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Introduction



Background

@ By leveraging massive amounts of unlabeled data during training, pre-trained
vision-language models can learn highly performant and generalizable
representations, leading to improvements on various downstream tasks.

@ As model sizes continue to grow rapidly, fine-tuning is increasingly affected by the
parameter-efficiency issue. To address this challenge, researchers proposed
parameter-efficient fine-tuning to achieve high parameter efficiency and
demonstrated promising results on various downstream tasks.
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Attention in transformer

Given query Q € RN key K € RN2*% and value V € RN2X% attention
aggregates the features by:

Attn(Q,K,V) = MV, 1)
where
-
M = softmax <?;<5Tk ) )

represents the attention weights, N and N are the number of the query and
key/value features, respectively.

4/22



Adapter? //.»

An adapter is a small learnable module containing two matrices Wyown € Rhxh,
Wyp € R2%h and a non-linear function o(-), where I; and I, are the feature
dimensions in pre-trained models and the hidden dimension in adapter (usually
I, < I). Given a feature U € RN*!l in the pre-trained model, the adapter encoding
process can be represented as:

u' = U(uwdown)wup +U. 3)

!Neil Houlsby et al. (2019). “Parameter-efficient transfer learning for NLP”. In: Proc. [CML.
PMLR. 5/22



Modeling adapter as graph message passing

From Equation (3) and Equation (1), we can formulate the features sequentially
encoded by attention and adapter as:

u = o (MVW,W,W4ouwn) Wyp + MVW,W,, 4)

where M € RN1*N2 jg the attention matrix computed by the transformed query
QW, and key KW using Equation (2).
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Modeling adapter as graph message passing A

M 25
M Vvw, M ‘7 gattn
(a) Attn. (b) Augmented Attn. (c) Attn. graph

Ilustration of the generation of the bipartite attention graph Gs.

We define the augmented value feature V which concatenates the transformed
query and value and the augmented attention matrix M as

oo [ a4
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Modeling adapter as graph message passing A

M o5
M VW, M ‘7 gattn
(a) Attn. (b) Augmented Attn. (c) Attn. graph

Ilustration of the generation of the bipartite attention graph Gs.

Defining the projected augmented value feature V = VW,, with the augmented
attention mechanism, we can further define the augmented adapter encoding
process by:

U' = 6(MVWggyn)Wyp + MV. (6)
Comparing Equation (4) and Equation (6), we indicate that the adapter encoding
process and the augmented one are equal. Since M is a square and symmetric
matrix, we can regard it as the adjacency matrix of the attention graph G, 8/22



Problem formulation

-value query

-value query
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(a) Self-attention (b) Cross-attention

The t-SNE? visualization of the features in the projected query and value space for self- and
cross-attention. The VLM is BLIPCapFﬂf.L3 and data come from COCO Captions4.

*Laurens Van der Maaten and Geoffrey Hinton (2008). “Visualizing data using t-SNE.”. In:
Journal of machine learning research 9.11.

3Junnan Li et al. (2022). “Blip: Bootstrapping language-image pre-training for unified
vision-language understanding and generation”. In: Proc. ICML.

4Tsung-Yi Lin et al. (2014). “Microsoft coco: Common objects in context”. In: Proc. ECCV.

Springer, pp. 740-755. 9/22



Method



p-Adapter architecture //.»

For p-adapter, we take the attention matrix M and the projected augmented value
feature V, as the output of attention. Note that this transformation does not alter
any learned parameters in attention. Then, we augment the attention matrix to M,
as shown in Equation (5). Following p-Laplacian message passing, we normalize
the augmented attention matrix by:

p—2

; @)

where D is the degree matrix of M. Further, we can aggregate the features using
the calibrated attention matrix M by

U =aD Y?MD~V2V + BV, 8)

where & and 3 are caculated according to the algorithm in p-Laplacian message
passing. With the aggregated feature U, we encode it with the learnable adapter
weights by:

U' = o (UWqown)Wup + U, (9)11/22



p-Adapter architecture

I'J_ec_od_er_ ________

Add & LN
Feedforward

Add & Layer Norm

Add & Layer Norm

Self-Attention

Image Input

:l Tunable during adaptation
:I Fixed during adaptation
: Feature aggregation

using Equation (15)

Feature re-normalization L
using Equation (14)

Text Input

Overall architecture of p-adapter
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Experiments



Tasks and datasets /

@ For VQA, we consider it as an answer generation problem. We test our model on
VQAZ2.0° with the widely-used Karpathy split and VizWizVQAS®.

