
A High-Performance Triple Patterning Layout Decomposer
with Balanced Density

Bei Yu, Yen-Hung Lin†, Gerard Luk-Pat‡, Duo Ding§, Kevin Lucas‡, David Z. Pan
ECE Dept., University of Texas at Austin, Austin, USA ‡ Synopsys Inc., Austin, USA
† CS Dept., National Chiao Tung University, Taiwan § Oracle Corp., Austin, USA

Abstract—Triple patterning lithography (TPL) has received more and
more attentions from industry as one of the leading candidate for
14nm/11nm nodes. In this paper, we propose a high performance layout
decomposer for TPL. Density balancing is seamlessly integrated into all
key steps in our TPL layout decomposition, including density-balanced
semi-definite programming (SDP), density-based mapping, and density-
balanced graph simplification. Our new TPL decomposer can obtain
high performance even compared to previous state-of-the-art layout
decomposers which are not balanced-density aware, e.g., by Yu et
al. (ICCAD’11), Fang et al. (DAC’12), and Kuang et al. (DAC’13).
Furthermore, the balanced-density version of our decomposer can provide
more balanced density which leads to less edge placement error (EPE),
while the conflict and stitch numbers are still very comparable to our
non-balanced-density baseline.

I. INTRODUCTION

As the minimum feature size further decreases, the semiconductor
industry faces great challenge in patterning sub-22nm half-pitch due
to the delay of viable next generation lithography, such as extreme
ultra violet (EUV) and electric beam lithography (EBL). Triple pat-
terning lithography (TPL), along with self-aligned double patterning
(SADP), are solution candidates for the 14nm logic node [1]. Both
TPL and SADP are similar to double patterning lithography (DPL),
but with different or more exposure/etching processes [2]. SADP
may be significantly restrictive on design, i.e., cannot handle irregular
arrangements of contacts and does not allow stitching. Therefore, TPL
began to receive more attention from industry, especially for metal 1
layer patterns. For example, industry has already explored test-chip
patterns with triple patterning and even quadruple patterning [3].

Similar to DPL, the key challenge of TPL lies in the decomposition
process where the original layout is divided into three masks. During
decomposition, when the distance between any two features is less
than the minimum coloring distance dism, they need to be assigned
into different masks to avoid a conflict. Sometimes, a conflict can be
resolved by splitting a pattern into two touching parts, called stitches.
After the TPL layout decomposition, the features are assigned into
three masks (colors) to remove all conflicts. The advantage of TPL
is that the effective pitch can be tripled which can further improve
lithography resolution. Besides, some native conflicts in DPL can be
resolved.

In layout decomposition, especially for TPL, density balance should
also be considered, along with the conflict and stitch minimization. A
good pattern density balance is also expected to be a consideration in
mask CD and registration control [4], while unbalanced density would
cause lithography hotspots as well as lowered CD uniformity due
to irregular pitches [5]. However, from the algorithmic perspective,
achieving a balanced density in TPL could be harder than that in
DPL. (1) In DPL, two colors can be more implicitly balanced; while
in TPL, often times existing/previous strategies may try to do DPL
first, and then do some “patch” with the third mask, which causes a
big challenge to “explicitly” consider the density balance. (2) Due to
the one more color, the solution space is much larger [6]. (3) Instead
of global density balance, local density balance should be considered
to reduce the potential hotspots, since neighboring patterns are one
of the main sources of hotspots. As shown in Fig. 1 (a)(b), when

a

b1

(a)

b1

a

(b)

a

b2

b3 b4

b1

(c)

b4b3

b2b1
a

(d)
Fig. 1. Decomposed layout with (a) (b) global balanced density. (c) (d)
local balanced density in all bins.

only global density balance is considered, feature a is assigned white
color. Since two black features are close to each other, hotspot may
be introduced. To consider the local density balance, the layout is
partitioned into four bins {b1, b2, b3, b4} (see Fig. 1 (c)). Feature a is
covered by bins b1 and b2, therefore it is colored as blue to maintain
the local density balances for both bins (see Fig. 1 (d)).

There are investigations on TPL layout decomposition [6]–[11] or
TPL aware design [12]–[14]. [6] provided a three coloring algorithm,
which adopts a SAT Solver. Yu et al. [7] proposed a systematic
study for the TPL layout decomposition, where they showed that
this problem is NP-hard. Fang et al. [8] presented several graph
simplification techniques to reduce the problem size, and a maximum
independent set (MIS) based heuristic for the layout decomposition.
[9] proposed a layout decomposer for row structure layout. However,
these existing studies suffer from one or more of the following issues:
(1) cannot integrate the stitch minimization for the general layout, or
can only deal with stitch minimization as a post-process; (2) directly
extend the methodologies from DPL, which loses the global view for
TPL; (3) assigning colors one by one prohibits the ability for density
balance.

In this paper, we propose a high performance layout decomposer
for TPL. Compared with previous works, our decomposer provides
not only less conflict and stitch number, but also more balanced
density. In this work, we focus on the coloring algorithms and leave
other layout related optimizations to post-coloring stages, such as
compensation for various mask overlay errors introduced by scanner
and mask write control processes. However, we do explicitly consider
balancing density during coloring, since it is known that mask write
overlay control generally benefits from improved density balance.

