
LSTP : A Logic Synthesis Timing Predictor
Haisheng Zheng1 Zhuolun He1,2 Fangzhou Liu1,2 Zehua Pei1,2 Bei Yu2

1Shanghai AI Laboratory, Shanghai, China
2The Chinese University of Hong Kong

Abstract—The ever-growing complexity of modern VLSI cir-
cuits brings about a substantial increase in the design cycle. As for
logic synthesis, how to efficiently obtain physical characteristics
of a design for subsequent design space exploration emerges as a
critical issue. In this paper, we propose LSTP , an ML-based
logic synthesis predictor, which can rapidly predict the post-
synthesis timing of a broad range of circuit designs. Specifically,
we explicitly take optimization sequences into consideration so
that we can comprehend the synergy between optimization passes
and their effects on netlists. Experimental results demonstrate
that we outperform state-of-the-art remarkably.

I. INTRODUCTION

The last decades have seen tremendous progress in logic
synthesis, which provides a dramatic productivity boost in
digital circuit design [1]. A typical objective of logic synthesis
is to find an implementation of a boolean function f that
minimizes area and delay, serving as an essential instrument
to push the limits of performance and power consumption [2].
Logic synthesis is critical: firstly, architecture exploration relies
on the acquisition of metrics reported by logic synthesis [3];
secondly, logic synthesis quality determines the best possible
design space of subsequent procedures [4]. The facts above
also indicate that logic synthesis might be performed for many
times in the design flow. Therefore, the predictability [5] of
logic synthesis becomes an issue of common interest: can we
efficiently predict the desired metrics without actually running
expensive logic synthesis?

The ever-growing complexity of integrated circuit designs
adds to the time consumption of logic synthesis, whereas
Moore’s law implies an exponential increase in design time
with technological advancement. Massive efforts have been put
into improving logic synthesis efficiency, such as a divide-and-
conquer framework that synthesizes a design in a modular
fashion [4], heuristic methods for logic minimization [6],
[7], enhancing satisfiability (SAT)-based modeling and solver
efficiency [8], [9], and parallel acceleration through modern
computing platforms like GPUs [10], [11]. These approaches
have successfully obtained orders of magnitude speedup and
thus increased the usability of modern logic synthesis tools;
however, they are still one step away from our goal of acquiring
desired metrics without even launching the synthesis.

In order to obtain the physical characteristics of a circuit
quickly, numerous previous works utilized machine learning
(ML) to predict the properties of circuits, such as timing, power,
area, and so on. D-SAGE [12] proposes an enhanced graph
neural network (GNN) model to learn the operation mapping
pattern in high-level synthesis (HLS), which is further exploited
for HLS delay estimation. Yu et al. [13] employ a long short-
term memory network (LSTM) to achieve accurate estimation

of sequential behaviors and predicts delay & area by a transfer
learning scheme after the synthesis flow. PowerNet [14] is
a convolutional neural network (CNN)-based approach for
dynamic IR drop prediction. GRANNITE [15] uses a GNN
model to predict the circuit’s power consumption. De et al. [16]
present comprehensive machine learning methods for HLS
delay estimation. Deep H-GCN [17] performs analog cir-
cuit degradation prediction (i.e., aging) through heterogeneous
GNNs. LOSTIN [18] predicts synthesis flow performance by
combining spatial (netlist) and temporal (flow) information
encoded by GNN and LSTM. By leveraging the blossoms of
machine learning, especially deep learning methods, efficient
circuit metric acquisition becomes possible and popular. We
argue that a key reason for a successful application of ML to
metric prediction is to select a proper model to capture different
kinds of accessible raw information. Among the above works,
graph neural networks find prosperous uses [12], [15], [17], as
they are a proper fit to model element connection and topology,
such as for netlist representation learning. On the other hand,
CNNs are suitable for layout-based tasks [14], while sequential
structures like LSTMs are designed for series modeling [13].

