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Abstract—Designing a system-on-chip (SoC) for deep neural network
(DNN) acceleration requires balancing multiple metrics such as latency,
power, and area. However, most existing methods ignore the interactions
among different SoC components and rely on inaccurate and error-
prone evaluation tools, leading to inferior SoC design. In this paper,
we present SoC-Tuner, a DNN-targeting exploration framework to find
the Pareto optimal set of SoC configurations efficiently. Our framework
constructs a thorough SoC design space of all components and divides
the exploration into three phases. We propose an importance-based
analysis to prune the design space, a sampling algorithm to select the
most representative initialization points, and an information-guided multi-
objective optimization method to balance multiple design metrics of SoC
design. We validate our framework with the actual very-large-scale-
integration (VLSI) flow on various DNN benchmarks and show that it
outperforms previous methods. To the best of our knowledge, this is
the first work to construct an exploration framework of SoCs for DNN
acceleration.

I. INTRODUCTION

Designing system-on-chip (SoC) for deep neural network (DNN)
acceleration is getting increasingly critical and challenging. To keep
up with the rapid evolution of the DNN algorithm, the demand for the
optimization of DNN accelerators increases as well. Although many
approaches have been proposed over the past few decades to optimize
accelerator design, they may suffer from the rapidly growing scale
and complexity and can not perform as effectively or efficiently on
the advanced SoC design.

The first challenge is accurate performance evaluation. For example,
some existing works targeting accelerators [1]–[5] ignored discussions
on the interaction between the host processor and the accelerator in
SoCs, ignoring the costs of communication and control. Therefore,
the overall inference latency of DNN given by these tools may
be inaccurate, which hinders the design of an optimal accelerator.
Meanwhile, some analytical tools [6]–[8] are proposed to evaluate
SoC design swiftly. However, these tools only consider very limited
parameters of SoC architecture and rigidly report the calculation of
single-layer, which brings huge gaps to the reporting values and the
actual metrics. We tackle this problem by implementing the complete
very-large-scale-integration (VLSI) flow for authentic and detailed
evaluation.

The following challenge is the exploration difficulty, which is rather
critical as the SoC design gets more complicated. It usually requires
many rounds of improvement iterations [9] with domain expertise
to get optimal design. Time costs will be enormous if we avoid
error-prone simple analytical models, as mentioned above. Apart from
that, The exploration process is heavily dependent on the personal
experience of architects, which may bring personal bias in design
optimization and result in inferior SoC design.

To bridge the bottlenecks mentioned above, we propose SoC-Tuner,
an importance-guided exploration framework to find the optimal SoC
design for DNN acceleration. SoC-Tuner aims to find the optimal
SoC design, which balances multiple metrics including inference
latency, power consumption, and chip area for various DNNs. Our
contributions can be concluded as follows:

SRAML1 
ICache+
DCache

BOOM/Rocket
Core

CPU

L2    Cache

Tile Tile

Tile Tile

Tile Tile

Tile Tile

Tile Tile

Tile Tile

Tile Tile

Tile Tile

Systolic Array Mesh

Tile

Tile

Tile

Tile

Tile Tile Tile Tile Tile

… … … … …

…

…

…

…

…

Accumulator
SRAM

Bank K

Bank 0

Bank 1

…

ReLU 

Pooling Mat Scaler

NormalizerIm2col 

Transposer

Function Units

Controller
DMA

Local  TLB 

Reservation
Station

Scratchpad

Bank 0

Bank 1

Bank 2

…

Bank L

Accelerator

R
oC

C 
Cm

d

Loop
Unroller

R
oC

C 
PT

W

PE PE

PE PE

…

…

…

… …

PE

PE

PEPEPE

Sy
st

ol
ic

 T
ile

…

…

Weight B
Input

Activation A

Partial Sum D 
(From PE above)

Weight 
Preload

Forward
Input

Partial Sum C 
 (To PE below)

WS

Acc D

Input 
Activation A

Input 
Weight B 

Accumulator
Preload

Partial Sum C

OS

Fig. 1 Architecture of a SoC with a systolic-based accelerator.