Our key contributions include the following. (1) Accurately inte-
grate density balance into the mathematical formulation; (2) Develop
a three-way partition based mapping, which not only achieves less
conflicts, but also more balanced density; (3) Propose several tech-
niques to speedup the layout decomposition; (4) Our experiments
show the best results in solution quality while maintaining better

balanced density (i.e., less EPE).
The rest of the paper is organized as follows. Section II presents

the basic concepts and the problem formulation. Section III gives the
overall decomposition flow. Section IV presents the details to improve
balance density and decomposition performance, and Section V shows
how we further speedup our decomposer. Section VI presents our
experimental results, followed by a conclusion in Section VII.

II. PROBLEM FORMULATION

Given input layout which is specified by features in polygonal
shapes, we partition the layout into n bins B = {b1, . . . , bn}.
Note that neighboring bins may share some overlapping. For each
polygonal feature ri, we denote its area as deni, and its area covered
by bin bk as denki. Clearly deni ≥ denki for any bin bk. During
layout decomposition, all polygonal features are divided into three
masks. For each bin bk, we define three densities (dk1, dk2, dk3),
where dkc =

∑
denki, for any feature ri assigned to color c.

Therefore, we can define the local density uniformity as follows:

Definition 1 (Local Density Uniformity) For the bin bk ∈ S, the
local density uniformity is max{dkc}/min{dkc} given three densities
dk1, dk2 and dk3 for three masks and is used to measure the ratio
difference of the densities. A lower value means better local density
balance. The local density uniformity is denoted by DUk.

For convenience, we use the term density uniformity to refer to
local density uniformity in the rest of this paper. It is easy to see that
DUk is always larger than or equal to 1. To keep a more balanced
density in bin bk, we expect DUk as small as possible, i.e., close to
1.

Problem 1 (Density Balanced Layout Decomposition) Given a
layout which is specified by features in polygonal shapes, the layout
graphs and the decomposition graphs are constructed. Our goal is
to assign all vertices in the decomposition graph into three colors
(masks) to minimize the stitch number and the conflict number, while
keeping all density uniformities DUk as small as possible.

III. OVERALL DECOMPOSITION FLOW

Input Layout

Graphs Construction and
Simplification

Color Assignment on each
Decomposition Graph

Color Assignment on each
Decomposition Graph

Output Masks

Layout Graph Construction

[Density Balanced]
Layout Graph Simplification

Decomposition Graph
Construction and

Simplification

Stitch Candidate Generation

0 conflict,
0 stitch?

Fast Color Assignment Trial

Yes

No
[Density Balanced]
SDP Formulation

[Density Balanced]
Partition based Mapping

Fig. 2. Overall flow of proposed density balanced decomposer.

The overall flow of our TPL decomposer is illustrated in Fig. 2. It
consists of two stages: graph construction / simplification, and color
assignment. Given input layout, layout graphs and decomposition
graphs are constructed, then graph simplifications [7] [8] are applied
to reduce the problem size. Two additional graph simplification tech-
niques are introduced in Sec. V-A and V-B. During stitch candidate
generation, the methods described in [11] are applied to search all
stitch candidates for TPL. In second stage, for each decomposition
graph, color assignment is proposed to assign each vertex one

(a)

b4b3

b1 b2

(b)

a
c

d

(c)

a
b

c
d

(d) (e)

a1

b

c

d1

a2 d2

(f)

a1

b

c

d1

a2 d2

(g)

stitch

(h)

stitch

(i)

Fig. 3. An example of the layout decomposition flow.

color. Before calling SDP formulation, fast color assignment trial is
proposed to achieve better speedup (see Section V-C).

Fig. 3 illustrates an example to show the decomposition process
step by step. Given the input layout as in Fig. 3(a), we partition it
into a set of bins {b1, b2, b3, b4} (see Fig. 3(b)). Then the layout graph
is constructed (see Fig. 3(c)), where the ten vertices representing
the ten features in the input layout, and each vertex represents a
polygonal feature (shape) where there is an edge (conflict edge)
between two vertices if and only if those two vertices are within
the minimum coloring distance mins. During the layout graph
simplification, the vertices whose degree equal or smaller than two
are iteratively removed from the graph. The simplified layout graph,
shown in Fig. 3(d), only contains vertices a, b, c and d. Fig. 3(d)
shows the projection results. Followed by stitch candidate generation
[11], there are two stitch candidates for TPL (see Fig. 3(e)). Based
on the two stitch candidates, vertices a and d are divided into two
vertices, respectively. The constructed decomposition graph is given
in Fig. 3(f). It maintains all the information about conflict edges
and stitch candidates, where the solid edges are the conflict edges
while the dashed edges are the stitch edges and function as stitch
candidates. In each decomposition graph, a color assignment, which
contains semidefinite programming (SDP) formulation and partition
based mapping, is carried out. During color assignment, the six
vertices in the decomposition graph are assigned into three groups:
{a1, c}, {b} and {a2, d1, d2} (see Fig. 3(g) and Fig. 3(h)). Here one
stitch on feature a is introduced. After iteratively recover the removed
vertices, the final decomposed layout is shown in Fig. 3(i). Our last
process should be decomposition graphs merging, which combines
the results on all decomposition graphs. Since this example has only
one decomposition graph, this process is skipped.