Moreover, logic synthesis recipes are not one-size-fits-all.
Recently, OpenABC-D [19] has pointed out quantitatively that
the similarity between the best synthesis recipes for a set
of benchmark circuits is less than 30%. In other words, the
optimal optimization sequence in logic synthesis is design-
dependent. However, this sequence used in logic synthesis tools
either relies on the settings provided by the developer, or is
customized by end-users. Neither of the two options is ideal:
Design-dependent optimal sequences cannot be determined at
the time of tool development; end-users are even impossible
to understand the effects of the sequences, let alone decide
which one to use. There are a few recent research works
related to optimization sequence quality improvement. Yu et
al. [20] propose to train a CNN to predict the quality of
an optimization sequence, and randomly samples from the
sequence design space to look for better sequences. This
approach inherently ignores the orchestration between netlist
and optimization sequence, which is not desired. Besides,
if ‘good’ sequences are sparse in the whole design space,
random sampling may not generate good enough candidates
for the model. Reinforcement learning is leveraged [21], [22] to
generate fixed-length optimization sequences. In their common
settings, the state space encodes current progress (viz. current
netlist) after applying previous optimization passes to the input
netlist, and the action space is to predict the next optimization
pass. Although performance gains are reported, these methods



∨
∧

a b

∧
d ∨

∧

a c

¬ ∧

b c

F (a, b, c, d) = ab + d(ac̄ + bc)

(a)

∨
∧

∧

a c

¬ ∧

b

¬

d

¬

∧

∧

b c

∧

a

¬

d

¬

¬

F (a, b, c, d) = ac̄b̄d̄ + bcād̄

(b)

Fig. 1 Two different AIGs for a Boolean function.

RTL Analyser

ACCNNSeqEncoder

Predicted Timing

Optimaztion Sequence

Design
(*.vhdl, *.v, *.sv) AIG

MLP

(a)

Fig. 2 LSTP Prediction Flow.

are unable to directly give circuit metrics prediction, which is
of our interest as introduced.

In this work, we propose LSTP, a machine learning driven
logic synthesis timing predictor. LSTP aims to model the com-
plex interaction between optimization passes and their effects
on the netlist through an end-to-end trainable neural framework.
Specifically, a dedicated Cascaed-Cone-based graph neural
network is designed to encode the netlist, while an attention
mechanism is employed to encode the optimization sequence.
The outputs from both models are concatenated and fed to
an MLP to predict the post-synthesis timing. In this way, the
model effectively comprehends the optimization sequence and
its effect on the input netlist. Our major contributions are
summarized as follows:

• We present LSTP, a highly efficient machine learning
driven logic synthesis timing predictor;

• We propose a novel learning framework that models the
interaction between logic synthesis optimization passes
and their effects on a netlist;

• We conducted comprehensive experiments on real-world
circuit designs to demonstrate that LSTP outperforms
state-of-the-art logic synthesis predictors in timing pre-
diction accuracy;

• We further use the timing prediction from LSTP to guide
optimization sequence generation, which obtains circuit
designs with better actual performance.

II. PRELIMINARIES

Logic synthesis transforms a high-level hardware description
(e.g., Verilog, VHDL) into a gate-level netlist after optimizing
Boolean functions. It mainly consists of three critical steps,
logic optimizations, technology mapping, and post-mapping
optimizations. Typically, a gate-level netlist is a Boolean func-
tion with binary-valued inputs, and it uses various logical
operations such as AND, XOR, and NOT. The And-Inverter-
Graph (AIG) and Major-Inverter Graph (MIG) are common
representations of this netlist, which allow structural optimiza-
tions. The state-of-art synthesis tools first apply a sequence of
logic minimization heuristics to transform the circuit in these
representations, which is often called the synthesis transfor-
mation. Every transformation focuses on simplifying the node
representation and refactoring Boolean formulas in order to
meet an expected area and delay overhead. The synthesis recipe
consists of many synthesis transformations in some order,
which plays an important role in the quality of results (QoR).

An And-Inverter-Graph (AIG) is a Directed Acyclic Graph
(DAG) used to represent arbitrary Boolean formulas and cir-
cuits [23]. An AIG consists of two-input nodes (AND function),
dotted edges (NOT function), and terminal nodes (Primary
inputs and constants). The construction of AIGs only requires
simple AND gates and inverters to express every essential logic
operation. Compared with the binary decision diagram (BDD)
and the disjunctive normal form (DNF), AIG is in a non-
canonical form with no unique Boolean formula representation.
This allows for better scalability of circuits represented in AIG
form without many formal constraints on circuit hierarchy. The
two AIGs in Fig. 1 represent the same logical expression, one
with 6 nodes and 4 levels while the other with 7 nodes and 3
levels.