• We thoroughly consider various SoC components that influence
DNN computations and construct a huge design space to avoid
insufficient evaluation of overall DNN inference.

• We employ actual very-large-scale-integration (VLSI) flow to
evaluate multiple metrics, which achieves more accurate mod-
eling of SoC than simplified analytical tools.

• We propose an importance-based analysis to prune the design
space, a sampling algorithm to select the most representative
initialization points, and an information-guided multi-objective
optimization method to balance multiple design metrics of SoC
design.

• Experimental results demonstrated the efficiency and effective-
ness of our framework on various benchmarks compared to some
state-of-the-art methods.

II. PRELIMINARIES

A. SoC with DNN Accelerator

A typical DNN-targeting SoC containing an accelerator is shown
in Fig. 1, where the systolic array [10] [11] is one of the most widely
used architectures for DNN accelerators. In Fig. 1, the CPU allocates
instructions to the accelerator using Rocket [12] co-processor com-
mand (RoCC) instructions including Load, Store, and Execute.
The SRAM stores the DNN models to be computed by the accelerator.
The CPU and accelerator share L2 cache.

To facilitate designing SoC rapidly, we employ the agile hard-
ware development method. It aims to construct highly modeled and
parameterized hardware components in Chisel [13] language, which



can be easily initiated with various architecture parameters. Chipyard
[14] is integration with a variety of hardware components like CPU
cores (e.g., in-order Rocket [12] and out-of-order CPU core BOOM
[15]) and co-processors (e.g., vector-thread processor Hwacha [16]
and DNN accelerator Gemmini [17]). It provides us an opportunity to
easily design new SoC architectures given existing components.

Designing an optimal SoC design with given components is time-
consuming and complicated. Previous work [9] explores the design
space of microarchitecture of processor core with learning methods,
and [18] utilizes a ranking-based approach to explore the optimal
design of CPU core. However, these works solely focus on a single
processor and bring challenges to more complicated systems like
SoC. In SoC design, the control logic and computations are rather
complicated due to the interactions between various components
shown in Fig. 1. Moreover, the design space of SoC is more huge than
a single CPU. Therefore, an exploration framework for characteristics
of SoC design is necessary.

B. Problem Formulation

Definition 1 (SoC Architecture Design). A combination of the features
listed in TABLE I is denoted as a design point x of SoC, and all design
points make up the entire design space X. An SoC architecture can be
determined by a design point x. We define the SoC design problem as
finding an x ∈ X to design an SoC that balances the latency, power,
and area for various DNNs.

Definition 2 (Multi-objectives Optimization of SoC). Multi-objective
optimization of SoC is defined to find x ∈ X to trade-off m objective
functions {f1(x), · · · , fm(x)}. We define y = F(x) = (y1, · · · , ym),
where different yi = fi(x) is obtained by various evaluation tools
based on x. All y formulates metrics space Y = {y|y = F(x),x ∈
X}.

Definition 3 (Pareto Optimal Set of SoC). For an optimization
problem, an m-dimensional objective y = F(x) is said to be
dominated by y∗ = F(x∗) if

∀i ∈ [1,m],Fi(x) ≤ Fi(x
∗);

∃j ∈ [1,m],Fj(x) < Fj(x
∗),

(1)

where we denote y∗ ≽ y to represent this situation. In the entire
design space, a set of design points not dominated by any other points
form the Pareto optimal set. In the Pareto optimal set, a design point
can not be optimized without sacrificing other objectives.

In the design space exploration of SoC, the chip area, inference
latency, and power consumption are a group of negatively correlated
metrics, so an SoC design cannot improve one metric without sacri-
ficing another metric. Therefore, to design an optimal SoC is to find
the Pareto optimal set of SoC designs, and then choose one design
point that balances multiple objectives.

Problem 1 (Design Space Exploration of SoC). Given an SoC design
space X, and the metrics space Y = {y|y = F(x),x ∈ X}, we define
the design space exploration of SoC as finding a subset X∗ ∈ X, whose
corresponding metrics Y∗ form the Pareto optimal set. Hence,

Y
∗ = {y∗|y∗ ⪰̸ y,∀y ∈ Y},

X
∗ = {x|F(x) ∈ Y

∗, ∀x ∈ X}.
(2)

III. METHODOLOGY

A. Overview of SoC-Tuner

The overall flow of our framework is displayed in Fig. 2, which
contains three parts, including SoC Design Space Construction, VLSI
Flow, and Exploration Flow.
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Fig. 2 The overall flow of the proposed SoC-Tuner.