TABLE I. NOTATIONS USED IN COLOR ASSIGNMENT

CE the set of conflict edges
SE the set of stitch edges
V the set of features
B the set of local bins

IV. DENSITY BALANCED DECOMPOSITION

Density balance, especially local density balance, is seamlessly
integrated into each step of our decomposition flow. In this section,
we first elaborate how to integrate the density balance into the math-
ematical formulation and corresponding SDP formulation. Followed
by some discussion for density balance in all other steps.

A. Density Balanced SDP Algorithm

For each decomposition graph, density balanced color assignment
is carried out. Some notations used are listed in Table I. See Appendix
for some preliminary of semidefinite programming (SDP) based
algorithm.

1) Density Balanced Mathematical Formulation: The mathematical
formulation for the general density balanced layout decomposition is
shown in (1), where the objective is to simultaneously minimize the
conflict number, the stitch number and the density uniformity of all
bins. Here α and β are user-defined parameters for assigning the
relative weights among the three values.

min
∑

eij∈CE

cij + α
∑

eij∈SE

sij + β ·
∑
bk∈B

DUk (1)

s.t. cij = (xi == xj) ∀eij ∈ CE (1a)

sij = xi ⊕ xj ∀eij ∈ SE (1b)

xi ∈ {1, 2, 3} ∀ri ∈ V (1c)

dkc =
∑
xi=c

denki ∀ri ∈ V, bk ∈ B (1d)

DUk = max{dkc}/min{dkc} ∀bk ∈ B (1e)

Here xi is a variable representing the color (mask) of feature
ri, cij is a binary variable for the conflict edge eij ∈ CE,
and sij is a binary variable for the stitch edge eij ∈ SE. The
constraints (1a) and (1b) are used to evaluate the conflict number and
stitch number, respectively. The constraint (1e) is nonlinear, which
makes the program (1) hard to be formulated into integer linear
programming (ILP) as in [7]. Similar nonlinear constraints occur
in the floorplanning problem [15], where Tayor expansion is used
to linearize the constraint into ILP. However, Tayor expansion will
introduce the penalty of accuracy. Compared with the traditional time
consuming ILP, semidefinite programming (SDP) has been shown
to be a better approach in terms of runtime and solution quality
tradeoffs [7]. However, how to integrate the density balance into the
SDP formulation is still an open question. In the following we will
show that instead of using the painful Tayor expansion, this nonlinear
constraint can be integrated into SDP without losing any accuracy.

2) Density Balanced SDP Formulation: In SDP formulation, the
objective function is the representation of vector inner products, i.e.,
~vi · ~vj . At the first glance, the constraint (1e) cannot be formulated
into an inner product format. However, we will show that density
uniformity DUk can be optimized through considering another form
DU∗k = dk1 ·dk2+dk1 ·dk3+dk2 ·dk3. This is based on the following
observation: maximizing DU∗k is equivalent to minimizing DUk.

Lemma 1 DU∗k = 2/3 ·
∑

i,j∈V denki · denkj · (1− ~vi · ~vj), where
denki is the density of feature ri in bin bk.

Proof: First of all, let us calculate d1 · d2. For all vectors ~vi =
(1, 0) and all vectors ~vj = (− 1

2
,
√
3
2
), we can see that∑

i

∑
j

leni · lenj · (1− ~vi · ~vj) =
∑
i

∑
j

leni · lenj · 3/2

=3/2 ·
∑
i

leni

∑
j

lenj = 3/2 · d1 · d2

So d1 ·d2 = 2/3 ·
∑

i

∑
j leni · lenj · (1− ~vi · ~vj), where ~vi = (1, 0)

and ~vj = (− 1
2
,
√
3
2
). We can also calculate d1 · d3 and d2 · d3 using

similar methods. Therefore,

DU2 = d1 · d2 + d1 · d3 + d2 · d3
= 2/3 ·

∑
i,j∈V

leni · lenj · (1− ~vi · ~vj)

Because of Lemma 1, the DU∗k can be represented as a vector
inner product, then we have achieved the following theorem.

Theorem 1 Maximizing DU∗k can achieve better density balance in
bin bk.

Note that we can remove the constant
∑

i,j∈V denki · denkj · 1
in DU∗k expression. Similarly, we can eliminate the constants in the
calculation of the conflict and stitch numbers. The simplified vector
program is as follows:

min
∑

eij∈CE

(~vi · ~vj)− α
∑

eij∈SE

(~vi · ~vj)− β ·
∑
bk∈B

DU∗k (2)

s.t. DU∗k = −
∑
i,j∈V

denki · denkj · (~vi · ~vj) ∀bk ∈ B (2a)

~vi ∈ {(1, 0), (−
1

2
,

√
3

2
), (−1

2
,−
√
3

2
)} (2b)

Formulation (2) is equivalent to the mathematical formulation (1),
and it is still NP-hard to be solved exactly. Constraint (2b) requires the
solutions to be discrete. To achieve a good tradeoff between runtime
and accuracy, we can relax (2) into a SDP formulation, as shown in
Theorem 2.

Theorem 2 Relaxing vector program (2) can get the SDP formula-
tion (3).

SDP: min A •X (3)

Xii = 1, ∀i ∈ V (3a)

Xij ≥ −
1

2
, ∀eij ∈ CE (3b)

X � 0 (3c)

where Aij is the entry that lies in the i-th row and the j-th column
of matrix A:

Aij =


1 + β ·

∑
k denki · denkj , ∀bk ∈ B, eij ∈ CE

−α+ β ·
∑

k denki · denkj , ∀bk ∈ B, eij ∈ SE
β ·

∑
k denki · denkj , otherwise

Due to space limit, the detailed proof is omitted. The solution of
(3) is continuous instead of discrete, and provides a lower bound of
vector program (2). In other words, (3) provides an approximated
solution to (2).

