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. Introduction: AI Models Scaling Trends =o2%
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An overview of Al models scaling trends '.

1by courtesy: https://community.cadence.com/cadence_blogs_8/b/
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. Introduction: Al Accelerators Scaling Trends =1
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Peak performance vs. power scatter plot of publicly announced Al accelerators and processors (by
July 2022)°.

2 Albert Reuther et al. (2022). “Al and ML Accelerator Survey and Trends”. In: IEEE High
Performance Extreme Computing Conference (HPEC). IEEE, pp. 1-10. 5/58
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. Introduction: Al Accelerators Scaling Trends e

¢ “Brawny” scaling.

¢ Scalable scaling.
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. Introduction: Al Accelerators Scaling Trends -

w

¢ “Brawny” scaling.

* Scale on-chip hardware resources**°¢7.

3Zidong Du et al. (2015). “ShiDianNao: Shifting Vision Processing Closer to the Sensor”. In:
IEEE/ACM International Symposium on Computer Architecture (ISCA), pp. 92-104.

“Yu-Hsin Chen, Joel Emer, and Vivienne Sze (2016). “Eyeriss: A Spatial Architecture for
Energy-efficient Dataflow for Convolutional Neural Networks”. In: [EEE/ACM International
Symposium on Computer Architecture (ISCA), pp. 367-379.

The NVIDIA Deep Learning Accelerator (NVDLA) (2017). http://nvdla.org/.

®Norman P Jouppi et al. (2017). “In-datacenter Performance Analysis of a Tensor Processing
Unit”. In: [EEE/ACM International Symposium on Computer Architecture (ISCA), pp. 1-12.

"Hasan Genc et al. (2021). “Gemmini: Enabling Systematic Deep-learning Architecture
Evaluation Via Full-stack Integration”. In: ACM/IEEE Design Automation Conference (DAC). IEEE,
pp. 769-774. 7/58
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. Introduction: Al Accelerators Scaling Trends -

w

¢ Scalable scaling.

* Scale DNN accelerators via an network-on-chip (NoC)391011,

8Swagath Venkataramani et al. (2017). “SCALEDEEP: A Scalable Compute Architecture for
Learning and Evaluating Deep Networks”. In: IEEE/ACM International Symposiun on Computer
Architecture (ISCA), pp. 13-26.

‘Mingyu Gao et al. (2019). “Tangram: Optimized Coarse-Grained Dataflow for Scalable NN
Accelerators”. In: ACM International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pp. 807-820.

¥Dennis Abts, Jonathan Ross, et al. (2020). “Think Fast: A Tensor Streaming Processor (TSP) for
Accelerating Deep Learning Workloads”. In: IEEE/ACM International Symposium on Computer
Architecture (ISCA). IEEE, pp. 145-158; Dennis Abts, Garrin Kimmell, et al. (2022). “A
Software-defined Tensor Streaming Multiprocessor for Large-scale Machine Learning”. In:
IEEE/ACM International Symposium on Computer Architecture (ISCA), pp. 567-580.

"Norm Jouppi et al. (2023). “TPU v4: An Optically Reconfigurable Supercomputer for Machine
Learning with Hardware Support for Embeddings”. In: IEEE/ACM International Symposiumn on
Computer Architecture (ISCA), pp. 1-14. 8/58
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. Introduction: Dataflow Architecture Accelerators B

Main features of Dataflow Architecture Accelerators:

¢ Dataflow architecture accelerators are a new kind of scalable scaling-driven Al
accelerators.

¢ A fundamental distinction from previous scalable DNN accelerators is the execution
model.

¢ Permits asynchronous mechanism where multiple instructions operate on multiple
data streams simultaneously (MIMD).

Dataflow Execution Model

The executability and execution of instructions is solely determined based on the
availability of input operands to the instructions'?.

Compute only what is relevant to input proactively'>.

2Tony Nowatzki, Vinay Gangadhar, and Karthikeyan Sankaralingam (2019). “Heterogeneous
Von Neumann/Dataflow Microprocessors”. In: Comimunications of the ACM 62.6, pp. 83-91.
BJasmina Vasiljevic et al. (2021). “Compute Substrate for Software 2.0”. In: [EEE Micro 41.2,
pp- 50-55. 9/58



. Introduction: DNN Model Orchestration B

What is DNN Model Orchestration?

The orchestration of DNN models determine how to partition, schedule and map a DNN
model to scalable DNN accelerators.

e Partition: partition a DNN computation graph into pops — Exploit higher execution
parallelism.

¢ Schedule/Scheduling: The scheduling allocates time slots for each pop to attain the
promising makespan.