The state-of-the-art open-source logic synthesis tool
ABC [24] uses a combination of random/guided simulation of
AIGs and Boolean satisfiability (SAT) to improve synthesis
performance. Meanwhile, it proposes several AIGs optimiza-
tion methods to work in synthesis, making it delay-aware and
then adjusted the structure of the AIG to match. Typically,
combinations/ordering of these optimization passes affect the
final circuit performance. However, modeling such effects is
not straightforward.

We formulate our timing prediction problem as follows.

Problem 1 (Logic Synthesis Timing Prediction). Given a gate-
level netlist as an And-Inverter Graph (AIG) representing a set
of Boolean functions and a sequence of subgraph optimization
procedures for the AIG graph, design a novel learning method-
ology that automatically predicts the final timing after applying
the optimization procedures to the AIG.

III. ALGORITHMS

A. Overall Flow of LSTP

The overall flow of the proposed LSTP is illustrated in
Fig. 2. Given an RTL Verilog design and the corresponding
optimization sequence as input, a neural model is trained to
mimic the behavior of the logic synthesizer and predict the
final timing performance. LSTP consists of four stages:

1) RTL-Analyzer compiles the input design and transforms
it into an And-Inverter-Graph (AIG) representation.

2) ACCNN is a trained graph neural network (GNN) for node
sampling and feature extraction of the AIG circuit.

3) SeqEncoder is a trained Transformer encoder for opti-
mization sequence features extraction.

2



4) MLP aggregates both the optimization sequence features
and the circuit diagram features to predict the timing of
the input design.

B. RTL-Analyser: Turning Design into AIG

And-Inverter Graph (AIG) is an efficient data structure
for the manipulation of large sequential Boolean networks
in a variety of applications, including synthesis, technology
mapping, and formal verification. In this work, we convert the
design RTL into AIG for circuit representation.

Given the hardware description language (HDL) description
of the design circuit as input, Yosys [25], an open-source
synthesis suite that contains a complete toolchain for HDL
source code compilation and gate-level synthesis, is used to
parse and compile the input circuit HDL and generate an in-
termediate representation of the circuit; the intermediate circuit
representation is further converted into an AIG representation
by an open-source logic synthesis tool.

The circuit is then represented as a directed acyclic graph
(DAG) G (V,E) using the netlist analyzer, denoting vertex set
by V and edge set by E. Vertex v ∈ V represents the 2-
input gate, while e ∈ E denotes either inverters or buffers.
Furthermore, we define node type and the number of incoming
inverted edges (from primary input to itself) as two node-based
features and the edge type as the edge feature.

C. ACCNN: Netlist Feature Extraction

The delay of a circuit depends on the number of hops
on the longest path from the PIs to the POs. Intuitively, the
longest path of an AIG can be extracted for timing prediction.
However, after the RTL-to-AIG conversion, two important oper-
ations, namely technology mapping and logic optimization, will
precede. These two operations will modify the local pattern,
number of nodes, connectivity, and topology of the AIG. Thus,
predicting timing on the longest path without consideration of
the above two operations is inaccurate.

To overcome the above concerns, we wish to design an
algorithm to effectively exploit the characteristics of graph
representation for the longest path in AIG.

Since the design circuit can be represented as a directed
acyclic graph (DAG), and several prior works use GNN to learn
netlist representation to yield excellent results [15] [26] [27]
[28], we propose to use GNN to learn the representations for
the AIG.

GNN encodes nodes as low-dimensional vectors and pre-
serves the structural information of the graph to the maximum
extent. By aggregating node and edge features and sharing
features with neighbor nodes by message passing, both local
and global information of the graph representation can be
learned and exploited.

Notwithstanding the structural complexity and variant size
of AIGs, we observe that a substantial number of paths with
similar topological structures exist in AIG, which contains re-
dundant information. Therefore, we aim to devise a lightweight
sampling algorithm to replace the exhaustive adjacent aggre-
gation. GraphSAINT [29] precisely fulfills this purpose by
employing several lightweight graph sampling techniques, such

Algorithm 1 Random Sampling for ACCNN

Require: AIG G⟨V,E⟩, sample size N for a PO
Ensure: A list of sampled cascaded cones L

for each PO ∈ G do
for n← 1 · · ·N do

CC ← SampleCascadedCones(G,PO)
L← L ∪ {CC}

end for
end for
function SampleCascadedCones(G, PO)

CC ← {PO}
v ← PO
while v is not a PI do

nodes← predecessors of v
CC ← CC ∪ nodes ▷ include the cone in CC
v ← a random node in nodes

end while
return CC

end function

as random node sampling, random edge sampling, and random
walks. It samples subgraphs from the complete training graph
to construct mini-batches, instead of previous approaches that
involved node/edge sampling at each layer of GCN. Drawing
inspiration from GraphSAINT, we propose a novel network
called Asynchronous Cascaed-Cone Neural Network (ACCNN)
to sample and learn the intrinsic features of circuit AIG.

