SPI ADVANCED
@ LITHOGRAPHY+
PATTERNING

Differentiable Computational Lithography Framework

Guojin Chen' 2, Hao Geng?, Bei Yu!, David Z. Pan?

!CUHK, 2UT Austin, *ShanghaiTech
gjchenf@utexas.edu

March 7, 2024 % TEXAS
e

et The University of Texas at Austin

@ Background
1.1 Differentiable Programming
1.2 Lithography Simulation

@ Differentiable Lithography
2.1 Lithography Modeling
2.2 Implementation of Differentiable Lithography
2.3 Composable Differentiable Lithography

Differentiable Programming

Remember derivatives and gradients?

Derivative

e }\ /
raeptesnete fERSL

(Ruder, 2017) ¥

4/30

SPIE. riocrary
PATTERNING

: careful application of [SIEENBIBRRHeN Faelefatiy .

import jax
import jax.numpy as jnp

func(x): f: Rn b d Rm
)l/u:)1(in range(4): /\@
y += x[0]*k2 + jnp.sin(x[1]) + jnp.exp(-x[2])
y = y.sum() @
return y
exact gradients! i
(func)
. y=fix) dy=Jdx
.66867], dtype=float32))
1 TensorFlow o PYTSRCH 015 - V)
=
... but also C++, Fortran, ... a('xl’ (AR xn)

= methods for automatically computing gradients of
functions specified by a computer program.

5/30

Differentiable Programming

Execute differentiable code via automatic differentiation.

Differentiable programming: Writing software composed of differentiable and
parameterized building blocks that are executed via automatic differentiation and
optimized in order to perform a specified task.

@ A parameterized function (method / model / building blocks) to be optimized;
@ Automatic differentiability of the function to be optimized.

@ A loss to measure performance;

differentiable programming = programming languages + ER el b oNe SN F =SV okab = N Nes!.

Loop while loss is too high

Output H Loss]

Data Preprocessing
Computation graph rules
Unit tests

Computation graph

Weights +
biases

Feed input

Backpropagation via automatic dif f.

6/30

Differentiable programming: master quotes
Yann LeCun &
January 5, 2018 - Q

OK, Deep Learning has outlived its usefulness as a buzz-phrase.
Deep Learning est mort. Vive Differentiable Programming!

- - Andrej Karpathy & X
@karpathy - Follow

Gradient descent can write code better than you. I'm sorry.

3:56 PM - Aug 4, 2017 ®

@ 27K @ Reply & Share

7/30

Differentiable programming: Software 2.0

Program space

ifferentiable Programming

Software 1.0

Software
Software 2.0
World
Software 2.0 from Andrej Karpathy' Al is eating software from Jensen Huang’

Software 2.0: https:/ /karpathy.medium.com/software-2-0-a64152b37c35

2AlL https:/ /www.technologyreview.com / ai-is-going-to-eat-software /)
8/30

Background of Lithography

Lithography

I illumination A, o
¥ Y
L condenser
\ \
I . EEEEEEE A mask
4 |
| I aperture stop
L ya projection lens
6>
. NA :=nsinf

image plane

wafer stack

*Tim Fiihner. “Artificial Evolution for the Optimization of Lithographic Process Conditions”. In:

2014.
10/30

The scalar imaging equation

The scalar imaging equation under partially coherent illumination

I(x1,y1) = J1 ((x1,41) » (x1,¥1))
I [e (= oo = 38) O 3. 0) O° (40 (1
H (x1 — x0, 41 — Yo) H" (x1 — x0, y1 — o) dxo dyo dxodyp,

where O is the object function, the field of the photomask in the lithography case,
H is the projector transfer function, and J¢ is the mutual intensity, a weight factor,
of two points under extended source conditions.

Conclusion

The intensity at a point in the image plane is given by the propagation of the mutual
intensity of all contributing points, that is, of all points that lay in the support of the
projection system and the illuminator.