* Mapping: decides the allocation of an accelerator for a pop.

10/58



. Introduction: DNN Model Orchestration
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A pipeline overview of DNN model orchestration for scalable DNN accelerators.
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. Preliminary: Previous Methodologies -

* CNN-Partition'*
¢ Tangram®.
* Atomic dataflow®.
They are proposed for traditional scalable DNN accelerators rather than dataflow
architecture accelerators.

14Yongming Shen, Michael Ferdman, and Peter Milder (2017). “Maximizing CNN accelerator
efficiency through resource partitioning”. In: IEEE/ACM International Symposiunt on Computer
Architecture (ISCA). IEEE Computer Society, pp. 535-547.

"Mingyu Gao et al. (2019). “Tangram: Optimized Coarse-Grained Dataflow for Scalable NN
Accelerators”. In: ACM International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pp. 807-820.

18Shixuan Zheng et al. (2022). “Atomic Dataflow Based Graph-Level Workload Orchestration for
Scalable DNN Accelerators”. In: [EEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, pp. 475-489. 13/58



. Preliminary: DNN Model Orchestration Comparison
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Comparison between traditional scalable DNN accelerators and dataflow architecture accelerators.
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. Preliminary: DNN Model Orchestration Comparison 3

Summary of the traditional scalable DNN accelerators:
¢ uOps are scheduled per round.
¢ Synchronization latencies are produced between adjacent rounds.
¢ The “bad” piop determines the time interval of a round.
Summary of the dataflow architecture accelerators:
® “Nearly” no synchronizations.

¢ High throughputs.

15/58
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. Preliminary: Problem Formulation B

Definition I: ;Op

The execution granularity of an individual accelerator in dataflow architecture
accelerators 7.

Definition II: Op precedence constraints

The consumer pop should not begin to execute before the producer pops are completed 8.

Definition III: Accelerator

An accelerator executes one pop at a time until its completion. Other pops cannot preempt
the execution.

7 A pop’s operands are termed pitensors.
BWe use u; < u; to denote that u; is an immediate producer of u;. 17/58



. Preliminary: Problem Formulation B

Problem I: Partition

Partition the computation of a DNN model into pops, aiming to maximize utilization of
each accelerator, and achieve load balancing, given a set of constraints.

Problem II: Scheduling

Allocate time slots for pops (the solution from Problem 1), aiming to minimize the
makespan.

Problem III: Mapping

Allocate accelerators for pops (the solution from Problem 1), aiming to minimize the NoC
communication costs during dataflow executions.

18/58
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Klotski: Overview

Dataflow Architecture

DNN Model Accelerators Specification

v

Bayesian Optimization-based Entropy-guided Partition

v

<
Dl

Unified Formulation for #Ops Scheduling & Mapping

Two-Stage Scheduling & Mapping Decoupling

HOps Scheduling via an ILP Model

NoC Communication-aware #Ops Mapping

v

Meet Bayesian Optimization Budget?

DNN Model Orchestration Solution

An overview of Klotski framework.

We focus on convolutional neural networks in Klotski.
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. Klotski: Bayesian Optimization-based Entropy-guided Partitio'f;)

Two requirements in partition:
¢ The computation of each pop should fully utilize an accelerator’s resources.

¢ The computation latency of all pops should be as close as possible to achieve load
balancing.

21/58



. Klotski: Bayesian Optimization-based Entropy-guided Partitio'ﬁ)

How do we partition?
® A unified representation of the partition strategy.

Example: a convolution layer’s shape is denoted as a tuple (R, S, P, Q, C,K), and
we use s(h,w, ic, oc) to partition the output tensor.

22/58



. Klotski: Bayesian Optimization-based Entropy-guided Partit}df»

Input Feature Map Convolution Kernels Output Feature Map
TxTx3 3x3x3x5 5x5x3
Type 1 Type 2 Type 3 Type 4 Type5  Type6  Type7 Type 8

Te (Tp i i g o B &

Type 9 Type 10 Type 11 Type 12 Type 13  Type 14 Typel5 Type 16
An example shows a partition with s(2,2, 2, 3).

23/58



. Klotski: Bayesian Optimization-based Entropy-guided Partitio'ﬁ)

Two requirements:
¢ The computation of each pop should fully utilize an accelerator’s resources.

¢ The computation latency of all ops should be as close as possible to achieve load
balancing.

Corresponding proposed solutions:
¢ The 1% requirement — Divisible by corresponding PE dimensions.

* The 2" requirement — Bayesian optimization-based design space exploration
solution.