Cascaded Cone. As shown in Algorithm 1, we introduce a
random walk-based approach to sample cascaded cones within
the circuit randomly. The main focus is on ‘paths’ that originate
from primary inputs (PI) and end at primary outputs (PO). To
handle flip-flops (FF) in the circuit, their inputs are considered
as POs, and their outputs are treated as PIs.

The sampled cascaded cones play a crucial role in capturing
the circuit’s behavior for a single clock cycle, thereby enabling
precise timing predictions for the entire design through LSTP.
We represent the AIG as a graph G = ⟨V,E⟩, where V

represents the set of nodes and E is the set of edges E ⊆ V×V.
These sets are provided as inputs to the algorithm.

Moreover, to control the sampling process, we introduce a
parameter N, which determines the number of paths to be sam-
pled for each primary output (PO). In our work, ACCNN uses
N = 4. Sampling more paths does not improve the accuracy
of ACCNN and brings additional computational overhead.

Asynchronous. After randomly sampling the cones, our objec-
tive is to find a model that effectively summarizes and extracts
features from these sampled structures. We aim for a model that
resembles logic simulation, efficiently propagating information
step-by-step along the sampled paths. ABGNN [26] serves this
purpose well, which employs an asynchronous message passing
scheme similar to the Chandy-Misra-Bryant (CMB) distributed
time algorithm [30] used in logic simulation.

Specifically, instead of simultaneously propagating informa-
tion across all edges in each iteration like synchronous GNNs,
the asynchronous message passing scheme in ABGNN allows

3



O1N3N1

I2

I1

C1

N2
CONSTANT

I1(0)I1(0)

I2(0)I2(0)

N1(1)N1(1)

N2(1)N2(1)

C1(2)C1(2) 

N3(2)N3(2)
O1(3)O1(3)

PI / PO

LUT

I1 I2 N1 N2 N3 C1 O1
T = 0 ✓ ✓
T = 1 ✓ ✓
T = 2 ✓ ✓
T = 3 ✓

Fig. 3 A visual illustration of ACCNN.

∗
a +

b ∗
c +

d ∗
e +

f ∗
g h

(a)

∗
a ∗

+
∗

c +

d e

b
+

+
f ∗

g h

+
b d

(b)
∗

a +
+

b ∗
c d

∗
∗

c e
+

f ∗
g h

(c)

+
∗

+

b ∗
c d

a
∗

∗
e ∗

a c

+

f ∗
g h

(d)

Area

Delay

7 8 9

4
5

7

(d)

(a)

(c)

(b)

Feasible
designs

(e)

Fig. 4 (a)–(d) Equivalent factored forms; (e) Area/delay trade-off for the trees.

vertices to communicate following the partial order induced by
the DAG structure. Messages originate from the leaf vertices
and flow towards the target vertex v following the topological
ordering. At the kth iteration, only vertices at distance ∆− k
from v aggregate information from their predecessors, where
∆ is the depth of the graph:

a
(k)
{i:D(i,v)=∆−k} = AGGREGATE(h(k−1)u : u ∈ N(i) (1)

The aggregated embeddings are then combined:

h
(k)
{i:D(i,v)=∆−k} = COMBINE(a(k)i , h

(0)
i ) (2)

In this way, each edge is activated exactly once during the
embedding of v, which saves lots of computational efforts
compared to the synchronous approach where messages flow
on each edge in every iteration. The asynchronous scheme is
able to efficiently leverage the acyclic property of DAGs for
representation learning.

ACCNN is implemented with asynchronous information
propagation in the same way as described. Fig. 3 illustrates
the sampled cascaded cones to be embedded by asynchronous
message passing. The following information is used as the input
feature of ACCNN:

• Node type: Primary Input, Primary Output,
CONSTANT, LUT 0x1, LUT 0x2, LUT 0x8.

For dual input gates (i.e. AND) with only a single input in
AIG, we add a constant node as the other input signal, which
we believe improves smoothness of message aggregation.

