

### Parallel Gröbner Basis Rewriting and Memory Optimization for Efficient Multiplier Verification

Hongduo Liu<sup>1</sup>, Peiyu Liao<sup>1</sup>, Junhua Huang<sup>2</sup>, Hui-Ling Zhen<sup>2</sup>, Mingxuan Yuan<sup>2</sup>, Tsung-Yi Ho<sup>1</sup>, Bei Yu<sup>1</sup>

<sup>1</sup>The Chinese University of Hong Kong <sup>2</sup>Huawei Noah's Ark Lab

March 27, 2024





## Background



- **Integer multipliers** have wide applications in signal processing, cryptography, scientific computing, etc.
- Formal Verification is essential to ensure reliability.
- Symbolic Computer Algebra (SCA) based methods have achieved SOTA performance compared with BDD and SAT.



- Model the circuit as Gröbner basis polynomials  $G = \{g_1, ..., g_s\}$  and the specification as a polynomial sp.
- Rewrite the Gröbner basis *G* to a new Gröbner basis *G<sub>n</sub>* that has fewer variables. [Contribution 1: parallel rewriting]
- Reduce (divide) sp wrt. polynomials in  $G_n$ . [Contribution 2: double buffering and operator scheduling]
- Check the remainder.

### Parallel Rewriting



- We observe that the elimination of certain variables can operate independently of others.
- The elimination of  $(g_5, g_6)$  and  $(g_9, g_{10})$  in the example AIG are independent of each other and thus can be done in parallel.



 $f_{g_6} := -g_6 + g_2 - g_2 g_3$ 



$$\begin{split} f_{g_8} &:= -g_8 - g_2 - g_3 + 2g_2g_3 \\ f_{g_{12}} &:= -g_{12} - g_4 - g_7 + 2g_4g_7 \\ \dots \end{split}$$

### Procedure of Specification Polynomial Reduction



Suppose we desire to reduce  $sp = c_1x_1x_2x_3 + \cdots + c_2x_2x_4$  through a Gröbner basis polynomial  $f_{x_2} = -x_2 + c_3x_5x_6$ . The reduction process can be accomplished by the following steps:

- Divide term: identify all terms containing the variable  $x_2$  in sp, divide  $x_2$  from those terms and add them together to get  $quo := c_1x_1x_3 + c_2x_4$ .
- Multiply poly: multiply the obtained *quo* with  $f_{x_2}$ , resulting in a polynomial  $mul := -c_1x_1x_2x_3 + c_1c_3x_1x_3x_5x_6 c_2x_2x_4 + c_2c_3x_4x_5x_6$ .
- Add poly: add mul to sp to cancel all terms containing the variable  $x_2$ , which are  $c_1x_1x_2x_3$  and  $c_2x_2x_4$ .

# Double Buffering and Operator Scheduling



- Double buffering: Store  $sp_1$  in the first buffer and  $sp_2$  in the second buffer. The first buffer can be rewritten by  $sp_3$ .
- Operator scheduling: Suppose we have  $f_1 := -\alpha + h(T_\alpha)$  and  $f_2 := -\beta + h(T_\beta)$ .  $h(T_\alpha)$  and  $h(T_\beta)$  are both polynomials. If  $\alpha \notin h(T_\beta)$ ,  $\beta \notin h(T_\alpha)$  and  $\forall u \in sp_1, u \xrightarrow{\alpha\beta} r \neq 0$ , where u is a monomial in  $sp_1$ , then the reduction of  $f_1$  and  $f_2$  can be performed concurrently.



(a) Original computation graph. (b) Computation graph after rescheduling.

### **Experimental Results**



Table: Verification runtime comparison on multipliers generated by GenMul<sup>1</sup>.

| benchmark     | size               | #gates   | Amulet 2.2 <sup>2</sup> |           |         | Ours (16 threads) |           |         |
|---------------|--------------------|----------|-------------------------|-----------|---------|-------------------|-----------|---------|
|               |                    |          | rewriting               | reduction | overall | rewriting         | reduction | overall |
| SP-AR-LF      | 128×128            | 194314   | 0.98                    | 0.16      | 1.30    | 0.43              | 0.57      | 1.15    |
| SP-DT-LF      |                    | 193806   | 2.26                    | 0.38      | 2.82    | 0.45              | 0.82      | 1.39    |
| SP-WT-BK      |                    | 197774   | 2.31                    | 2.65      | 5.24    | 0.48              | 1.26      | 1.92    |
| SP-AR-LF      | 1                  | 781834   | 6.20                    | 0.87      | 7.72    | 2.37              | 1.52      | 4.55    |
| SP-DT-LF      | 256×512            | 780814   | 17.85                   | 2.09      | 20.80   | 1.79              | 3.57      | 6.06    |
| SP-WT-BK      |                    | 790610   | 17.84                   | 25.85     | 44.66   | 1.86              | 5.63      | 8.16    |
| SP-AR-LF      | 512×512            | 3136522  | 55.42                   | 5.70      | 63.81   | 10.94             | 6.97      | 20.13   |
| SP-DT-LF      |                    | 3134478  | 185.53                  | 12.02     | 201.13  | 8.28              | 15.22     | 26.33   |
| SP-WT-BK      |                    | 3157890  | 186.46                  | 322.87    | 512.96  | 8.84              | 33.05     | 45.02   |
| SP-AR-LF      | 1                  | 12564490 | 506.55                  | 39.39     | 573.05  | 54.26             | 37.41     | 102.11  |
| SP-DT-LF      | $1024 \times 1024$ | 12560398 | 1817.96                 | 92.74     | 1940.23 | 38.32             | 73.96     | 123.68  |
| SP-WT-BK      |                    | 12606714 | 1807.25                 | 3519.13   | 5356.14 | 37.65             | 311.19    | 360.71  |
| Average Ratio |                    |          | 15.64                   | 2.80      | 6.24    | 1.00              | 1.00      | 1.00    |

<sup>&</sup>lt;sup>1</sup>Alireza Mahzoon, Daniel Große, and Rolf Drechsler (2021). "GenMul: Generating architecturally complex multipliers to challenge formal verification tools". In: *Recent Findings in Boolean Techniques*. Springer, pp. 177–191.

<sup>&</sup>lt;sup>2</sup>Daniela Kaufmann and Armin Biere (2022). "Fuzzing and Delta Debugging And-Inverter Graph Verification Tools". In: *International Conference on Tests and Proofs*. Springer, pp. 69–88.