24/58



. Klotski: Bayesian Optimization-based Entropy-guided Partitio'ﬁ)

Algorithm BO-based Entropy-guided Partition

Require: G: a DNN model. D: the design space for s. T: optimization budget.
1: S =0; Sample s € D;
2: fori=1—Tdo
Partition G with s;
Schedule, map, and execute pops;
Evaluate E(s); > Equation 3
S=5U{(s,E(s)};
Construct a Gaussian process model with S;
8: s* = argmax . UCB(s); s = s*
9: end for
10: return Optimal s* from S.

E(s)=—(} i) | 09)) - makespan), 3)
|4

25/58



. Klotski: Unified Formulation for ¢Ops Scheduling & Mapping'“:b

The main algorithm flow for the unified formulation:
@ — Acquire the upper bound of the makespan by list scheduling®?! 22.
@ Acquire the scheduling flexibility by ASAP & ALAP.
® — Define the solution with a binary tensor X'.
@ — Construct constraints for the scheduling & mapping.
©® — Construct optimization objectives.

® Solve the model with off-the-shelf solvers.

»Ronald L. Graham (1966). “Bounds for Certain Multiprocessing Anomalies”. In: Bell systern
technical journal 45.9, pp. 1563-1581.

*'Ronald L. Graham (1969). “Bounds on Multiprocessing Timing Anomalies”. In: SIAM journal on
Applied Mathematics 17.2, pp. 416—-429.

22 denotes that we only focus on these steps in slides. 26/58



. Klotski: Unified Formulation for yOps Scheduling & Mapping'“;a

Step 1: List scheduling gives the upper bound of the makespan for ;.ops
scheduling.

Theorem (Upper Bound of the Makespan for ;/Ops Scheduling)

List scheduling achieves 2 — 1/||a|| times the optimal makespan for dataflow architecture
accelerators, where || a|| is the number of individual accelerators.

Denote the upper bound as T, piop set V, and the accelerator vector a.

27/58



. Klotski: Unified Formulation for yOps Scheduling & Mapping"‘g

Step 3: A binary tensor X with the size of |[V| x T x ||a]|.

1, pop u; is scheduled to the k-th accelerator
Xij = at the j-th time slot. 4)
0, otherwise.

28/58



. Klotski: Unified Formulation for ¢Ops Scheduling & Mapping'“:b

Step 4: list of constraints.

¢ pOp constraint: scheduling flexibility & issue constraint.

llall L;

YD X =1,Vu V.

k=1 j=S;

llall L;

ZZ(J+ l(u)) =) X3 < T, Yu; € V.

k=1 j=5;

¢ 1Ops precedence constraint:

llall Ly llall Lq
DD =D Y i X
k=1j=5, k=1 j=5,

gk < —

Vup, Yu, € Vand u, < uy.

¢ Computing resource constraint:

llall I(u) -1 |V

> Z > Xigp < llall,

k=1 p=0 i=1

v =

{1,2,...,

p),

T}.

)

(6)

(7)

(8)
29/58



. Klotski: Unified Formulation for ¢Ops Scheduling & Mapping'“g

Step 5: Optimization objectives include T and NoC communication cost.

A NoC with mesh topology and XY-YX routing algorithm?.

[R] NoC Router

|:| Accelerator holds %p
|:| Accelerator holds %g

Possible NoC routing

An overview of an NoC communication.

B Natalie Enright Jerger, Tushar Krishna, and Li-Shiuan Peh (2017). “On-chip Networks”. In:
Synthesis Lectures on Computer Architecture 12.3, pp. 1-210. 30/58



. Klotski: Unified Formulation for ¢Ops Scheduling & Mapping'“g

The NoC communication cost from pop uy, to pop ug is H

Cup<uy = |X1 — X2| + |y1 — V2l 9)

where 1,’s assigned accelerator is at (x1,y1), and the acclerator for u, is at (x2,12).

2 A more realistic model includes the transmitted data volume size. 31/58



. Klotski: Unified Formulation for ¢Ops Scheduling & Mapping'“;.)

Compute the locations of accelerators with following equations:
a
X1 = [;J,yl =amod x

Xy = KJ,yZ:bmodx
flal] llal]

a—b#0 > Xpp+> Xge>1, je{l,2,...T}
k=1 k=1
lal| Ly lal| L

a= szxmk’ b= szxwk

k=1 j=S, k=1 j=5,

The entire NoC communication costs:

|E|
C= Z|xe1 - xe2| + |ye1 - ye2|7

e=1

(10)

(11)

(12)

(13)

(14)

32/58



. Klotski: Unified Formulation for yOps Scheduling & Mapping'“g

Step 6: Solve with off-the-shelf solvers.
argmin T+5C
X (15)
s.t. Equations (5) — (13).