B. Density Balanced Mapping

Each Xij in solution of (3) corresponds to a feature pair (ri, rj).
The value of Xij provides a guideline, i.e., whether two features ri
and rj should be in same color. If Xij is close to 1, features ri and
rj tend to be in the same color (mask); while if it is close to −0.5, ri

and rj tend to be in different colors (masks). With these guidelines a
mapping procedure is adopted to finally assign all input features into
three colors (masks).

1) Limitations of Greedy Mapping: In [7], a greedy approach was
applied for the final color assignment. The idea is straightforward: all
Xij values are sorted, and vertices ri and rj with larger Xij value
tend to be in the same color. The Xij can be classified into two types:
clear and vague. If most of the Xijs in matrix X are clear (close to
1 or -0.5), this greedy method may achieve good result. However, if
the decomposition graph is not 3-colorable, some values in matrix X
are vague. For the vague Xij , e.g., 0.5, the greedy method may not
be so effective.

2) Density Balanced Partition based Mapping: Contrary to the
previous greedy approach, we propose a partition based mapping,
which can solve the assignment problem for the vague Xijs in a more
effective way. The new mapping is based on a three-way maximum-
cut partitioning. The main ideas are as follows. If a Xij is vague,
instead of only relying on the SDP solution, we also take advantage of
the information in decomposition graph. The information is captured
through constructing a graph, denoted by GM . Through formulating
the mapping as a three-way partitioning on the graph GM , our
mapping can provide a global view to search better solutions.

Algorithm 1 Partition based Mapping
Require: Solution matrix X of the program (3).

1: Label each non-zero entry Xi,j as a triplet (Xij , i, j);
2: Sort all (Xij , i, j) by Xij ;
3: for all triples with Xij > thunn do
4: Union(i, j);
5: end for
6: for all triples with Xij < thsp do
7: Separate(i, j);
8: end for
9: Construct graph GM ;

10: if graph size ≤ 3 then
11: return;
12: else if graph size ≤ 7 then
13: Backtracking based three-way partitioning;
14: else
15: FM based three-way partitioning;
16: end if

Algorithm 1 shows our partition based mapping procedure. Given
the solutions from program (3), some triplets are constructed and
sorted to maintain all non-zero Xij values (lines 1–2). The mapping
incorporates two stages to deal with the two different types. The first
stage (lines 3–8) is similar to that in [7]. If Xij is clear then the
relationship between vertices ri and rj can be directly determined.
Here thunn and thsp are user-defined threshold values. For example,
if Xij > thunn, which means that ri and rj should be in the same
color, then function Union(i, j) is applied to merge them into a large
vertex. Similarly, if Xij < thsp, then function Separate(i, j) is used
to label ri and rj as incompatible. In the second stage (lines 9–16)
we deal with the vague Xij values. During the previous stage some
vertices have been merged, therefore the total vertex number is not
large. Here we construct a graph GM to represent the relationships
among all the remanent vertices (line 9). Each edge eij in this graph
has a weight representing the cost if vertices i and j are assigned
into same color. Therefore, the color assignment problem can be
formulated as a maximum-cut partitioning problem on GM (line 10–
16).

Through assigning a weight to each vertex representing its density,
graph GM is able to balance density among different bins. Based

a1

b

c

d1

a2 d2

(a)

c (5)
A (100)

b(5)

a1(20)

d1(15)0.1

1
1

1

0.1 2

2

1

(b)

c (5)a2+d2
(100)

b(5)

a1(20)

d1(15)0.1

1
1

1

0.1 2

2

1

(c)

c (5)a2+d2
(100)

b(5)

a1(20)

d1(15)0.1

1
1

1

0.1 2

2

1

(d)
Fig. 4. Density Balanced Mapping. (a) Decomposition graph. (b) Construct
graph GM . (c) Mapping result with cut value 8.1 and density uniformities
24. (d) A better mapping with cut 8.1 and density uniformities 23.

on the GM , a partitioning is performed to simultaneously achieve a
maximum-cut and balanced weight among different parts. Note that
we need to modify the gain function, then in each move, we try to
achieve a more balanced and larger cut partitions.

An example of the density balanced mapping is shown in Fig. 4.
Based on the decomposition graph (see Fig. 4 (a)), SDP is formulated.
Given the solutions of SDP, after the first stage of mapping, vertices
a2 and d2 are merged in to a large vertex. As shown in Fig. 4(b),
the graph GM is constructed, where each vertex is associated with a
weight. There are two partition results with the same cut value 8.1
(see Fig. 4 (c) and Fig. 4 (d)). However, their density uniformities
are 24 and 23, respectively. To keep a more balanced density result,
the second partitioning in Fig. 4 (c) is adopted as color assignment
result.