D. SeqEncoder: Optimization Sequence Feature Extraction

In logic synthesis, a sequence of optimization passes offered
by the synthesizer are applied to the design netlist, and then are
orchestrated to obtain the desired targets including area, timing,
etc. Due to the large design space and complex effects between
netlists and various optimization passes, designing an optimal
optimization sequence is difficult and always undergoes trial-
and-errors. Therefore, we take the optimization sequence into
consideration for a robust timing prediction.

There is a mini example (adopted from [31]) to demonstrate
that different optimizations can produce various design options,
where the area and delay of the design are considered. As
Fig. 4 illustrated, the tree-height reduction is a similar technique
that has originally been proposed in the context of (compiler)
code generation for multiprocessor systems, where the tree

in Fig. 4(a) represents a decomposed form of the Boolean
expression ab + acd + acef + acegh. Denoting the area and
delay value as A and D, we assume zero arrival time for all
primary inputs, unit area (A = 1), and unit delay (D = 1)
of each node, and the tree can be characterized as a pair
(A = 7,D = 7). As implementation from SIS optimization
[32], simple transformation by associative and distributive laws,
and further optimizations are illustrated in Fig. 4(b), Fig. 4(c),
and Fig. 4(d), respectively. It can be verified that they are
all functionally equivalent, but with various characteristics:
(A = 9,D = 5) for (b), (A = 8,D = 5) for (c), and
(A = 9,D = 4) for (d).

As shown in Fig. 4(e), the implementation in (a) is area-
optimal and the implementation in (d) is delay-optimal for
this case. As for design space exploration, the design in (b)
can be discarded, since it is dominant by the design in (c),
which achieves better area under the same delay. Generally,
even for the tiny example, it is difficult to know beforehand
how to obtain the optimal design. While in reality, the designs
have larger magnitudes and involve more complex topology
and functional structures. Therefore, it is hardly possible for
designers to determine the effect of optimization sequences for
different designs.

To solve this issue, it is appropriate for LSTP to employ
machine learning techniques, which has been served as a
suitable black-box predictor for such fuzzy cases. LSTP is then
capable to mine its hidden relationships by feeding optimization
sequences into the neural network to predict the results in a
highly efficient manner. In other words, we need a model that
takes into account optimization sequence ordering and position.
Many natural language processing models have been designed
to learn the order, position, and relationships of words, making
them good candidates for our task.

Transformer [40] is one of such models, whose encoder
employs positional encoding and multi-head self-attention. The
positional encoding is added to the input embedding in the
encoder, which provides the positional information of the
sequence. As a variant of attention mechanism, Self-attention
can effectively deal with long-range dependencies and allows
for a better understanding of the structural information of the

4



TABLE I Statistics of the dataset for timing prediction.

Type IP
Train Valid/Test

Bus protocol

i2c [33], spi [33] usb phy [33]
ethernet [33], wb dma [33] ss pcm [33]

simple spi [33], pci [33] sasc [33]
wb conmax [33]

Controller ac97 ctrl [33], bp be [34] mem ctrl [33]vga lcd [33]

Crypto
aes secworks [35] aes [33]

aes xcrypt [36] des3 area [33]
sha256 [37]

DSP fir [37], iir [37], jpeg [33] dft [37], idft [37]

Processor dynamic node [38] fpu [39], tinyRocket [38]picosoc [39], tv80 [33]

TABLE II Evaluation Accuracy (MAPE)
Name # PI # PO # Node # Level SNS [4] Rt [s] LSTP Rt [s]

aes 683 529 39215 44 50.21% 2.85 25.44% 3.38
des3 area 303 64 7766 47 53.84% 2.16 20.29% 0.70

dft 37597 37417 488165 83 86.90% 27.18 33.56% 55.53
fpu 632 409 55935 1522 26.11% 4.96 3.35% 6.97
idft 37603 37419 481184 82 5.07% 16.16 8.18% 54.04

mem ctrl 1187 962 29814 56 23.21% 32.02 19.22% 3.71
sasc 135 125 1214 15 21.44% 2.38 2.48% 0.12

ss pcm 104 90 762 13 67.82% 2.30 6.46% 0.09
tinyRocket 4561 4181 99775 156 37.31% 81.87 10.81% 11.86
usb phy 132 90 893 16 14.4% 2.65 7.75% 0.10
Average 38.63% 17.45 13.75% 13.65

sentence, which is computed as:

Attention(Q,K,V ) = softmax(
QK⊤
√
dk

)V , (3)

where (Q,K,V ) are transformed by the multiplication of the
input data X and the training parameters (WQ,WK ,WV ),
and

√
dk is defined as the feature dimension to alleviate

the problem of gradient disappearance. By using positional
encoding and multi-head self-attention, Transformer is highly
parallelized and leads to superior performance in language
modeling.