@ For VE, we adopt SNLI-VE as the evaluation benchmark.

® For image captioning, we conduct extensive experiments on three benchmarks, i.e.,
COCO Captions® with Karpathy split’, TextCaps'?, and VizWizCaps!!.

>Yash Goyal et al. (2017). “Making the v in vqa matter: Elevating the role of image understanding
in visual question answering”. In: Proc. CVPR, pp. 6904-6913.
Danna Gurari, Qing Li, et al. (2018). “Vizwiz grand challenge: Answering visual questions from
blind people”. In: Proc. CVPR, pp. 3608-3617.
"Ning Xie et al. (2019). “Visual entailment: A novel task for fine-grained image understanding”.
In: arXiv preprint arXiv:1901.06706.
8Tsung—\(i Lin et al. (2014). “Microsoft coco: Common objects in context”. In: Proc. ECCV.
Springer, pp. 740-755.
° Andrej Karpathy and Li Fei-Fei (2015). “Deep visual-semantic alignments for generating image
descriptions”. In: Proc. CVPR, pp. 3128-3137.
%Qleksii Sidorov et al. (2020). “Textcaps: a dataset for image captioning with reading
comprehension”. In: Proc. ECCV. Springer, pp. 742-758.
"Danna Gurari, Yinan Zhao, et al. (2020). “Captioning images taken by people who are blind”.
In: Proc. ECCV. Springer, pp. 417-434. 14/22



Implementation details

@ Our experiments are implemented in PyTorch!? and conducted on 8 Nvidia 3090
GPUs.

@ We validate our method on two generative pre-trained VLMs, BLIPCapFilt_L13 and
mP LUGViT_BM.

12 Adam Paszke et al. (2019). “Pytorch: An imperative style, high-performance deep learning
library”. In: Proc. NeurIPS 32.

BJunnan Li et al. (2022). “Blip: Bootstrapping language-image pre-training for unified
vision-language understanding and generation”. In: Proc. ICML.

“Chenliang Li et al. (2022). “mPLUG: Effective and Efficient Vision-Language Learning by
Cross-modal Skip-connections”. In: arXiv preprint arXiv:2205.12005. 15/22



Comparison with transfer learning methods

Updated VQA2.0 VizWizVQA SNLI_VE COCOCaps TextCaps VizWizCaps
Method Params Karpathy test test-dev test-P Karpathy test test-dev test-dev Avg.
(%) Acc.(%) Acc.(%)  Acc(%) BLEU@4 CIDEr BLEU@4 CIDEr BLEU@4 CIDEr
BLIPCaprilt-L
Full fine-tuning ~ 100.00 70.56 36.52 78.35 39.1 128.7 27.1 91.6 45.7 170.0 76.40
Prefix tuning 0.71 60.49 22.45 71.82 394 127.7 248 80.0 406 1533  68.95
LoRA 0.71 66.57 33.39 77.36 383 1283 246 822 413 1543 7181
Adapter 6.39 69.53 35.37 78.85 389 1288 254 86.7 433 1605 7415
p-Adapter (Ours)  6.39 70.39 37.16 79.40 404 1309  26.1 87.0 445 1641 7554

Table: The main results on various datasets for full fine-tuning, adapter'®, prefix tuning!®,
LoRA', and our proposed p-adapter. We bold the scores for full fine-tuning and the
highest scores separately for approaches with PETL methods.

>Yi-Lin Sung, Jaemin Cho, and Mohit Bansal (2022). “Vl-adapter: Parameter-efficient transfer
learning for vision-and-language tasks”. In: Proc. CVPR.

!6Xiang Lisa Li and Percy Liang (2021). “Prefix-Tuning: Optimizing Continuous Prompts for
Generation”. In: Proc. ACL.