It is well known that the maximum-cut problem, even for a 2-
way partition, is NP-hard. However, we observe that in many cases,
after the global SDP optimization, the graph size of GM could be
quite small, i.e., less than 7. For these small cases, we develop
a backtracking based method to search the entire solution space.
Note that here backtracking can quickly find the optimal solution
even through three-way partitioning is NP-hard. If the graph size
is larger, we propose a heuristic method, motivated by the classic
FM partitioning algorithm [16] [17]. Different from the classic FM
algorithm, we make the following modifications. (1) In the first stage
of mapping, some vertices are labeled as incomparable, therefore
before moving a vertex from one partition to another, we should
check whether it is legal. (2) Classical FM algorithm is for min-
cut problem, we need to modify the gain function of each move to
achieve a maximum cut.

The runtime complexity of graph construction is O(m), where m
is the vertex number in GM . The runtime of three-way maximum-
cut partitioning algorithm is O(mlogm). Besides, the first stage of
mapping needs O(n2logn) [7]. Since m is much smaller than n, the
complexity of density balanced mapping is O(n2logn).

C. Density Balanced Layout Graph Simplification

Here we show that the layout graph simplification, which was
proposed in [7], can consider the local density balance as well.
During layout graph simplification, we iteratively remove and push all
vertices with degree less than or equal to two. After the color assign-
ment on the remained vertices, we iteratively recover all the removed

vertices and assign legal colors. Instead of randomly picking one, we
search a legal color which is good for the density uniformities.

V. SPEEDUP TECHNIQUES

Our layout decomposer applies a set of graph simplification tech-
niques proposed by recent works:

• Independent Component Computation [7] [8] [11];
• Vertex with Degree Less than 3 Removal [7] [8] [11];
• 2-Edge-Connected Component Computation [7] [8] [11];
• 2-Vertex-Connected Component Computation [8] [11].

Apart from the above graph simplifications, our decomposer proposes
a set of novel speedup techniques, which would be introduced in this
section.

A. LG Cut Vertex Stitch Forbiddance

a

b c

e f

a

b c

d

e f

g

(a)

b c

e f

a1 a2

b c

d1 d2

e f

g1 g2

(b)

b c

e f

a

b c

d1 d2

e f

g1 g2

(c)

a

b c

d1 d2

e f

g1 g2

a'

DG1

DG2

(d)
Fig. 5. Layout graph cut vertex stitch forbiddance.

A vertex of a graph is called a cut vertex if its removal decomposes
the graph into two or more connected components. Cut vertices can
be identified through the process of bridge computation [7]. During
stitch candidate generation, forbidding any stitch candidate on cut
vertices can be helpful for later decomposition graph simplification.
Fig. 5 (a) shows a layout graph, where feature a is a cut vertex,
since its removal can partition the layout graph into two parts: {b,
c, d} and {e, f, g}. If stitch candidates are introduced within a, the
corresponding decomposition graph is illustrated in Fig. 5 (b), which
is hard to be further simplified. If we forbid the stitch candidate on a,
the corresponding decomposition graph is shown in Fig. 5 (c), where
a is still cut vertex in decomposition graph. Therefore we can apply
2-connected component computation [8] to simplify the problem size,
and apply color assignment separately (see Fig. 5 (d)).

B. Decomposition Graph Vertex Clustering

Decomposition graph vertex clustering is a speedup technique to
further reduce the decomposition graph size. As shown in Fig. 6
(a), vertices a and d1 share the same conflict relationships against
b and c. Besides, there is no conflict edges between a and d1. If
no conflict is introduced, vertices a and d1 should be assigned the
same color, therefore we can cluster them together, as shown in Fig.
6 (b). Note that the stitch and conflict relationships are also merged.
Applying vertex clustering in decomposition graph can further reduce
the problem size.

b

c

d1

d2

a

e

(a)

b

cd2

e

a+d1

(b)

Fig. 6. DG vertex clustering to reduce the decomposition graph size.

C. Fast Color Assignment Trial

Although the SDP and the partition based mapping can provide
high performance for color assignment, it is still expensive to be
applied to all the decomposition graphs. We derive a fast color as-
signment trial before calling SDP based method. If no conflict or stitch
is introduced, our trial solves the color assignment problem in linear
time. Note that SDP method is skipped only when decomposition
graph can be colored without stitch or conflict, our fast trial does not
lose any solution quality. Besides, our preliminary results show that
more than half of the decomposition graphs can be decomposed using
this fast method. Therefore, the runtime can be dramatically reduced.

Algorithm 2 Fast Color Assignment Trial
Require: Decomposition graph G, stack S.

1: while ∃n ∈ G s.t. dconf (n) < 3 & dstit(n) < 2 do
2: S.push(n); G.delete(n);
3: end while
4: if G is not empty then
5: Recover all vertices in S;
6: return false;
7: else
8: while !S.empty() do
9: n = S.pop(); G.add(n);

10: Assign n a legal color;
11: end while
12: return true;
13: end if

The fast color assignment trial is shown in Algorithm 2. First, we
iteratively remove the vertex with conflict degree (dconf) less than
3 and stitch degree (dstit) less than 2 (lines 1–3). If some vertices
cannot be removed, we recover all the vertices in stack S, then return
false; Otherwise, the vertices in S are iteratively popped (recovered)
(lines 8–12). For each vertex n popped, since it is connected with
at most one stitch edge, we can always assign one color without
introducing conflict or stitch.