We designed a network named SeqEncoder based on
Transformer encoder to extract optimization sequence features.
Currently, LSTP supports optimization methods such as
Balancing, Reconfiguration, Replacing and
Rewriting.

SeqEncoder supports extracting features of optimization se-
quences of length 20 or less. When the length of the opti-
mization sequence is less than 20, we need to add padding
with zeros before the optimization sequence until the length of
the optimization sequence is 20 (i.e., zero padding). To keep
the semantics consistent, the dictionary index 0 is considered
as ‘empty optimization’ that exactly performs nothing to the
netlist. During the encoding process, each step of the optimiza-
tion performed is equivalent to generating a new design, whose
remaining steps in the sequence can also be considered as a new
optimization sequence operating on the newly generated design.
Therefore, the dictionary design can help LSTP to learn a large
amount of information with a few designs. Thus, it allows
both ACCNN and SeqEncoder to process a good generalization
capability in the training process.

IV. EXPERIMENTS

We conducted comprehensive experiments to evaluate the
performance of LSTP . All experiments are carried out on a
machine with 8 core Intel(R) Core(TM) i7-11700 @ 2.50GHz
and an NVIDIA GeForce GTX 1660 Ti (Turing architecture,
SM67) graphics card with CUDA Driver 11.7, PyTorch 1.13.1,
and PyTorch Geometric 2.3.1.

We use SNS [4] as the comparison baseline as it shares
a similar scope with ours. The performance metrics include
mean absolute percentage error (MAPE) between the predicted
timing and the actual timing. We will also show that using
LSTP can help find a better optimization sequence.

A. Dataset Generation

We employed Yosys and ABC in tandem for the logic
synthesis of the circuit. Yosys, serving as the front-end engine,
performed logic synthesis by taking the circuit’s source code as
input. Sequential logic optimization was subsequently carried
out, while the combinational part of the circuit was handed
over to ABC. Utilizing structured processing techniques, ABC
created an AIG in the BENCH file format.

To generate timing labels for our dataset, we utilized ABC
for technology mapping of the netlist. The resulting technolog-
ically mapped netlist was then imported into commercial tools
for getting the timing characteristics of the circuit.

We selected the circuit listed in Table TABLE I as the
benchmark circuit for our experiment. These designs are open-
source and also included in the OpenABC-D [19] dataset.
Each circuit is synthesized with 1500 optimization sequences,
and each optimization sequence is of length L = 20. As
introduced in Section III-D, these optimization sequences con-
sist of seven structural transformations including refactor,
refactor -z, rewrite, rewrite -z, resub, resub
-z, and balance. The total size of the dataset is 43500, and
the labels are obtained after technology mapping with NanGate
45nm technology library and the “5K heavy 1k” wireload
model.

B. Performance of LSTP

We compare the prediction accuracy between LSTP and
SNS, and the results are shown in TABLE II. Compared with
SNS, the average prediction accuracy (measured by MAPE) of
LSTP is improved by 24.88%, and for 9 out of 10 benchmark
designs in the validation dataset, LSTP outperforms SNS. Only
for one designs (idft), the prediction of SNS is more accurate.
LSTP wins all other cases.

C. LSTP for Optimization Sequence Generation

We evaluate LSTP with the optimization sequences in the
test set as illustrated in TABLE I, to predict the timing of
each design. To ensure fairness in comparison, we conducted
two rounds of resyn2 sequences (i.e., invoking the optimization
method 20 times, with each resyn2 calling the optimization
method 10 times). We refer to this as resyn2-2. For each design,
we provided LSTP with 1500 random optimization sequences

5



TABLE III Comparison of Timing minimums.
Name Initial [ns] r2 [ns] Impr [%] LSTP [ns] Impr [%]

aes 1.58 1.37 13.29% 1.24 21.52%
des3 area 2.66 3.74 -40.60% 3.33 -25.19%

dft 5.82 6.35 -9.11% 4.94 15.12%
fpu 51 41.5 18.63% 40.34 20.90%
idft 5.82 6.35 -9.11% 5.54 4.81%

mem ctrl 6.74 3.03 55.04% 2.94 56.38%
sasc 0.89 0.69 22.47% 0.49 44.94%

ss pcm 0.66 0.58 12.12% 0.48 27.27%
tinyRocket 78.1 12 84.64% 10.39 86.70%
usb phy 0.41 0.42 -2.44% 0.32 21.95%
Average 14.49% 27.44%

of length 20. Subsequently, we selected the optimization se-
quences that exhibited the TOP 10 timing predictions and
evaluated their actual execution time to assess the effectiveness
of the approach.