The length of a single time slot is determined by min I(u;), Vu; € V, where 3 is a
coefficient to trade-off T and C.

33/58



. Klotski: Unified Formulation for yOps Scheduling & Mapping'“:b

Limitations of the unified formulation:
¢ It costs high runtime to construct constraints like Equation (8).
¢ Non-linearity in Equation (9), Equation (10), and Equation (11).

We propose a two-stage scheduling & mapping decoupling methodology
accordingly.

34/58



. Klotski: Two-Stage Scheduling & Mapping Decoupling 3

@

The main algorithm flow for the two-stage scheduling & mapping decoupling:
@ — Acquire the upper bound of the makespan by list scheduling?2¢ %7.

@ Acquire the scheduling flexibility by ASAP & ALAP.

© — Decouple the unified formulation with binary matrice X and Y %.

@ — Construct the scheduling model & solve with off-the-shelf solvers.

® — Construct the mapping model & solve with off-the-shelf solvers.

PRonald L. Graham (1966). “Bounds for Certain Multiprocessing Anomalies”. In: Bell systern
technical journal 45.9, pp. 1563-1581.

*Ronald L. Graham (1969). “Bounds on Multiprocessing Timing Anomalies”. In: SIAM journal on
Applied Mathematics 17.2, pp. 416-429.

¥ denotes that we only focus on these steps in slides.

% denotes that we only focus on these steps in slides. 35/58
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. Klotski: Two-Stage Scheduling & Mapping Decoupling

Step 3: A |V| x T binary matrix X as a scheduling solution and a binary matrix ¥
with the size of |V| x ||a|| as the mapping solution.

1, pop u; is scheduled to the j-th time slot.
¥ - (16)
0, otherwise.
1, u; i d to the j-th accelerator.
y; - { jop 1; is mapped to the j-th accelerator -

0, otherwise.

36/58



. Klotski: Two-Stage Scheduling & Mapping Decoupling 3

Step 4: Construct the scheduling model & solve with off-the-shelf solvers.

argmin T
X

L;
s.t.ZXijzl, Z(]+l ~1X; <T

(18)
Z] Xl] Z] : ij < —l(ui), Uj < Uj
=5k
l(u,)—l V]|
D Xijop <llall, Vje{1,2,.,T}
p=0 i=1

We relax the last constraint of Equation (18) with Equation (19) %
S Xj<lal, Vie{12,..T) 19)

iel={ilje[S;, L]}

»The equation is customized to dataflow architecture accelerators only, but we omit rationales in
slides. 37/58
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. Klotski: Two-Stage Scheduling & Mapping Decoupling 3

Step 5: Construct the mapping model & solve with off-the-shelf solvers.

We introduce new variables to transform the mapping problem as mixed-integer
linear programming. Take an example from Equation (10) to Equation (13).

38/58



. Klotski: Two-Stage Scheduling & Mapping Decoupling

With newly-incorporated six rational variables (k1, k2, 11, 12, 71, 12), four integer

variables (x1, X2, p, q), and a binary variable z, the communication between u; and

uj is formulated.

argmin ki +ky +n1 +no

Y.,

s.t.

llall lall

a= Zkyika b= Zkyj‘k,
k=1 k=1

k1>k27n17n2 Z 07 p.q,Xx1,X2 S Zv AS {071}

(20)
(21)

(22)

(23)
(24)
(25)
(26)

(27)

(28)
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. Experiments: Implementation Details 3

We build an in-house simulator for the dataflow architecture accelerators.

We use MAESTRO® as performance model for individual accelerators.

We use nn_dataflow’! as the front end of DNN models, and we implement the
partition based on the framework.

* We use Gurobi v10.0*? as the off-the-shelf solver.

¥Hyoukjun Kwon et al. (2019). “Understanding Reuse, Performance, and Hardware Cost of DNN
Dataflows: A Data-Centric Approach”. In: [IEEE/ACM International Symposium on Microarchitectire
(MICRO), pp. 754-768.

*'nn_dataflow: a Neural Network Dataflow Scheduling Tool (n.d.).
https://github.com/stanford-mast/nn_dataflow.

2L LC Gurobi Optimization (2020). Gurobi Optimizer Reference Manual (2020). 41/58
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. Experiments: Baselines & Workloads -

HW

Baselines:

® No previous methods for DNN model orchestration were proposed for dataflow
architecture accelerators.

* We set up our baselines based on Tangram® and the atomic dataflow? with
rationales.