VI. EXPERIMENTAL RESULTS

We implement our decomposer in C++ and test it on an Intel Xeon
3.0GHz Linux machine with 32G RAM. ISCAS 85&89 benchmarks
from [7] are used, where the minimum coloring spacing dism was
set the same with previous studies [7] [8]. Besides, to perform a
comprehensive comparison, we also test on other two benchmark
suites. The first suite is with six dense benchmarks (“c9 total”-
“s5 total”), while the second suite is two synthesized OpenSPARC T1
designs “mul top” and “exu ecc” with Nangate 45nm standard cell
library [18]. When processing these two benchmark suites we set the
minimum coloring distance dism = 2 ·wmin+3 ·smin, where wmin

and smin denote the minimum wire width and the minimum spacing,
respectively. The parameter α is set as 0.1. The size of each bin is
set as 10 · dism× 10 · dism. We use CSDP [19] as the solver for the
semidefinite programming (SDP).

TABLE II. COMPARISON OF RUNTIME AND PERFORMANCE.

Circuit ICCAD’11 [7] DAC’12 [8] DAC’13 [11]1 SDP+PM
cn# st# cost CPU(s) cn# st# cost CPU(s) cn# st# cost CPU(s) cn# st# cost CPU(s)

C432 3 1 3.1 0.09 0 6 0.6 0.03 0 4 0.4 0.01 0 4 0.4 0.2
C499 0 0 0 0.07 0 0 0 0.04 0 0 0 0.01 0 0 0 0.2
C880 1 6 1.6 0.15 1 15 2.5 0.05 0 7 0.7 0.01 0 7 0.7 0.3

C1355 1 2 1.2 0.07 1 7 1.7 0.07 0 3 0.3 0.01 0 3 0.3 0.3
C1908 0 1 0.1 0.07 1 0 1 0.1 0 1 0.1 0.01 0 1 0.1 0.3
C2670 2 4 2.4 0.17 2 14 3.4 0.16 0 6 0.6 0.04 0 6 0.6 0.4
C3540 5 6 5.6 0.27 2 15 3.5 0.2 1 8 1.8 0.05 1 8 1.8 0.5
C5315 7 7 7.7 0.3 3 11 4.1 0.27 0 9 0.9 0.05 0 9 0.9 0.7
C6288 82 131 95.1 3.81 19 341 53.1 0.3 14 191 33.1 0.25 1 213 22.3 2.7
C7552 12 15 13.5 0.77 3 46 7.6 0.42 1 21 3.1 0.1 0 22 2.2 1.1
S1488 1 1 1.1 0.16 0 4 0.4 0.08 0 2 0.2 0.01 0 2 0.2 0.3
S38417 44 55 49.5 18.8 20 122 32.2 1.25 19 55 24.5 0.42 19 55 24.5 7.9
S35932 93 18 94.8 89.7 46 103 56.3 4.3 44 41 48.1 0.82 44 48 48.8 21.4
S38584 63 122 75.2 92.1 36 280 38.8 3.7 36 116 47.6 0.77 37 118 48.8 22.2
S15850 73 91 82.1 79.8 36 201 56.1 3.7 36 97 45.7 0.76 34 101 44.1 20.0

avg. 25.8 30.7 28.9 19.1 11.3 60.87 17.42 0.978 10.1 37.4 13.8 0.22 9.07 39.8 13.0 5.23
ratio 2.2 3.65 1.34 0.19 1.06 0.04 1.0 1.0

TABLE III. COMPARISON ON VERY DENSE LAYOUTS

Circuit ICCAD 2011 [7] DAC 2012 [8] SDP+PM
cn# st# cost CPU(s) cn# st# cost CPU(s) cn# st# cost CPU(s)

mul top 836 44 840.4 236 457 0 457 0.8 118 271 145.1 57.6
exu ecc 119 1 119.1 11.1 53 0 53 0.7 22 64 28.4 4.3
c9 total 886 228 908.8 47.4 603 641 667.1 0.52 117 1009 217.9 7.7
c10 total 2088 554 2143.4 52 1756 1776 1933.6 1.1 248 1876 435.6 19
s2 total 2182 390 2221 936.8 1652 5976 2249.6 4 703 5226 1225.6 70.7
s3 total 6844 72 6851.2 7510.1 4731 13853 6116.3 13.1 958 10572 2015.2 254.5
s4 total NA NA NA >10000 3868 13632 5231.2 13 1151 11091 2260.1 306
s5 total NA NA NA >10000 4650 16152 6265.2 12.9 1391 13683 2759.3 350.4

avg. NA NA NA >3600 2221.3 6503.8 2871.6 5.8 588.5 5474 1135.9 134
ratio - >27.0 2.53 0.05 1.0 1.0

A. Comparison with other decomposers

In the first experiment, we compare our decomposer with the state-
of-the-art layout decomposers which are not balanced density aware
[7] [8] [11]. We obtain the binary files from [7] and [8]. Since
currently we cannot obtain the binary for decomposer in [11], we
directly use the results listed in [11]. Here our decomposer is denoted
as “SDP+PM”, where “PM” means the partition based mapping. The
β is set as 0. In other words, SDP+PM only optimizes for stitch
and conflict number. Table III shows the comparison in terms of
runtime and performance. For each decomposer we list its stitch
number, conflict number, cost and runtime. The columns “cn#” and
“st#” denote the conflict number and the stitch number, respectively.
“cost” is the cost function, which is set as cn# +0.1× st#. “CPU(s)”
is computational time in seconds.

