Parallel Grobner Basis Rewriting and Memory
Optimization for Efficient Multiplier Verification

Hongduo Liu!, Peiyu Liao!, Junhua Huangz, Hui-Ling Zhen?,
Mingxuan Yuan?, Tsung-Yi Ho!, Bei Yu!

1The Chinese University of Hong Kong
2Huawei Noah’s Ark Lab

March 27, 2024

Background

¢ Integer multipliers have wide applications in signal processing, cryptography,
scientific computing, etc.

¢ Formal Verification is essential to ensure reliability.

¢ Symbolic Computer Algebra (SCA) based methods have achieved SOTA
performance compared with BDD and SAT.

® Model the circuit as Grobner basis polynomials
G = {g1,..,gs} and the specification as a
polynomial sp.

® Rewrite the Grobner basis G to a new Grobner
basis G,, that has fewer variables. [Contribution
1: parallel rewriting]

sp = 883 + 4sy + 251 + So—

(201 + a0)(2br +) ¢ Reduce (divide) sp wrt. polynomials in G,,.
o = =834+ g1t [Contribution 2: double buffering and operator
fou = —g11 + gagr scheduling]

foo = =82+ 1—g12

R .
o = —g12+1— g0 — 910+ gogio Check the remainder.

2/6

Parallel Rewriting

* We observe that the elimination of certain variables can operate independently of
others.

¢ The elimination of (gs,gs) and (g9, g10) in the example AIG are independent of each
other and thus can be done in parallel.

Lso] [s] [l [s]
4 7

[a | [b | [b | [23] Lag [[b | [b | [3]
fos = —98 +1—9g5— g6 + 9596
fgs == —95 + 93 — 9293
fge = —Ggs + g2 — 9293

fos 7= =98 — 92 — 93 + 29293
Jo12 7= =912 — 91 — g7 + 29497

3/6

Procedure of Specification Polynomial Reduction

Suppose we desire to reduce sp = c1x1xx3 + - - - + cox2x4 through a Grobner basis
polynomial f,, = —x, + c3x5%6. The reduction process can be accomplished by the
following steps:

¢ Divide term: identify all terms containing the variable x; in sp, divide x, from those
terms and add them together to get guo := c1x1x3 + c2x4.

¢ Multiply poly: multiply the obtained quo with f,,, resulting in a polynomial
mul == —C1X1X2X3 + C1C3X1X3X5X6 — CoXoX4 + C2C3X4X5X6.

® Add poly: add mul to sp to cancel all terms containing the variable x,, which are
C1X1X2x3 and CpXpXy.

4/6

Double Buffering and Operator Scheduling

¢ Double buffering: Store sp; in the first buffer and sp; in the second bulffer. The first
buffer can be rewritten by sps.

® Operator scheduling: Suppose we have f; :== —a + h(T,) and f, := =3 + h(T3). h(T,)
and /(T) are both polynomials. If o ¢ 1(Ts), B ¢ h(Ts) and Vu € spy,u <2 r £ 0,

where u is a monomial in sp;, then the reduction of f; and f, can be performed
concurrently.

(@ pivide term
@ Multiply poly
(@) Add poly

(@ pivide term
(@) Multiply poly
(@) Add poly

(b)
(a) Original computation graph. (b) Computation graph after rescheduling. 5/6

Experimental Results

Table: Verification runtime comparison on multipliers generated by GenMul'.

benchmark size soates Amulet 2.22 Ours (16 threads)
& rewriting reduction overall rewriting reduction overall
SP-AR-LF 194314 0.98 0.16 1.30 0.43 0.57 115
SP-DT-LF 128x128 193806 2.26 0.38 2.82 0.45 0.82 1.39
SP-WT-BK 197774 2.31 2.65 524 0.48 1.26 1.92
SP-AR-LF 781834 6.20 0.87 7.72 2.37 1.52 4.55
SP-DT-LF 256 %512 780814 17.85 2.09 20.80 1.79 3.57 6.06
SP-WT-BK 790610 17.84 25.85 44.66 1.86 5.63 8.16
SP-AR-LF 3136522 55.42 5.70 63.81 10.94 6.97 20.13
SP-DT-LF 512x512 3134478 185.53 12.02 201.13 8.28 15.22 26.33
SP-WT-BK 3157890 186.46 322.87 512.96 8.84 33.05 45.02
SP-AR-LF 12564490 506.55 39.39 573.05 54.26 37.41 102.11
SP-DT-LF 1024x1024 | 12560398 1817.96 92.74 1940.23 38.32 73.96 123.68
SP-WT-BK 12606714 1807.25 3519.13 5356.14 37.65 311.19 360.71
Average Ratio ‘ 15.64 2.80 6.24 ‘ 1.00 1.00 1.00

! Alireza Mahzoon, Daniel Grofe, and Rolf Drechsler (2021). “GenMul: Generating
architecturally complex multipliers to challenge formal verification tools”. In: Recent Findings in
Boolean Techniques. Springer, pp. 177-191.

"Daniela Kaufmann and Armin Biere (2022). “Fuzzing and Delta Debugging And-Inverter Graph
Verification Tools”. In: International Conference on Tests and Proofs. Springer, pp. 69-88. 6/6

