line segments projected along the x-axis.

• We assign distinct hierarchical labels to line segments based on their lengths,
allowing for the organization of segments from each hierarchy into separate interval
lists.

13 / 20

Hierarchical Interval Lists for GPU



For each event’s position,
Label Identify the left and right boundaries in interval lists L.

Merge Merge the segment sequence as S from L.
Sort Sort segments in S based on the y-coordinates where they intersect

with the event sweepline.
Check Scan segments and update intersection events.

Iterative Check Choose merged segments, sort and scan.

14 / 20

Iterative parallel sweepline algorithm



Label Binary searches across k interval lists with a total of n intervals yield a
depth of O(log n

ωk
). The total work required is at most O(k log n

k ) for
each position.

Merge In the worst-case scenario, the depth reaches O(
√

n), leading to a
total work of O(p

√
n) across p positions.

Sort Parallel radix sorting, when applied to each list, achieves a depth of
O(d log n), where d denotes the number of digits, with the total work
O(dp

√
n).

Check Each position requires a single scan through the interval list for
inclusion and intersection checks, leading to a depth of O(

√
n) and a

work of O(p
√

n).
Iterative Check When few intersections occur, the “Iterative Check” stage

requires O(1) iterations.

15 / 20

Complexity analysis



Our benchmarks include some industrial PCB designs.

Table: The statistics of our benchmarks.

Benchmark #C #P #N
xc7z020_t 443 1737 428
xc7z020_b 572 1390 383
xc7z030_t 447 1936 442
xc7z030_b 653 1539 416
hs3690_t 910 3529 998
hs3690_b 656 1878 496

The statistics of our benchmarks are listed on Table 1, where #C, #P, #N denote the
numbers of components, pads and nets respectively.
Additionally, we replicate our largest benchmark, by factors of 4, 8, and 16.

16 / 20

Benchmarks



Benchmark #Segments
Klayout flat Klayout deep Klayout tile R-tree boost

PDRC
RT Ratio RT Ratio RT Ratio RT Ratio

xc7z020_t 39368 301 43.0× 272 38.9× 146 20.9× 82 11.7× 7
xc7z020_b 18014 232 77.3× 173 57.7× 65 21.7× 31 10.3× 3
xc7z030_t 45972 273 91.0× 275 91.7× 108 36.0× 90 30.0× 3
xc7z030_b 19500 235 78.3× 189 63.0× 69 23.0× 217 72.3× 3
hs3690_t 68604 825 165.0× 705 141.0× 331 66.2× 129 25.8× 5
hs3690_b 35082 452 150.7× 571 190.3× 192 64.0× 64 21.3× 3
4hs3690_t 274416 3334 222.3× 2772 184.8× 569 37.9× 1113 74.2× 15
4hs3690_b 140328 1849 205.4× 2240 248.9× 358 39.8× 532 59.1× 9
8hs3690_t 548832 6721 268.8× 5636 225.4× 1064 42.6× 3693 147.7× 25
8hs3690_b 280656 3731 186.6× 4445 222.3× 612 30.6× 1715 85.8× 20
16hs3690_t 1097664 13470 244.9× 11274 205.0× 1996 36.3× 12821 233.1× 55
16hs3690_b 561312 7505 220.7× 8929 262.6× 1136 33.4× 5944 174.8× 34

Average 143.0× 136.8× 35.3× 51.2×

Table: Runtime (ms) comparisons of design rule checking(spacing).

17 / 20

Runtime comparisons



Preprocess (8.2%)

HIL Setup (33.5%)

Build (16.2%)

Sort (30.7%)

Check (4.8%)

Iterative Check (5.3%)

Others (1.3%)

The construction of hierarchical interval lists (“HIL”) and sweepline statuses
(“Build” and “Sort”) account for the majority of the time.
Owing to the limited number of intersection checks needed by sweepline
algorithms, Check accounts for a small portion of the total runtime.

18 / 20

Average runtime breakdown



We’ve implemented an iterative parallel sweepline algorithm optimized for
GPUs using position-level parallelism, and have efficiently conducted interval
stabbing queries using hierarchical interval lists.

In the future, we plan to develop more work-depth-efficient algorithms and
GPU-based data structures.

19 / 20

Conclusion and Roadmap



THANK YOU!


	Main Talk
	Introduction
	Algorithm: Iterative parallel sweepline algorithm
	Experiments