11/30

Abbe’s VS Hopkins’

® Abbe’s approach

® illumination cross-coefficients (ICC)

ICC(x,:f.8) —|HH(f+f g+ g)FM)(F',g) exp(—j2n(f'x +g'y)) df' dg'|.

¢ Abbe’s approach

xy) =[] J(f.9)1CC(x,y3f) df dg.

¢ Hopkins’ approach
° TCC
I(x,1) /// TR g) FM)(F, g\ F M) (8"

exp(—j2m((f' = f")x + (§' —¢")y))df'dg’df"dg”,

12/30

Abbe’s VS Hopkins’

Abbe Hopkins
TCC Kernel Approximation
Visualization .\]/I i
:]
Source .J Mask M Projector H Wafer Z Mask M Source J " Projector H Wafer Z
Complexity 0] (TL6) Can be accelerated using parallel 10) (n4) Accelerated by SOCS. Can be further
computing, or compressive sensing. accelerated using GPU parallel computing.

Application ‘ Source optimization. Source Mask Co-optimization. Fast lithographic simulation. Mask optimization.

13/30

What’s next?

Forward Lithography

.\
= G =d
[| }o Saud o i
N — e [
O =
Wafer Projection Lens Mask Lens Source

15/30

Computational Lithography

, | Computational

‘ Lithography J

.\

— G=h
L }o Oad I
N — e [

O =

Wafer Projection Lens Mask Lens Source

16/30

Lithography Modeling

MOSAIC LithoGAN DOINN Nitho
DAC

ICCADI13
Lithography
Modeling
= S3=D
| | do Oad o I
s ~" I
o5 \'\':-'1 ’

Wafer Projection Lens Mask Lens Source

17/30

Differentiability without surrogates

Inputs . Parameters —_— Outputs
x € R? Y eR” F(x,v)

Non-differentiable simulator (model)

18/30

Differentiability without surrogates

Inputs . Parameters —_— Outputs
x € R? Y €R" F(x, 1)

Non-differentiable simulator (model)

Automatic differentiation
(e.g., source-to-source transformation)

Inputs —_— —_— Outputs
T E Rd F(w7 11’)
Differentiable simulator with v, F/

¢ Use automatic differentiation tools to make the simulator directly differentiable.

18/30

From the Tao to the Technique

How can we implement differentiable lithography?

¢ Complex lithography setups can be composed of a pipeline of a series of distinct
modules i.e., source, lens, mask, aerial.

® One might need to differentiate through the whole end-to-end pipeline, which can be
achieved by compositionality and the chain rule.

Differentiable Chain

Forward Lithography

Source Q NA=nxsin(lmna) fi Source
Condenser £, l

Masks In Lens

Lens l

Pupil Index of fm Mask

Lens refraction

' !

Resist fr Aerial

Substrate
(b)
(a) Core components of forward lithography process. (b) The visualization of the differentiable

lithography chain.
19/30

Differentiable Lithography

¢ Differentiable analysis

¢ Unify analysis pipeline by simultaneously optimizing the free parameters of an
analysis with respect to the desired physics objective.

¢ Differentiable simulation

¢ Enable efficient simulation-based inference, reducing the number of events
needed by orders of magnitude.

20/30

Differentiable Source Module

Source @)

eoce
7N

class Source:
"n"Source.data is used for Abbe fomulation

Source.ndata is used for Hopkins fonulation, Mutual .
Tntensity, TCC calculation. o Condenser © 1 . Inlt Parameters
def _init_(

