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Background



Background: DL Compiler Stack
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Background: AutoTuner with Machine Learning
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Method



We describe a DNN model as a computation graph and then define some
important terminologies.

Computation Graph

Computation Graph G is partitioned into a set of subgraphs S based on the graph-level
optimizer.

Hierarchical Search Space

A tensor program, denoted by p, represents an implementation of the subgraph using
low-level primitives that are dependent on the hardware platform. Each tensor program
can be considered as a candidate in the search space. We define the hierarchical search
space ϕ1,2, which decouples high-level structures ϕ1 from low-level details ϕ2, allowing for
the efficient exploration of potential tensor candidates during the tuning process.

Method: Problem Formulation
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Each search task is extracted from an independent subgraph Si on a specific
hardware platform H. Thus, we define search task Q as follows:

QH(S|G) =
{

Q1
(S1|G),Q2

(S2|G), . . . ,Qn
(Sn|G)

}
, (1)

where n is the number of subgraphs in G. Note that each subgraph Si contains a
computation-intensive operator σ and σ ∈ Si. Here, we can transform a tuning
problem into an optimization problem that explores the potential tensor programs
in a hierarchical search space.

Given code generation function ð, high-level structure generation parameters ϕ1,
low-level detail sampling parameters ϕ2, computation-intensive operator σ and
operator setting k (e.g., kernel size), our goal is to use ϕ1,2 to build a hierarchical
search space and generate tensor program p to achieve the optimal prediction
score y∗ on a specific hardware platform H.

ϕ∗
1,2 = argmax

ϕ
y,

y = fH(ð(ϕ1, ϕ2|σ, k)).
(2)
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The overview of a search-based framework with computation graph, cost model, and search space.

Method: Search-based Framework
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Hierarchical features of Conv2D with a full tensor program representation in the search space.

Performance Model: Hierarchical Features
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The performance model’s architecture includes two attention blocks that extract coarse and
fine-grained features of the tensor program, as well as a lightweight MLP layer for directly
predicting the score.

Performance Model: Model Architecture
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Transfer learning among different platforms.

Performance Model: Transfer Learning Across Devices
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Evaluation



End-to-end performance comparison of cost models across DNNs and normalized by the XGBoost.

Evaluation: End-to-End Execution
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cost model XGBoost LightGBM LSTM TabNet MHA ATFormer-1L ATFormer ATFormer-M
(ms/s) latency time latency time latency time latency time latency time latency time latency time latency time

ResNet-18-2080Ti 1.47 573 1.58 770 1.29 604 1.52 748 1.32 687 1.25 706 1.04 787 1.23 762

R
TX

20
80

Ti

Tr
an

sf
er

TenSet-50 0.86 535 0.98 527 1.02 614 1.13 583 1.01 595 1.00 602 0.97 600 1.00 611
TenSet-100 0.96 533 0.98 526 1.07 615 0.82 596 0.87 602 1.00 602 0.85 594 0.84 611
TenSet-200 0.99 536 0.86 525 1.07 611 0.88 582 0.83 602 0.82 612 0.82 604 0.82 632
TenSet-300 0.89 538 0.85 526 1.02 622 0.83 583 0.85 600 0.81 609 0.89 612 0.87 607
TenSet-500 0.96 530 0.81 529 1.03 622 0.82 574 0.83 593 0.87 598 0.84 612 0.79 615

ResNet-18-3090 1.07 589 1.11 676 1.24 762 1.64 741 1.11 658 0.97 661 1.02 677 3.01 665

R
TX

30
90

Tr
an

sf
er

TenSet-50 0.70 537 0.74 524 0.88 593 0.75 581 0.75 610 0.77 605 0.78 599 0.79 604
TenSet-100 0.71 540 0.73 526 0.83 599 0.67 620 0.65 607 0.68 601 0.66 606 0.69 614
TenSet-200 0.78 534 0.68 526 0.87 582 0.70 589 0.65 612 0.73 599 0.64 596 0.66 611
TenSet-300 0.70 536 0.68 531 0.83 616 0.66 585 0.64 617 0.67 595 0.71 607 0.66 613
TenSet-500 0.72 535 0.67 540 0.85 618 0.69 587 0.67 591 0.68 581 0.67 607 0.63 609

Table: Transferable adaptation evaluation between different GPU platforms on ResNet-18.

cost model XGBoost LSTM MHA ATFormer-1L ATFormer ATFormer-M
performance (ms / s) latency time latency time latency time latency time latency time latency time

RTX 2080Ti
Traditional Learning 1.26 1026 1.02 1487 1.03 1172 1.20 1269 1.02 1382 1.71 1124

Transfer Learning 1.23 281 1.05 348 0.99 261 1.15 264 0.99 271 0.93 266

RTX 3090
Traditional Learning 0.96 1004 1.03 1235 0.79 1125 0.87 1141 0.74 2054 0.94 2018

Transfer Learning 0.98 287 1.02 270 0.77 261 0.83 269 0.76 267 0.65 264

Table: Pre-trained models on TenSet-500 via transfer learning with converged latency.

Evaluation: Transfer Learning
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Methods
ResNet-18 MobileNet-V2 Bert-Tiny

(a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f)

mask? ✓ ✓ ✓ ✓ ✓ ✓
pre-trained? ✓ ✓ ✓ ✓ ✓ ✓
RMSE Loss? ✓ ✓ ✓
Rank Loss? ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
AutoTVM? ✓ ✓ ✓

total latency (ms) 1.42 1.04 1.23 0.81 0.83 1.92 0.53 0.51 0.76 0.39 0.40 1.29 4.18 3.41 3.97 2.32 2.46 5.07
search time (s) 781 787 762 620 611 3274 962 1000 958 617 604 2996 1127 1141 1150 818 816 3826

Table: Total latency and tuning time of different methods, using ResNet-18, MobileNet-V2
and Bert-Tiny networks for end-to-end evaluation. The relative gains obtain for batch size
= 1 with 300 measurement trials.

Evaluation: Transfer Learning
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Conclusion



This paper introduces ATFormer, a novel and effective design for optimizing
tensor programs.

• ATFormer employs hierarchical features with varying levels of granularity to model
the end-to-end compilation.

• Self-attention blocks are utilized to explore global dependencies of a complete tensor
program for high-quality evaluation.

• Through transfer learning, ATFormer achieves faster-converged latency and superior
transferability across different hardware platforms, outperforming previous
state-of-the-art benchmarks.

Conclusion
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