In SoC Design Space Construction, we implement a Chisel gener-
ation tool to take in design points from design configurations and
generate Verilog-based SoC design in Chipyard. Then we utilize
the VLSI Flow that consists of several tools colored in yellow and
intermediate files colored in gray. Its outputs are important metrics like
latency, power, and chip area of SoC. To evaluate the performance on
DNN workloads, popular DNNs like ResNet, MobileNet, Transformer,
etc. are provided in open neural network exchange (ONNX) format
or C code. In the Exploration Flow, the metrics data from the VLSI
Flow are fed in to optimize the SoC design. We propose an inter-
cluster distance (ICD) algorithm for design space pruning, and an
SoC-Init algorithm for exploration initialization, which improve the
efficiency of exploration efficiency of huge design space. Finally, we
employ correlated multi-objective Bayesian optimization to find the
Pareto optimal set of SoC designs that balance multiple metrics. The
details of SoC-Tuner will be elaborated as follows.

B. SoC Design Space Construction

In Fig. 1, the blue part shows the detailed structure of a mesh of
tiles in the systolic array. A tile is an array consisting of a grid of
processing elements (PEs) that can perform parallel multiplication-
accumulation (MAC): C = A×B +D, where A,B,D represent the
activation matrix, the weight matrix, and the result of the prior MAC,
respectively. The right part of Fig. 1 illustrates the details of these two
modes of the systolic array, i.e., weight-stationary (WS), and output-
stationary (OS). In WS mode, the weight of DNNs is pre-stored in the
PEs, while in OS mode, the partial sum of computations is pre-stored
in the systolic array. We can choose either mode or both of them in
an SoC design depending on different DNNs.

By thoroughly considering all components that influence the metrics
of SoC, we build the TABLE I that lists the design parameters of the
whole SoC in Fig. 1. All combinations of features in TABLE I form a
huge design space of all possible SoC designs. The SoC parameters are
classified into several groups i.e., CPU core & L2 cache, systolic array,
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TABLE I Selected parameters from the SoC containing a systolic-
based accelerator

Components Descriptions Candidate Values

HostCore Various Host CPU core c1, c2, c3
L2Bank Entries of L2 cache banks 1, 2, 4
L2Way Entries of L2 cache way 4, 8, 16
L2Capa Capacity of L2 cache bank 128, 256, 512

Tilerow/col Dimension of the tile 1, 2, 4, 8
Meshrow/col Dimension of the mesh 8, 16, 32, 64

Dataflow Dataflow mode of systolic array WS, OS, BOTH
InputType Bit width of input datatype 8, 16, 32
AccType Bit width of accumulator datatype 8, 16, 32
OutType Bit width of output datatype 8, 20, 32

SpBank Banks of scratchpad memory 4, 8, 16,32
SpCapa Entries of scratchpad bank 64, 128, 256, 512

AccBank Banks of accumulator memory 1, 2 ,4 ,8
AccCapa Entries of accumulator bank 64, 128, 256, 512

LdQueue Entries of the Lord queue 2, 4, 8, 16
StQueue Entries of the Store queue 2, 4, 8, 16
ExQueue Entries of the Execute queue 2, 4, 8, 16

LdRes Entries of the Lord in ROB 2, 4, 8, 16
StRes Entries of the Store in ROB 2, 4, 8, 16
ExRes Entries of the Execute in ROB 2, 4, 8, 16

MemReq memory requests in-flight 16, 32, 64
DMABus Width of DMA bus 32, 64, 128

DMABytes Number of bytes in DMA bus 32, 64, 128
TLBSize Size of TLB page 4, 8, 16

accelerator memory, accelerator controller, and RoCC communication
shown from the top to the bottom of TABLE I. Three representative
CPU cores, i.e., c1 (LargeBoom), c2 (LargeRocket), and c3
(MedRocket) are chosen as the candidates of the host core. For
the

C. Importance-based Pruning and Initialization

Importance-based SoC Design Space Pruning. Designing an SoC
with high performance is complicated and time-consuming. Devel-
opers should choose the most representative design points to evaluate
the SoC design and get adequate information to guide the design. Due
to the time-consuming VLSI flow, only a limited number of designs
will be synthesized to obtain evaluation metrics. However, randomly
sampling the design parameters like [19] may ignore some domain-
specific knowledge in SoC design.