As the results shown in TABLE III, the timing error is
noticeably low in most designs, which indicates that LSTP can
find better optimization sequences. Compared with SNS [4] that
predicts timing assuming default tool settings, LSTP takes logic
synthesis optimization sequences into consideration during
timing prediction, which generates more accurate and case-
dependent timing information.

V. CONCLUSION

Various tasks from architectural exploration to physical de-
sign DSE have highlighted the demand for fast logic synthesis
result prediction. To this end, we have proposed a machine
learning driven logic synthesis timing predictor, LSTP, that
efficiently predicts post-synthesis timing of arbitrary circuit
design. LSTP models the complex interaction between op-
timization passes and their effects on the input netlist via
appropriate neural models, which is the key to its success.
Comprehensive experiments on real-world circuit designs have
shown its superior prediction accuracy compared with state-of-
the-art timing predictors. Moreover, LSTP has demonstrated
its ability to guide optimization sequence generation, which
indeed helps to improve design performance. As for the future
work, the proposed framework can be extended to predict other
physical characteristics of interests, such as area and power.

VI. ACKNOWLEDGEMENT

This work is supported by Shanghai Artiticial Intelligence
Laboratory (No. P22KN00111).

REFERENCES

[1] L. Lavagno, L. Scheffer, and G. Martin, EDA for IC implementation,
circuit design, and process technology. CRC press, 2018.

[2] E. Testa, M. Soeken, L. G. Amar, and G. De Micheli, “Logic synthesis
for established and emerging computing,” Proceedings of the IEEE, 2018.

[3] C. Bai, Q. Sun, J. Zhai, Y. Ma, B. Yu, and M. D. Wong, “Boom-explorer:
Risc-v boom microarchitecture design space exploration framework,” in
Proc. ICCAD, 2021.

[4] C. Xu, C. Kjellqvist, and L. W. Wills, “Sns’s not a synthesizer: A deep-
learning-based synthesis predictor,” in Proc. ISCA, 2022.

[5] A. B. Kahng, “Machine learning applications in physical design: Recent
results and directions,” in Proc. ISPD, 2018.

[6] R. K. Brayton, G. D. Hachtel, C. McMullen, and A. Sangiovanni-
Vincentelli, Logic minimization algorithms for VLSI synthesis. Springer
Science & Business Media, 1984.

[7] G. D. Micheli, Synthesis and optimization of digital circuits. McGraw-
Hill Higher Education, 1994.

[8] A. Mishchenko and R. K. Brayton, “Sat-based complete don’t-care
computation for network optimization,” in Proc. DATE, 2005.

[9] N. Sorensson and N. Een, “Minisat v1. 13-a sat solver with conflict-clause
minimization,” SAT, 2005.

[10] H. Kanakia, M. Nazemi, A. Fayyazi, and M. Pedram, “Espresso-gpu:
blazingly fast two-level logic minimization,” in Proc. DATE, 2021.

[11] G. Pasandi, S. Pratty, D. Brown, Y. Zhang, H. Ren, and B. Khailany,
“2021 iccad cad contest problem c: Gpu accelerated logic rewriting,” in
Proc. ICCAD, 2021.

[12] E. Ustun, C. Deng, D. Pal, Z. Li, and Z. Zhang, “Accurate operation delay
prediction for FPGA HLS using graph neural networks,” in Proc. ICCAD,
2020.

[13] C. Yu and W. Zhou, “Decision making in synthesis cross technologies
using lstms and transfer learning,” in Proc. MLCAD, 2020.

[14] Z. Xie, H. Ren, B. Khailany, Y. Sheng, S. Santosh, J. Hu, and Y. Chen,
“PowerNet: Transferable dynamic IR drop estimation via maximum
convolutional neural network,” in Proc. ASPDAC, 2020.

[15] Y. Zhang, H. Ren, and B. Khailany, “GRANNITE: Graph neural network
inference for transferable power estimation,” in Proc. DAC, 2020.

