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. Background: Mask Optimization

Design Target Mask
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The effect of mask optimization.
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. Background: Deep Learning-based OPC

¢ Supervised learning based method

* Generative method?!: image generation task
* Regressive method?: learns from segment offset from other OPC engines
* Potential performance limitation due to dependency on pre-collected dataset

* Reinforcement learning based method3

'Haoyu Yang, Shuhe Lj, et al. (2018). “GAN-OPC: Mask Optimization with
Lithography-guided Generative Adversarial Nets”. In: Proc. DAC, 131:1-131:6.

2Tetsuaki Matsunawa, Bei Yu, and David Z. Pan (2015). “Optical proximity correction with
hierarchical Bayes model”. In: Proc. SPIE. vol. 9426.

3Xiaoxiao Liang et al. (2023). “RL-OPC: Mask Optimization With Deep Reinforcement
Learning”. In: I[EEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.
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. Background: Deep Learning-based OPC

Reinforcement Learning

Reinforcement Learning investigates how intelligent agents makes sequential
decisions and interacts with RL environment to fetch the scores of the latest decision.
Objective: maximize accumulative reward

State

Action .
Environment

Reward

RL overview*.

“Xiaoxiao Liang et al. (2023). “RL-OPC: Mask Optimization With Deep Reinforcement
Learning”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.
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. Background: Deep Learning-based OPC

¢ RL-OPC®: encodes the local feature as input, decides segment movements, learns
the mapping from mask updating to mask quality improvement.

Transition Sample
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RL-OPC flow.

SXiaoxiao Liang et al. (2023). “RL-OPC: Mask Optimization With Deep Reinforcement
%La&zning". In: IEEE Transactions on Computer-Aided Design of Integrated Cigd
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. Insights

* Observations:

¢ Distinct masks may yield similar contours:
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. Insights

¢ Light proximity effect: in the
lithography process, the local light
intensity is determined by mask

ithi Mask
patterns within a larger
neighborhood.
Z(x,y) = optical(M) Projection
Lens

¢ Consistent with the fact that the
forward lithography process can
be approximated by
convolutional operations.
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* Regression-based OPC and RL-OPC decide segment movement solely by
analyzing its local features - frequent mask evaluation

¢ Enlarged solution space: effects of the neighboring segments’ movements are
neglected.
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* Regression-based OPC and RL-OPC decide segment movement solely by
analyzing its local features - frequent mask evaluation

¢ Enlarged solution space: effects of the neighboring segments’ movements are
neglected.

* Motivation:

® Based on observations, consider the neighboring segments as spatially

correlated.
® When processing multiple segments, regard them as coordinated in fixing

the contour displacement.




. Method: RL Preparation

e State: layout geometrical information, encoded by squish pattern®;
® Action: inward / outward movement for individual segment;

* Reward: the mask quality improvement after mask updating in each iteration:

_ |EPE{ — |EPE, |
|EPE| + ¢

PVB; — PVBiy
PVB;

t + 5 (1)

®Haoyu Yang, Piyush Pathak, et al. (2019). “Detecting multi-layer layout hotspots with
adaptive squish patterns”. In: Proc. ASPDAC, pp. 299-304.
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. Method: RL Decision Network

¢ Graph Neural Network (GNN): after segmentation, formulate the layout into a
graph, fuse the node features along the graph edges.

® Vertices: each individual segment;
® Graph edges: determined by segments distance;
* Node features: encoded neighborhood of each segment.

Lo=len= i =

¢ Recurrent Neural Network (RNN): sequentially processes the input embeddings
and recurrently records the historical contexts for deciding future incoming
segments.
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. Method: Correlation-aware Decision Framework

* Two attempts for capturing the spatial correlation:

® Graph encoding & feature fusing: graph edges determined by proximity
® Sequential decision using RNN, coordinately considers segments movements
on the fly
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The correlation-aware mask updating framework.
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. Method: OPC-inspired RL Modulator

* Observations:
¢ Solution space explosively grows with complex layout
® A purely data-driven learning scheme may not be efficient enough

¢ Fluctuated mask quality
600 |
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The EPE curve fluctuates on complex layout.

¢ Solution: integration of OPC domain knowledge for RL guidance.




. Method: OPC-inspired RL Modulator

® OPC principle: reduce the gap between light intensity and the threshold at target
pattern edges.

* Example: Large inner EPE — Intensity lacking — more light needed — may
prefer outward movement; vice versa.
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. Method: OPC-inspired RL Modulator

¢ Design a modulator to modulate the likelihood of each movement being selected
when deciding single segment.

* Based on the current EPE at each segment, generates a vector using a projector,
formulate its preference towards each movement:

rs Ty T3 Tz T() Qfrs T4 23 T2 1)

For negative EPE For positive EPE
(a) (b)

The projection function to derive the modulator for each segment by their EPE.
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Methodology: CAMO Framework

* Modulator: generates preference vector, element-wise multiplies with policy’s
prediction

| Policy g : WG(A‘Sf,)
! Prob. 1 Prob. n |

*ED

|
N ﬂ] : Litlhography
1 | simulator
1 Embed.fn !
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L__ _embeddings distributions | EpE,_,
The CAMO framework
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. Results: Numerical Comparisons

I DAMO m RL-OPC @ Commercial tool lmm Ours

¢ Experimental settings: o 1P
* Dataset: via & metal layer cases g !
® Via: 2um x 2um clips, # vias 2 to 0.5
6
® Metal: 1.5um x 1.5um clips, by ’ E_PE PV'_B RT .
OpenROAD, standard cells from Mask quality comparison on the via layer.
NanGate 45nm PDK
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Mask quality comparison on the metal layer.
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. Results: Modulator Effectiveness
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The EPE trajectories of two testcases, (a) without modulator, and (b) with modulator.
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