In fact, there exist important features that have a significant influ-
ence on the metrics of the SoC, which means that by slightly changing
the feature value, the metrics will change heavily. To model this influ-
ence, we use a vector v to denote the importance of each parameter
and propose Algorithm 1 to evaluate the parameter importance via a
few VLSI flow trials. In Algorithm 1, line 1 represents a few VLSI
trials, and line 4 clusters the metrics space Y′ into several groups
according to candidates of various design features. Line 5 ∼ 8 is to
get the average metric vectors of each group. Line 9 illustrates the
conclusion of inter-cluster distance (ICD), where C

|M|
2 is the number

of two-combination in average vectors M . Finally, after normalization,
a dx-dimension vector v is given to represent the importance of each
design feature.

Considering all the features listed in TABLE I, the whole SoC
design space X is too huge to fully explore. To avoid unnecessary
exploration brought by less important feature parameters, the original
design space X will be pruned based on v given by the ICD algorithm.
Supposing {x1

i , · · · ,xj
i} indicates the j candidates of the ith feature

of design point x, we can use ICD vector v to prune the design space,
shown in line 1 of Algorithm 2, where vth represents the importance
threshold. Higher vth will remove more design points, and medium(.)
chooses the medium value.
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Fig. 3 A toy example with two features shows the transformation from
the original space to the ICD space.

Algorithm 1 ICD (X, n)

Input: (X, n), where X is the whole design space, n is the trial
times of importance analysis. In a dx-dimension design point x =

{x1, x2, ..., xdx} ∈ X, each feature xi, i ∈ {1, · · · , dx} has ti design
candidates. And dy is the dimension of the metrics y ∈ Y.

Output: The feature importance value factor v.
1: Y′ = VLSIFlow(Sample(X, n));
2: v = ∅, M = ∅;
3: for i ∈ {1, 2, · · · , dx} do
4: {Y′

1, · · · ,Y′
ti
} ← Y′; ▷ clusters based on ti candidates of xi.

5: for j ∈ {1, 2, · · · , ti} do
6: mj = mean(Y′

j); ▷ average vector of Y′
j .

7: M = M
⋃
{mj};

8: end for

9: vi =

∑
p,q ||mp −mq ||2

C
|M|
2

, p, q ∈ {1, · · · , ti};

10: v = v
⋃
{vi};

11: end for
12: v = normalize(v);
13: return v;

Importance-based SoC Exploration Initialization. To take the im-
portance value into initialization, line 2 in Algorithm 2 uses element-
wise multiplication ⊙ to transform the original design space to ICD
space. In this way, design points with similar influences on metrics
will move closer, and points with significant differences in metrics
will move more separately.

Fig. 3 shows a toy example with 2 design features for transforming
from the original space to the ICD space, where feature1 is important
and feature2 is less important. After importance-based transformation
with v, cfg2′ will move closer to cfg1′, while cfg3′ will move
further from cfg1′. In this way, the importance of parameters is
introduced to ICD space when uniformly samples design points for
initialization of space exploration. After the exploration, the Pareto
optimal set will be transformed into the original space to use the
feature parameters to design the optimal SoC.

To summarize the methods mentioned above, we proposed an
importance-guided SoC-Init algorithm shown in Algorithm 2. The
most significant inputs of the algorithm are the original design space,
and the ICD values obtained from Algorithm 1. Given the ICD design
space X′ after pruning (line 1) and space transformation (line 2), the
SoC-Init algorithm will sample a subset Z ∈ X′ for initialization
of exploration. In line 3, K = KX′X′ ∈ R|X′|×|X′| is the distance
matrix of all design points in X′, and Φ(x′

i,x
′
j) ∈ KX′X′ , i, j ∈

{1, 2, · · · , |X′|} is computed as Euclidean distance, with x′
i,x

′
j ∈ X′.

