
ATFormer: A Learned Performance Model with
Transfer Learning Across Devices for Deep Learning
Tensor Programs

Yang Bai, Wenqian Zhao, Shuo Yin, Zixiao Wang, Bei Yu

Department of Computer Science and Engineering
Chinese University of Hong Kong

1 Background

2 Method

3 Evaluation

4 Conclusion

Outline

2/19

Background

Background: DL Compiler Stack

4/19

Background: AutoTuner with Machine Learning

5/19

Method

We describe a DNN model as a computation graph and then define some
important terminologies.

Computation Graph

Computation Graph G is partitioned into a set of subgraphs S based on the graph-level
optimizer.

Hierarchical Search Space

A tensor program, denoted by p, represents an implementation of the subgraph using
low-level primitives that are dependent on the hardware platform. Each tensor program
can be considered as a candidate in the search space. We define the hierarchical search
space ϕ1,2, which decouples high-level structures ϕ1 from low-level details ϕ2, allowing for
the efficient exploration of potential tensor candidates during the tuning process.

Method: Problem Formulation

7/19

Each search task is extracted from an independent subgraph Si on a specific
hardware platform H. Thus, we define search task Q as follows:

QH(S|G) =
{

Q1
(S1|G),Q2

(S2|G), . . . ,Qn
(Sn|G)

}
, (1)

where n is the number of subgraphs in G. Note that each subgraph Si contains a
computation-intensive operator σ and σ ∈ Si. Here, we can transform a tuning
problem into an optimization problem that explores the potential tensor programs
in a hierarchical search space.

Given code generation function ð, high-level structure generation parameters ϕ1,
low-level detail sampling parameters ϕ2, computation-intensive operator σ and
operator setting k (e.g., kernel size), our goal is to use ϕ1,2 to build a hierarchical
search space and generate tensor program p to achieve the optimal prediction
score y∗ on a specific hardware platform H.

ϕ∗
1,2 = argmax

ϕ
y,

y = fH(ð(ϕ1, ϕ2|σ, k)).
(2)

Method: Problem Formulation

8/19

Input

Conv [a]

Matmul [e]

Computation
Graph

High-level
structure

Low-level
detail

Best
Candidate

Conv [c]

Conv [b]
Conv [b]

D
L

fr
am

ew
or

k
fr

on
te

nd
s

AT
Fo

rm
er

Output

Cost Model

Offline
DataSet

Search Space

Auto-Tuning

Full Tensor ProgramsHardware

C
od

e
ge

nr
at

io
n

ba
ck

en
ds

Search
Algorithm

Online
DataSet

The overview of a search-based framework with computation graph, cost model, and search space.

Method: Search-based Framework

9/19

Placeholder: A, B
for i.0 in range(None):

for j.0 in range(None):

for k.0 in range(None):
for k.1 in range(None):

Computation Statement 1= …

High-level Structure:

 Conv2DO
utput

Feature VectorComputation Statement 2 = … …

…

Innerm
ost

statem
ent

features

O
perator

em
bedding

features

164
10

174

Hierarchical features of Conv2D with a full tensor program representation in the search space.

Performance Model: Hierarchical Features

10/19

Feature

Score

N
orm

alization

Em
bedding

Self-A
ttention

N
orm

alizaiton

M
LP

Multi-head : 4
dimension : 512

A
ttention
Block

A
ttention
Block

M
LP

Computation Layer Regression

 Traditional Learning
 (Online Dataset)

ATForm
er

(Cost M
odel)

The performance model’s architecture includes two attention blocks that extract coarse and
fine-grained features of the tensor program, as well as a lightweight MLP layer for directly
predicting the score.

Performance Model: Model Architecture

11/19

Source Domain

Transferable
Feature

XGBoost

LSTM

ATFormer

Source TargetTransfer Learning

Tesla T4 GPU

RTX 2080Ti GPU

Target Domain 2

Target Domain 1

RTX 3090 GPU

Transfer learning among different platforms.

Performance Model: Transfer Learning Across Devices

12/19

Evaluation

End-to-end performance comparison of cost models across DNNs and normalized by the XGBoost.