First, we compare SDP+PM with the decomposer in [7], which is
based on SDP formulation as well. From Table III we can see that
the new stitch candidate generation (see [11] for more details) and
partition-based mapping can achieve better performance (reducing the
cost by around 55%). Besides, SDP+PM can get nearly 4× speed-up.
The reason is that, compared with [7], a set of speedup techniques,
i.e., 2-vertex-connected component computation, layout graph cut
vertex stitch forbiddance (Sec. V-A), decomposition graph vertex
clustering (Sec. V-B), and fast color assignment trial (Sec. V-C), are
proposed. Second, we compare SDP+PM with the decomposer in
[8], which applies several graph based simplifications and maximum
independent set (MIS) based heuristic. From Table III we can see
that although the decomposer in [8] is faster, MIS based heuristic
has worse solution qualities (around 33% cost penalty compared
to SDP+PM). Compared with the decomposer in [11], although
SDP+PM is slower, it can reduce the cost by around 6%.

In addition, we compare SDP-PM with other two decomposers
[7] [8] for some very dense layouts, as shown in Table IV. We
can see that for some cases the decomposer in [7] cannot finish in
1000 seconds. Compared with [8] work, SDP+PM can reduce cost by
65%. It is observed that compared with other decomposers, SDP+PM

1The results of DAC’13 decomposition are from [11].

TABLE IV. BALANCED DENSITY IMPACT ON EPE

Circuit SDP+PM SDP+PM+DB
cost CPU(s) EPE# cost CPU(s) EPE#

C432 0.4 0.2 0 0.4 0.2 0
C499 0 0.2 0 0 0.2 0
C880 0.7 0.3 10 0.7 0.3 7

C1355 0.3 0.3 18 0.3 0.3 15
C1908 0.1 0.3 130 0.1 0.3 58
C2670 0.6 0.4 168 0.6 0.4 105
C3540 1.8 0.5 164 1.8 0.5 79
C5315 0.9 0.7 225 1.0 0.7 115
C6288 22.3 2.7 31 32.0 2.8 15
C7552 2.2 1.1 273 2.5 1.1 184
S1488 0.2 0.3 72 0.2 0.3 44
S38417 24.5 7.9 420 24.5 8.5 412
S35932 48.8 21.4 1342 49.8 24 1247
S38584 48.8 22.2 1332 49.1 23.7 1290
S15850 44.1 20 1149 47.3 21.3 1030

avg. 13.0 5.23 355.6 14.0 5.64 306.7
ratio 1.0 1.0 1.0 1.07 1.08 0.86

demonstrates much better performance when the input layout is dense.
The reason may be that when the input layout is dense, through
graph simplification, each independent problem size may still be
quite large, then SDP based approximation can achieve better results
than heuristic. It can be observed that for the last three cases our
decomposer could reduce thousands of conflicts. Each conflict may
require manual layout modification or high ECO efforts, which are
very time consuming. Therefore, even our runtime is more than [8],
it is still acceptable (less than 6 minutes for the largest benchmark).

B. Comparison for Density Balance

In the second experiment, we test our decomposer for the density
balancing. We analyze edge placement error (EPE) using Calibre-
Workbench [20] and industry-strength setup. For analyzing the EPE
in our test cases, we use systematic lithography process variation, such
as focus ±50nm and dose ±5%. In Table IV, we compare SDP+PM
with “SDP+PM+DB”, which is our density balanced decomposer.
Here β is set as 0.04 (we have tested different β values, we found
that bigger β does not help much any more; meanwhile, we still want
to give conflict and stitch higher weights). Column “cost” also lists

TABLE V. ADDITIONAL COMPARISON FOR DENSITY BALANCE

Circuit SDP+PM SDP+PM+DB
cost CPU(s) EPE# cost CPU(s) EPE#

mul top 145.1 57.6 632 147.5 63.8 630
exu ecc 28.4 4.3 140 33.9 4.8 138
c9 total 217.9 7.7 60 218.6 8.3 60
c10 total 435.6 19 77 431.3 19.6 76
s2 total 1225.6 70.7 482 1179.3 75 433
s3 total 2015.2 254.5 1563 1937.5 274.5 1421
s4 total 2260.1 306 1476 2176.3 310 1373
s5 total 2759.3 350.4 1270 2673.9 352 1171

avg. 1135.9 134 712.5 1099.8 138.5 662.8
ratio 1.0 1.0 1.0 0.97 1.04 0.93

the weighted cost of conflict and stitch, i.e., cost = cn#+0.1×st#.
From Table IV we can see that by integrating density balance

into our decomposition flow, our decomposer (SDP+PM+DB) can
reduce EPE hotspot number by 14%. Besides, density balanced SDP
based algorithm can maintain similar performance to the baseline
SDP implementation: only 7% more cost of conflict and stitch, and
only 8% more runtime. In other words, our decomposer can achieve
a good density balance while keeping comparable conflicts/stitches.

We further compare the density balance, especially EPE distri-
butions for very dense layouts. As shown in Table V, our density
balanced decomposer (SDP+PM+DB) can reduce EPE distribution
number by 7%. Besides, for very dense layouts, density balanced
SDP approximation can maintain similar performance with plain SDP
implementation: only 4% more runtime.