To make the initial configurations have higher diversity and scatter the
whole design space, we use the TED [20] method to sample design
points from the ICD space. The design points that contribute most to
initialization will be sampled by Algorithm 2.
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Algorithm 2 SoC-Init(X, u, b,v, vth)

Input: (X, u, b,v, vth), where X is the un-sampled design space, µ is the
normalization coefficient, b is the number of configurations we will
sample, v is the ICD feature vector from Algorithm 1.

Output: Z, the sampled set with |Z| = b.
1: Z = ∅; if vi < vth, then∀x ∈ X,xi = medium({x1

i , · · · ,x
j
i});

2: X′ = {v ⊙ x,∀x ∈ X};
3: K = {Φ(x′

i,x
′
j)|x′

i,x
′
j ∈ X′}; ▷ Φ(.) is Euclidean distance.

4: for i ∈ {1, 2, · · · , b} do

5: z = argmaxx′∈X′ =
||Kx′ ||2

Φ(x′,x′) + µ
; ▷ Kx′ and Φ(x′,x′) are

x′’s corresponding column and diagonal entry in K.
6: Z = Z

⋃
{z};

7: K = K −
KzK⊤

z

Φ(z,z) + µ
;

8: end for
9: return Z;

D. Multi-Objective Exploration with Information Gain

Even though we have carefully chosen the initial set Z via the
SoC-Init algorithm, building a model that can mimic the relationship
between the configurations and the objectives is not easy. Witnessing
that the Gaussian process (GP) shows robustness and non-parametric
approximation in various domains [3], [21], [22], we choose GP as
our surrogate model.

We have the ICD design space X′ consisting of design parameters,
and according to different x′ ∈ X′, we can get metrics space Y with
time-consuming VLSI Flow shown in Fig. 2. GP provides a prior
over the function f(x′) ∼ GP(µ, kθ), where µ is the mean value
and the kernel function k is parameterized by θ. All the objective
functions (design metrics) can be expressed as a group of GP models
and combined as Equation (3).

F = [f(x′
1), f(x

′
2), · · · , f(x′

n))]
T ∼ N(µ,KX′X′|θ), (3)

where KX′X′|θ is the intra-covariance matrix among all feature vec-
tors and can be computed via [KX′X′|θ]ij = kθ(x′

i,x
′
j)

, and Gaussian
noise N(f(x′), σ2

e) is to model uncertainties of GP models. Given a
newly sampled feature vector x′

∗, the predictive joint distribution f∗
based on y is calculated by Equation (4).

f∗|y ∼ N(

[
µ
µ∗

]
,

[
KX′X′|θ + σ2

eI KX′x′
∗|θ

Kx′
∗X

′|θ kx′
∗x

′
∗|θ

]
). (4)

By maximizing the marginal likelihood of GP, θ is optimized to
sense the entire design space. Each time we get y from VLSI Flow,
θ will be updated to better mimic the complex relationship between
the design space X′ and metrics space Y.

Therefore, deciding the next x′ to be sent to the VLSI flow is
important to optimize the surrogate model. From each y obtained from
VLSI, we need to maximize the information gained about the Pareto
optimal set Y∗ as much as possible. So we develop an information
gain-based acquisition function I(x′) expressed with entropy H(·) as
follows.

I(x′) = H(Y∗|X′)− Ey[H(Y∗|X′ ∪ {x′,y})] (5)

= H(y|X′,x′)− EY∗ [H(y|X′,x′,Y∗)] (6)

≃ H(y|X′,x′)− 1

S

S∑
s=1

[H(y|X,x′,Y∗
s)], (7)

where Equation (7) is approximately computed via Monte-Carlo
sampling, and S is the number of samples and Y∗

s denote a sampled
Pareto optimal set.

