

CAMO: Correlation-Aware Mask Optimization with Modulated Reinforcement Learning

Xiaoxiao Liang¹, Haoyu Yang², Kang Liu³, Bei Yu⁴, Yuzhe Ma¹

¹Hong Kong University of Science and Technology (GZ)

²NVIDIA ³Huazhong University of Science and Technology

⁴Chinese University of Hong Kong

Background: Mask Optimization

The effect of mask optimization.

Background: Deep Learning-based OPC

- Supervised learning based method
 - Generative method¹: image generation task
 - Regressive method²: learns from segment offset from other OPC engines
 - * Potential performance limitation due to dependency on pre-collected dataset
- Reinforcement learning based method³

³Xiaoxiao Liang et al. (2023). "RL-OPC: Mask Optimization With Deep Reinforcement Learning". In: *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*.

¹Haoyu Yang, Shuhe Li, et al. (2018). "GAN-OPC: Mask Optimization with Lithography-guided Generative Adversarial Nets". In: *Proc. DAC*, 131:1–131:6.

²Tetsuaki Matsunawa, Bei Yu, and David Z. Pan (2015). "Optical proximity correction with hierarchical Bayes model". In: *Proc. SPIE.* vol. 9426.

Background: Deep Learning-based OPC

Reinforcement Learning

Reinforcement Learning investigates how intelligent agents makes sequential decisions and interacts with RL environment to fetch the scores of the latest decision. Objective: maximize accumulative reward

⁴Xiaoxiao Liang et al. (2023). "RL-OPC: Mask Optimization With Deep Reinforcement Learning". In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

Background: Deep Learning-based OPC

• RL-OPC⁵: encodes the local feature as input, decides segment movements, learns the mapping from mask updating to mask quality improvement.

RL-OPC flow.

⁵Xiaoxiao Liang et al. (2023). "RL-OPC: Mask Optimization With Deep Reinforcement

Insights

- Observations:
 - Distinct masks may yield similar contours:

Insights

 Light proximity effect: in the lithography process, the local light intensity is determined by mask patterns within a larger neighborhood.

$$Z(x,y) = f_{optical}(M)$$

 Consistent with the fact that the forward lithography process can be approximated by convolutional operations.

Gap

- Regression-based OPC and RL-OPC decide segment movement solely by analyzing its local features - frequent mask evaluation
- Enlarged solution space: effects of the neighboring segments' movements are neglected.

Gap

- Regression-based OPC and RL-OPC decide segment movement solely by analyzing its local features - frequent mask evaluation
- Enlarged solution space: effects of the neighboring segments' movements are neglected.
- Motivation:
 - Based on observations, consider the neighboring segments as spatially correlated.
 - When processing multiple segments, regard them as coordinated in fixing the contour displacement.

Method: RL Preparation

- State: layout geometrical information, encoded by squish pattern⁶;
- Action: inward / outward movement for individual segment;
- Reward: the mask quality improvement after mask updating in each iteration:

$$r_{t} = \frac{|EPE_{t}| - |EPE_{t+1}|}{|EPE_{t}| + \varepsilon} + \beta \frac{PVB_{t} - PVB_{t+1}}{PVB_{t}}.$$
 (1)

⁶Haoyu Yang, Piyush Pathak, et al. (2019). "Detecting multi-layer layout hotspots with adaptive squish patterns". In: *Proc. ASPDAC*, pp. 299–304.

Method: RL Decision Network

- Graph Neural Network (GNN): after segmentation, formulate the layout into a graph, fuse the node features along the graph edges.
 - Vertices: each individual segment;
 - Graph edges: determined by segments distance;
 - Node features: encoded neighborhood of each segment.

 Recurrent Neural Network (RNN): sequentially processes the input embeddings and recurrently records the historical contexts for deciding future incoming segments.

Method: Correlation-aware Decision Framework

- Two attempts for capturing the spatial correlation:
 - Graph encoding & feature fusing: graph edges determined by proximity
 - Sequential decision using RNN, coordinately considers segments movements on the fly

The correlation-aware mask updating framework.

Method: OPC-inspired RL Modulator

- Observations:
 - Solution space explosively grows with complex layout
 - A purely data-driven learning scheme may not be efficient enough
 - Fluctuated mask quality

The EPE curve fluctuates on complex layout.

Solution: integration of OPC domain knowledge for RL guidance.

Method: OPC-inspired RL Modulator

- OPC principle: reduce the gap between light intensity and the threshold at target pattern edges.
 - Example: Large inner EPE \rightarrow Intensity lacking \rightarrow more light needed \rightarrow may prefer outward movement; vice versa.

Method: OPC-inspired RL Modulator

- Design a modulator to modulate the likelihood of each movement being selected when deciding single segment.
- Based on the current EPE at each segment, generates a vector using a projector, formulate its *preference* towards each movement:

The projection function to derive the modulator for each segment by their EPE.

Methodology: CAMO Framework

 Modulator: generates preference vector, element-wise multiplies with policy's prediction

The CAMO framework

Results: Numerical Comparisons

- Experimental settings:
 - Dataset: via & metal layer cases
 - Via: 2μ m \times 2μ m clips, # vias 2 to 6
 - Metal: $1.5\mu m \times 1.5\mu m$ clips, by OpenROAD, standard cells from NanGate 45nm PDK
 - EPE measurement: 60nm evenly

Mask quality comparison on the via layer.

Mask quality comparison on the metal layer.

Results: Modulator Effectiveness

The EPE trajectories of two testcases, (a) without modulator, and (b) with modulator.

MOSCONE WEST CENTER SAN FRANCISCO, CA, USA

Thanks!