Evaluation: End-to-End Execution

14/19

cost model XGBoost LightGBM LSTM TabNet MHA ATFormer-1L ATFormer ATFormer-M
(ms/s) latency time latency time latency time latency time latency time latency time latency time latency time

ResNet-18-2080Ti 1.47 573 1.58 770 1.29 604 1.52 748 1.32 687 1.25 706 1.04 787 1.23 762

R
TX

20
80

Ti

Tr
an

sf
er

TenSet-50 0.86 535 0.98 527 1.02 614 1.13 583 1.01 595 1.00 602 0.97 600 1.00 611
TenSet-100 0.96 533 0.98 526 1.07 615 0.82 596 0.87 602 1.00 602 0.85 594 0.84 611
TenSet-200 0.99 536 0.86 525 1.07 611 0.88 582 0.83 602 0.82 612 0.82 604 0.82 632
TenSet-300 0.89 538 0.85 526 1.02 622 0.83 583 0.85 600 0.81 609 0.89 612 0.87 607
TenSet-500 0.96 530 0.81 529 1.03 622 0.82 574 0.83 593 0.87 598 0.84 612 0.79 615

ResNet-18-3090 1.07 589 1.11 676 1.24 762 1.64 741 1.11 658 0.97 661 1.02 677 3.01 665

R
TX

30
90

Tr
an

sf
er

TenSet-50 0.70 537 0.74 524 0.88 593 0.75 581 0.75 610 0.77 605 0.78 599 0.79 604
TenSet-100 0.71 540 0.73 526 0.83 599 0.67 620 0.65 607 0.68 601 0.66 606 0.69 614
TenSet-200 0.78 534 0.68 526 0.87 582 0.70 589 0.65 612 0.73 599 0.64 596 0.66 611
TenSet-300 0.70 536 0.68 531 0.83 616 0.66 585 0.64 617 0.67 595 0.71 607 0.66 613
TenSet-500 0.72 535 0.67 540 0.85 618 0.69 587 0.67 591 0.68 581 0.67 607 0.63 609

Table: Transferable adaptation evaluation between different GPU platforms on ResNet-18.

cost model XGBoost LSTM MHA ATFormer-1L ATFormer ATFormer-M
performance (ms / s) latency time latency time latency time latency time latency time latency time

RTX 2080Ti
Traditional Learning 1.26 1026 1.02 1487 1.03 1172 1.20 1269 1.02 1382 1.71 1124

Transfer Learning 1.23 281 1.05 348 0.99 261 1.15 264 0.99 271 0.93 266

RTX 3090
Traditional Learning 0.96 1004 1.03 1235 0.79 1125 0.87 1141 0.74 2054 0.94 2018

Transfer Learning 0.98 287 1.02 270 0.77 261 0.83 269 0.76 267 0.65 264

Table: Pre-trained models on TenSet-500 via transfer learning with converged latency.

Evaluation: Transfer Learning

15/19

Methods
ResNet-18 MobileNet-V2 Bert-Tiny

(a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f) (a) (b) (c) (d) (e) (f)

mask? ✓ ✓ ✓ ✓ ✓ ✓
pre-trained? ✓ ✓ ✓ ✓ ✓ ✓
RMSE Loss? ✓ ✓ ✓
Rank Loss? ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
AutoTVM? ✓ ✓ ✓

total latency (ms) 1.42 1.04 1.23 0.81 0.83 1.92 0.53 0.51 0.76 0.39 0.40 1.29 4.18 3.41 3.97 2.32 2.46 5.07
search time (s) 781 787 762 620 611 3274 962 1000 958 617 604 2996 1127 1141 1150 818 816 3826

Table: Total latency and tuning time of different methods, using ResNet-18, MobileNet-V2
and Bert-Tiny networks for end-to-end evaluation. The relative gains obtain for batch size
= 1 with 300 measurement trials.

Evaluation: Transfer Learning

16/19

Conclusion

This paper introduces ATFormer, a novel and effective design for optimizing
tensor programs.

• ATFormer employs hierarchical features with varying levels of granularity to model
the end-to-end compilation.

• Self-attention blocks are utilized to explore global dependencies of a complete tensor
program for high-quality evaluation.

• Through transfer learning, ATFormer achieves faster-converged latency and superior
transferability across different hardware platforms, outperforming previous
state-of-the-art benchmarks.

Conclusion

18/19

THANK YOU!

	Background
	Method
	Evaluation
	Conclusion