The value of each element of y in Equation (7) is upper bounded by
the maximum value of the corresponding element in sampled point on
Pareto optimal set Y∗. We can combine the boundedness property and

Algorithm 3 SoC-Tuner(X, T, n, u, b, vth)

Input: X is the unsampled SoC design space, T is the maximal iteration
number of BO, n is the trail times of importance analysis, µ is the
normalization coefficient, b is the number of samples for initialization.

Output: The Pareto optimal set X∗ and corresponding Y∗.
1: v = ICD(X, n); ▷ Algorithm 1.
2: Z =SoC-Init(X, µ, b,v, vth); ▷ Algorithm 2.
3: X′ = {v ⊙ x, ∀x ∈ X};
4: y ← VLSIFlow(Z);
5: for i ∈ {1, 2, ..., T} do
6: Construct the Pareto optimal set Y∗ from y;
7: x∗ ← IMOO(X′,Y∗,θ); ▷ Equation (11).
8: Z = Z

⋃
{x∗}, y = y

⋃
{VLSIFlow(x∗)};

9: θ is optimized via gradient descent method;
10: end for
11: Construct Pareto optimal set Y∗ from Z, and restore the corresponding

X∗ from the ICD space;
12: return X∗

the fact that each sampled objective function is modeled as a GP prior,
and treat each component of y as a truncated Gaussian distribution.
Then we can rewrite Equation (7), and obtain the approximation of
the acquisition function,

AF (i,x′) =

S∑
s=1

γi
s(x

′)ϕ(γi
s(x

′))

2ϕ(γi
s(x′))

− ln(ϕ(γi
s(x

′))), (8)

I(x′) ≃
∑
i∈I

AF (i,x′), I = {f1, · · · , fn}, (9)

where γ and ϕ stand for the probability density function and the
cumulative density function of a standard Gaussian distribution, re-

spectively. γi
s(x

′) equals
y∗
s − µs(x

′)

σs(x′)
with y∗

s is the maximum value

among the sampled points on predicted Pareto optimal set for the ith

objective.
Ultimately, we can choose x∗ that maximizes the Equation (10) as

the next design point sent to VLSI flow:

x∗ = argmin
x′

I(x′), (10)

where x∗ will bring the most information gain. To conclude Equation
(3) to (10), we can design an information-gain-based multi-objective
optimization (IMOO):

x∗ ← IMOO(X′,Y∗,θ), (11)

where X′ is ICD Space given by Algorithm 2, Y∗ is the current Pareto
optimal set, and θ is optimized to better mimic the surrogate GPs
model. We combine all the proposed algorithms into the overall algo-
rithm illustrated in Algorithm 3. The maximal number of exploration
rounds is T , and the output of SoC-Tuner is the learned Pareto optimal
set.

IV. EXPERIMENT & ANALYSIS

A. Benchmarks and Baselines

To evaluate the SoC design uniformly, we randomly sample 2500
design points in TABLE I. Each design is evaluated with the VLSI
flow in Fig. 2, and the metric data are collected to verify various
methods. We choose some popular DNNs including ResNet50 [23],
MobileNet [24], and Transformer [25] as our benchmarks.

Several representative baselines are compared with SoC-Tuner.
The MicroAL-based method [9] (ICCAD’21) is used to predict
the power and latency of the BOOM core. The regression-based
method [19] (HPCA’07) leverages regression models with non-linear
transformations to explore the power-performance Pareto curve. We
implement the key methods of these works and adopt them into
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algorithm(n = 30, vth = 0.07).

SoC design exploration, then compare them with our framework.
Moreover, we also compare SoC-Tuner with traditional multi-objective
optimization methods like XGBoost [26], random forest (RF), and
support vector regression (SVR). Simulated annealing is leveraged
for these traditional algorithms. We implement all methods in Python
and all experiments are conducted on a Linux server with Intel Xeon
CPU (E5-2630 v2@2.60GH) and 256 GB RAM.

B. Experiment Setting

We utilize the Chipyard to generate SoC hardware design as shown
in Fig. 2. We use the ASAP7 process design kit (PDK) as the standard
cell library and use tools integrated into Hammer [27] to execute the
VLSI flow. The RTL-level simulation tool Verilator can obtain the
accurate overall inference latency of various DNNs.