7Edward ] Hu et al. (2022). “Lora: Low-rank adaptation of large language models”. In:
Proc. ICLR. 16/22



Comparison with transfer learning methods

Updated VQA2.0 VizWizVQA SNLI_VE COCOCaps TextCaps VizWizCaps
Method Params Karpathy test test-dev test-P Karpathy test test-dev test-dev Avg.
(%) Acc.(%) Acc.(%)  Acc(%) BLEU@4 CIDEr BLEU@4 CIDEr BLEU@4 CIDEr
mPLUGv;T.B
Full fine-tuning ~ 100.00 70.91 59.79 78.72 40.4 134.8 23.6 74.0 42.1 157.5 75.76
Prefix tuning 0.71 60.95 47.42 72.11 398 1335 188 519 355 1356  66.18
LoRA 0.71 66.67 52.49 75.29 394 1294 210 644 395 1460 7046
Adapter 6.39 70.65 56.50 78.56 403 1347 229 71.5 419 1556 7473
p-Adapter (Ours)  6.39 71.36 58.08 79.26 404 1353  23.2 73.3 431 160.1  76.01

Table: The main results on various datasets for full fine-tuning, adapter'8, prefix tuning!?,
LoRA?, and our proposed p-adapter. We bold the scores for full fine-tuning and the
highest scores separately for approaches with PETL methods.

8Yi-Lin Sung, Jaemin Cho, and Mohit Bansal (2022). “Vl-adapter: Parameter-efficient transfer
learning for vision-and-language tasks”. In: Proc. CVPR.

Xiang Lisa Li and Percy Liang (2021). “Prefix-Tuning: Optimizing Continuous Prompts for
Generation”. In: Proc. ACL.

“Edward J Hu et al. (2022). “Lora: Low-rank adaptation of large language models”. In:
Proc. ICLR. 17/22



Ablation studies

VQA2.0 SNLI_VE COCOCaps

GNN  Ace(%) Acc(%) BLEU@4 CIDEr V8
GCN 69.53 78.85 389 1288 79.02
APPNP 7022 79.03 394 1291 79.44
GCNII 7013 79.12 397 1297  79.66
PGNN  70.39 79.40 404 1309 80.27

Table: Ablation study on the graph neural networks.
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Visualization

. 3 Q: Are the desktop . ) sats ¢ N
Q:Doyousee  »: No (adapter) A: Yes (p-adapter) | | picture duplicated A No (adapter) A: Yes (p-adapter) | | Arc cats and dogs x. N (adapter) - A: Yes (p-adapter)

the number 257 sleeping together?

on the screens?

Visualization of the attention.

@ To validate the effectiveness of p-adapter, we visualize?! the cross-attention weights
at the last transformer layer on some VQA?? data.

@ We take the [CLS] token as the query since it represents the whole question and plot
the attention weights on the image features in the key/value space.

?'Hila Chefer, Shir Gur, and Lior Wolf (2021). “Transformer interpretability beyond attention
visualization”. In: Proc. CVPR, pp. 782-791.

*Yash Goyal et al. (2017). “Making the v in vqa matter: Elevating the role of image understanding
in visual question answering”. In: Proc. CVPR, pp. 6904-6913. 19/22



Conclusion



Conclusion

@ We first propose a new modeling framework for adapter tuning® after attention
modules in pre-trained VLMs. Within this framework, we can identify the
heterophilic nature of the attention graphs, posing challenges for vanilla adapter
tuning?*.

@ To mitigate this issue, we propose a new adapter architecture, p-adapter, appended
after the attention modules. Inspired by p-Laplacian message passing?, p-adapters
re-normalize the attention weights using node features and aggregate the features
with the calibrated attention matrix.

© Extensive experimental results validate our method’s significant superiority over
other PETL methods on various VL tasks.

2Yi-Lin Sung, Jaemin Cho, and Mohit Bansal (2022). “Vl-adapter: Parameter-efficient transfer
learning for vision-and-language tasks”. In: Proc. CVPR.
2Yi-Lin Sung, Jaemin Cho, and Mohit Bansal (2022). “Vl-adapter: Parameter-efficient transfer
learning for vision-and-language tasks”. In: Proc. CVPR.
»Guoji Fu, Peilin Zhao, and Yatao Bian (2022). “p-Laplacian Based Graph Neural Networks”. In:
Proc. ICML. 21/22
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