[16] S. De, M. Shafique, and H. Corporaal, “Delay prediction for asic hls:
Comparing graph-based and non-graph-based learning models,” IEEE
TCAD, 2022.

[17] T. Chen, Q. Sun, C. Zhan, C. Liu, H. Yu, and B. Yu, “Deep h-gcn: Fast
analog ic aging-induced degradation estimation,” IEEE TCAD, 2021.

[18] N. Wu, J. Lee, Y. Xie, and C. Hao, “Lostin: Logic optimization via
spatio-temporal information with hybrid graph models,” in Proc. ASAP,
2022.

[19] A. B. Chowdhury, B. Tan, R. Karri, and S. Garg, “Openabc-d: A large-
scale dataset for machine learning guided integrated circuit synthesis,”
arXiv preprint arXiv:2110.11292, 2021.

[20] C. Yu, H. Xiao, and G. De Micheli, “Developing synthesis flows without
human knowledge,” in Proc. DAC, 2018.

[21] W. Haaswijk, E. Collins, B. Seguin, M. Soeken, F. Kaplan, S. Süsstrunk,
and G. De Micheli, “Deep learning for logic optimization algorithms,”
in Proc. ISCAS, 2018.

[22] K. Zhu, M. Liu, H. Chen, Z. Zhao, and D. Z. Pan, “Exploring logic opti-
mizations with reinforcement learning and graph convolutional network,”
in Proc. MLCAD, 2020.

[23] R. Brummayer and A. Biere, “Local two-level and-inverter graph mini-
mization without blowup,” Proc. MEMICS, 2006.

[24] R. Brayton and A. Mishchenko, “Abc: An academic industrial-strength
verification tool,” in Proc. CAV, 2010.

[25] C. Wolf, “Yosys open synthesis suite,” 2016.
[26] Z. He, Z. Wang, C. Bail, H. Yang, and B. Yu, “Graph learning-based

arithmetic block identification,” in Proc. ICCAD, 2021.
[27] L. Alrahis, A. Sengupta, J. Knechtel, S. Patnaik, H. Saleh, B. Mohammad,

M. Al-Qutayri, and O. Sinanoglu, “Gnn-re: Graph neural networks for
reverse engineering of gate-level netlists,” IEEE TCAD, 2021.

[28] Z. Wang, C. Bai, Z. He, G. Zhang, Q. Xu, T.-Y. Ho, B. Yu, and Y. Huang,
“Functionality matters in netlist representation learning,” in Proc. DAC,
2022.

[29] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna, “Graph-
SAINT: Graph sampling based inductive learning method,” in Proc. ICLR,
2020.

[30] K. M. Chandy and J. Misra, “Asynchronous distributed simulation via a
sequence of parallel computations,” Communications of the ACM, 1981.

[31] J. Cortadella, “Timing-driven logic bi-decomposition,” IEEE TCAD,
2003.

[32] K. J. Singh, A. R. Wang, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli, “Timing optimization of combinational logic.” in Proc. IC-
CAD, 1988.

[33] “Opencores hardware rtl designs,” https://opencores.org.
[34] “Black parrot soc,” https://github.com/black-parrot/black-parrot.
[35] “Aes 128/256-bit symmetric block cipher,” https://github.com/secworks/

aes.
[36] “Aes 128/256-bit symmetric block cipher,” https://github.com/crypt-xie/

XCryptCore/tree/master/ciphers/aes.
[37] “Mit common evaluation platform(cep),” https://github.com/mit-ll/CEP.
[38] T. Ajayi and D. Blaauw, “Openroad: Toward a self-driving, open-source

digital layout implementation tool chain,” in Proc. GOMACTech, 2019.
[39] J. Balkind, M. McKeown, Y. Fu, T. Nguyen, Y. Zhou, A. Lavrov,

M. Shahrad, A. Fuchs, S. Payne, X. Liang et al., “Openpiton: An open
source manycore research framework,” ACM SIGPLAN Notices, 2016.

[40] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” 2017.

6

https://opencores.org
https://github.com/black-parrot/black-parrot
https://github.com/secworks/ aes
https://github.com/secworks/ aes
https://github.com/crypt-xie/XCryptCore/tree/master/ciphers/aes
https://github.com/crypt-xie/XCryptCore/tree/master/ciphers/aes
https://github.com/mit-ll/CEP