For the experimental setting, we set vth = 0.07 for pruning design
space, u = 0.1, and b = 20 for the SoC-Init algorithm. For a fair
comparison, we keep the exploration iteration the same for baselines
and our methods. All experiments and baselines are repeated 10 times
to get the corresponding average results.

In comparison with baselines, the average distance to reference
set (ADRS) shown in Equation (12) is widely used in design space
exploration to measure the distance between the learned Pareto optimal
set with the real Pareto-optimal set of the design space.

ADRS(Γ,Ω) =
1

|Γ|
∑

γ∈Γ,ω∈Ω

min f(γ, ω), (12)

where f is the Euclidean distance function, Γ is the real Pareto
optimality set and Ω is the learned Pareto optimal set.

C. Experimental Result and Analysis

Fig. 5 demonstrates the result of importance analysis based on the
ICD algorithm (n = 30, vth = 0.07). With the ICD algorithm, the
whole design space points are pruned by about 30.16%.

Learned Pareto Optimal Set. We choose the benchmark ResNet50 as
an example to show the superiority of SoC-Tuner in finding the Pareto
optimal set of SoC design. In Fig. 4, gray points represents various
design configuration of SoC, and colorful points are learned Pareto
optimal set explored by SoC-Tuner and other methods. We only draw
the design points close to the real Pareto optimal set to show the result
clearly. Both in latency-area space shown in Fig. 4(a) and latency-
power space shown in Fig. 4(b), yellow circles represent the real Pareto
design, and red diamonds represent the learned Pareto design by SoC-
Tuner. The learned Pareto optimal set of SoC-Tuner is much closer
to the real Pareto optimal set than other methods, demonstrating that
SoC-Tuner’s effectiveness outperforms other methods in finding the
Pareto optimal set.

Moreover, we use the simplified model [6] to explore space accord-
ing to its inaccurate metrics. To show the gap between the simplified
model and RTL simulation, we simultaneously draw their learned
Pareto optimal set in Fig. 4(c). The green hollow triangles represent
Pareto optimal set found by the simplified model, while solid triangles
represent the actual metrics from VLSI flow with the same design
parameter. Fig. 4(c) proves that the simplified model cannot effectively
guide the design of space exploration.

Learning Convergence and Optimal SoC Design. Fig. 7(a) shows
the ADRS in each exploration round. In each exploration round, SoC-
Tuner outperforms previous methods. Fig. 7(a) demonstrates that SoC-
Tuner has higher exploration efficiency than other methods, giving a
better SoC design in a shorter time.

The optimal design points from the learned Pareto optimal sets
given by various methods are listed in Fig. 4. Since Transformer
has too many parameters to be simulated in an acceptable time, we
evaluate the inference latency on the 6 basic structures, i.e., Decoder.
Fig. 6 compares the inference cycles of optimal SoC designs explored
by various methods, showing that the SoC designed by SoC-Tuner
can get the least inference latency on various DNN workloads. The
inference speed demonstrates our framework can find the optimal SoC
design to obtain high performance in DNN acceleration. Moreover, our
framework can facilitate SoC designers to design practical SoCs for
DNN acceleration, instead of staying inaccurate simulation stage like
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previous simplified analytical tools. With the learned Pareto optimal
set, we can implement the optimal SoC design and Fig. 7(b) shows
the area breakdown of the design given by VLSI flow.

V. CONCLUSION

In this paper, we have proposed SoC-Tuner, a novel exploration
framework that utilizes a series of importance-guided algorithms
to reduce the design iterations and find the Pareto optimal set of
SoC configurations. Our framework thoroughly constructs a huge
design space and analyzes the importance of design parameters in
a typical DNN-targeting SoC. The framework provides a group of
efficient algorithms to prune the original design space and initialize the
exploration. Moreover, we utilize a novel multi-objective exploration
with information gain to find the optimal SoC design for DNN
accelerations. For designers, our framework can help them design A
high-performance and low-cost SoC for various DNN applications on
edge devices. For researchers, our framework brings more insights into
the community of hardware design space. In future work, we plan to
extend our framework to support more complicated DNN models like
large language models and introduce more design constraints such as
reliability, security, and robustness.
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