C. Scalability of SDP Formulation

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 200 400 600 800 1000 1200 1400 1600 1800 2000

R
u
n
ti
m

e
 (

s
e
c
)

Number of nodes

Runtime complexity of SDP

runtime of SDP
O(x^2.2)
O(x^2.4)

Fig. 7. Scalability of SDP Formulation.

In addition, we demonstrate the scalability of our decomposer,
especially the SDP formulation. Penrose benchmarks from [6] are
used to explore the scalability of SDP runtime. No graph simpli-
fication is applied, therefore all runtime is consumed by solving
SDP formulation. Fig. 7 illustrates the relationship between graph
(problem) size against SDP runtime. Here the X axis denotes the
number of nodes (e.g., the problem size), and the Y axis shows the
runtime. We can see that the runtime complexity of SDP is less than
O(n2.2).

VII. CONCLUSION

In this paper, we propose a high performance TPL layout decom-
poser with balanced density. Density balancing is integrated into all
the key steps of our decomposition flow. In addition, we propose
a set of speedup techniques, such as layout graph cut vertex stitch
forbiddance, decomposition graph vertex clustering, and fast color
assignment trial. Compared with state-of-the-art frameworks, our
decomposer demonstrates the best performance in minimizing the cost

of conflicts and stitches. Furthermore, our balanced decomposer can
obtain less EPE while maintaining very comparable conflict and stitch
results. As TPL may be adopted by industry for 14nm/11nm nodes,
we believe more research will be needed to enable TPL-friendly
design and mask synthesis.

ACKNOWLEDGMENT

This work is supported in part by NSF grants CCF-0644316 and
CCF-1218906, SRC task 2414.001, NSFC grant 61128010, and IBM
Scholarship.

REFERENCES

[1] ITRS. [Online]. Available: http://www.itrs.net
[2] B. Yu, J.-R. Gao, D. Ding, Y. Ban, J.-S. Yang, K. Yuan, M. Cho, and

D. Z. Pan, “Dealing with IC manufacturability in extreme scaling,”
in IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2012, pp. 240–242.

[3] Y. Borodovsky, “Lithography 2009 overview of opportunities,” in Semi-
con West, 2009.

[4] K. Lucas, C. Cork, B. Yu, G. Luk-Pat, B. Painter, and D. Z. Pan,
“Implications of triple patterning for 14 nm node design and patterning,”
in Proc. of SPIE, vol. 8327, 2012.

[5] J.-S. Yang, K. Lu, M. Cho, K. Yuan, and D. Z. Pan, “A new graph-
theoretic, multi-objective layout decomposition framework for double
patterning lithography,” in IEEE/ACM Asia and South Pacific Design
Automation Conference (ASPDAC), 2010.

[6] C. Cork, J.-C. Madre, and L. Barnes, “Comparison of triple-patterning
decomposition algorithms using aperiodic tiling patterns,” in Proc. of
SPIE, vol. 7028, 2008.

[7] B. Yu, K. Yuan, B. Zhang, D. Ding, and D. Z. Pan, “Layout decom-
position for triple patterning lithography,” in IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2011, pp. 1–8.

[8] S.-Y. Fang, W.-Y. Chen, and Y.-W. Chang, “A novel layout decomposi-
tion algorithm for triple patterning lithography,” in IEEE/ACM Design
Automation Conference (DAC), 2012.

[9] H. Tian, H. Zhang, Q. Ma, Z. Xiao, and M. Wong, “A polynomial
time triple patterning algorithm for cell based row-structure layout,”
in IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2012.

[10] B. Yu, J.-R. Gao, and D. Z. Pan, “Triple patterning lithography (TPL)
layout decomposition using end-cutting,” in Proc. of SPIE, vol. 8684,
2013.

[11] J. Kuang and E. F. Young, “An efficient layout decomposition approach
for triple patterning lithography,” in IEEE/ACM Design Automation
Conference (DAC), 2013.

[12] Q. Ma, H. Zhang, and M. D. F. Wong, “Triple patterning aware routing
and its comparison with double patterning aware routing in 14nm
technology,” in IEEE/ACM Design Automation Conference (DAC),
2012, pp. 591–596.

[13] Y.-H. Lin, B. Yu, D. Z. Pan, and Y.-L. Li, “TRIAD: A triple patterning
lithography aware detailed router,” in IEEE/ACM International Confer-
ence on Computer-Aided Design (ICCAD), 2012.

[14] B. Yu, X. Xu, J.-R. Gao, and D. Z. Pan, “Methodology for standard cell
compliance and detailed placement for triple patterning lithography,”
in IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), 2013.

[15] P. Chen and E. S. Kuh, “Floorplan sizing by linear programming
approximation,” in IEEE/ACM Design Automation Conference (DAC),
2000.

[16] C. M. Fiduccia and R. M. Mattheyses, “A linear-time heuristic for
improving network partitions,” in ACM/IEEE Design Automation Con-
ference (DAC), 1982, pp. 175–181.

[17] L. A. Sanchis, “Multiple-way network partitioning,” IEEE Trans. Com-
put., vol. 38, pp. 62–81, January 1989.

[18] “NanGate FreePDK45 Generic Open Cell Library,”
http://www.si2.org/openeda.si2.org/projects/nangatelib.

[19] B. Borchers, “CSDP, a C library for semidefinite programming,”
Optimization Methods and Software, vol. 11, pp. 613 – 623, 1999.

[20] “Mentor Calibre,” http://www.mentor.com.