2. Calculate source

::vele:;:h? Float = 193.0, MaSkS
Forwar(s

maskxpitch: float = 2000.0,
maskypitch: float = 2000.0,

signa_out: float = 0.8,

signa_in: float = 0.6,

smooth_deta: float = 0.03,

source_type: str = "annular”, Lens

shiftAngle: float = math.pi / 4,

openAngle: float = math.pi / 16,

« Backward —

self.na = na

self.wavelength = wavelength Pupll

self.maskxpitch = maskxpitch
self.maskypitch = maskypitch

Calculate source gradient

i e Lens .
with respect to source value

self.openAngle = opendn
self.type = source_type

::E:essd:a\::lat)nn Resist
e Substrate

*https://github.com/TorchOPC/TorchLitho
21/30

https://github.com/TorchOPC/TorchLitho

Differentiable Mask Module

class Mask
def _init_(

y. ze
Co=us,

Source

Condenser

gds_path: str,
layernane: int = 11,

Masks

self.x_range = [-xmax, xvax] # nm Lens
self.y_range =

self.x_gridsize

self.y_gridsize = y_gridsize
self.mask_groups = [1

self.CD = (D

self.gds_path = gds_path
self.layernane = layernane
Self.pixels_per_un = pixels_per_un

Pupil

Lens

Process calculation

self.openGDS()
self.maskfft()

Resist
Substrate

*https://github.com/TorchOPC/TorchLitho

1. Init mask layout / params

e— Forward m—-

« B ackward —

Calculate gradient
with respect to mask params

2. Calculate mask spectrum /value

22/30

https://github.com/TorchOPC/TorchLitho

Differentiable Le odule

Source @)

Condenser ~<—— 1. Init projection parameters
2. Calculate PSF / TCC

Masks
ctas Lossions: Forward -
wr _tnie_C Lens
B . « Backward me—
Pupil
A p— Calculate gradient
o Lens .
: with respect to lens params
Resist
Substrate

*https://github.com/TorchOPC/TorchLitho
23/30

https://github.com/TorchOPC/TorchLitho

Differentiable Chain

Adjoint Differentiable Chain

Training

Source Lens Mask Resist l

]]

1 1

1 1

i Neural i < Loss
1

Hi 0h 9n1 Hr enet

= Forward <@—— Backward

24/30

Composable Differentiable Lithography

Composable config

Adjoint Differentiable Chain

Set

Source Lens Mask Resist
E Pluggable E
¢ ¢ ¢ ! Neural | Loss
i_ Network
01 Gh em e'r Gnet
—» Forward <~ Backward

25/30

Differentiable Lithography Applications

Differentiable Chain RETs Tasks

Parameter tunin,
fi In fm r £

Mask Optimization
—o0 —o —o0 >
SMO
Source Lens Mask Aerial

Resist modeling

t |

Feedback Parameters

26/30

Multi-level optimization framework.

P,: 0 =argmin C,(0n,Un, L,; D) > Level n problem
On
P s.t. 0y = argmin Cy (0, Uy, Li; D) > Level k € {2,...,n — 1} problem
[
P s.t. 07 = argmin Cy(61,U,L1;D1) > Level 1 problem

Source Optimization : optimize source parameters, fix others.

Mask Optimization : optimize mask parameters, fix others.

Source Mask Optimization : bi-level optimization for source and mask

*https://github.com/TorchOPC/TorchLitho
27/30

https://github.com/TorchOPC/TorchLitho

] DAMO?!] ’i“EMPO34 \ DOINN?32 | Ours
\mPA mIOU \ mPA mIOU \ mPA mIOU| mPA mIOU

Dataset

Benchmark133 952 91.1 | 946 88.7 |99.19 98.32 | 99.45 99.21
Benchmark23® 98.97 97.31 | 9824 96.55 | 98.79 97.1 | 99.15 99.02
Benchmark33® 99.11 93.56 | 99.06 93.28 | 99.21 98.41 | 99.59 99.34
Benchmark433:3% | 99.01 97.1 | 98.63 95.84 | 98.71 96.68 | 99.61 99.36

Average 98.07 94.77 | 97.63 93.59 | 98.98 97.63 | 99.45 99.23
Ratio 0.99 0.96 0.98 0.94 0.99 0.98 1 1

The comparison of the proposed method and the SOTA method.

28/30

[1] Tim Fithner. “Artificial Evolution for the Optimization of Lithographic
Process Conditions”. In: 2014.

THANK YOU!

	Background
	Differentiable Programming
	Lithography Simulation

	Differentiable Lithography
	Lithography Modeling
	Implementation of Differentiable Lithography
	Composable Differentiable Lithography

	References