® We term them as “baseline 1” and “baseline 2”.
Workloads:

* VGG16, VGGI19, ResNet50, ResNet152, and Inception v3.
Topologies:

° 3x3.

® 4 x4.

° 5x5.

¥Mingyu Gao et al. (2019). “Tangram: Optimized Coarse-Grained Dataflow for Scalable NN
Accelerators”. In: ACM International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pp. 807-820.

%Shixuan Zheng et al. (2022). “Atomic Dataflow Based Graph-Level Workload Orchestration for
Scalable DNN Accelerators”. In: [EEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, pp. 475-489. 42/58




Experiments: Comparison to Baselines

Table: The experimental results for the 3 x 3 topology

‘ Workload ‘ Method ‘ Cycles Ratio ‘ Overall Runtime  Ratio ‘ HUR'! ‘
Baseline 1 | 1.2283E + 08  1.0000 -2 —— | 1.0000
VGG16 | Baseline2 | 5.5633E + 07  0.4529 477.6634 1.0000 | 2.5617
Klotski | 4.0659E + 07 0.3310 878.8832 1.8399 | 3.0602
Baseline 1 | 1.5523E +08 1.0000 —— —— | 1.0000
VGG19 | Baseline 2 | 7.4207E +07 0.4781 576.3081 1.0000 | 2.5229
Klotski | 5.5381E + 07 0.3568 887.5790 1.5401 | 2.9857
Baseline 1 | 7.7422E + 07  1.0000 —— —— | 1.0000
ResNet50 | Baseline 2 | 5.7060E + 07 0.7370 583.6488 1.0000 | 0.9762
Klotski | 4.8174E + 07 0.8443 1779.0426 3.0481 | 1.3050
Baseline 1 | 1.8984E 408 1.0000 - —— | 1.0000
ResNet152 | Baseline2 | 1.7102E + 08  0.9009 867.0853 1.0000 | 1.2523
Klotski | 1.5947E + 08 0.8400 2800.9154 3.2302 | 1.3605
Baseline 1 | 2.5122E + 07  1.0000 - —— | 1.0000
Inception | Baseline 2 | 1.6345E + 07  0.6506 470.3763 1.0000 | 2.5103
Klotski | 1.3348E + 07 0.5313 1397.9008 2.9719 | 3.2996

1 Hardware utilization ratio
2 Not applicable

43/58



. Experiments: Comparison to Baselines

Table: The experimental results for the 4 x 4 topology

‘ Workload ‘ Method ‘ Cycles Ratio ‘ Overall Runtime  Ratio ‘ HUR ‘
Baseline 1 | 1.2283E + 08 1.0000 —— —— 1.0000
VGG16 | Baseline 2 | 4.5869E + 07 0.3734 317.5903 1.0000 | 2.1196
Klotski | 3.0670E + 07 0.2497 881.6310 2.7760 | 2.4547
Baseline 1 | 1.5523E + 08 1.0000 —— —— | 1.0000
VGG19 Baseline 2 | 5.8049E + 07 0.3740 388.8627 1.0000 | 1.9895
Klotski | 3.9934E + 07 0.2573 1130.6444 2.9076 | 2.2964
Baseline 1 | 7.7422E + 07  1.0000 —— —— | 1.0000
ResNet50 | Baseline 2 | 5.3365E + 07 0.6893 541.8091 1.0000 | 2.8954
Klotski | 4.6260E + 07 0.5975 1019.2198 1.8811 | 3.1953
Baseline 1 | 1.8984E + 08 1.0000 —— —— 1.0000
ResNet152 | Baseline 2 | 1.6578E +08 0.8733 793.7304 1.0000 | 1.2264
Klotski | 1.5754E + 08 0.8299 2327.4657 2.9323 | 1.3438
Baseline 1 | 2.5188E + 07 1.0000 —— —— | 1.0000
Inception | Baseline 2 | 1.5183E + 07 0.6028 419.3479 1.0000 | 2.2822
Klotski | 1.0781E 4+ 07 0.4280 1432.0112 3.4148 | 2.8579
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. Experiments: Comparison to Baselines

Table: The experimental results for the 5 x 5 topology

5x5
Workload | Method Cycles Ratio ‘ Runtime  Ratio ‘ HUR
Baseline 1 | 1.2283E +08 1.0000 —— —— | 1.0000
VGG16 Baseline 2 | 4.2621E + 07 0.3470 | 466.9748 1.0000 | 2.7157
Klotski | 2.4240E 407 0.1973 | 1640.0338 3.5120 | 3.4766
Baseline 1 | 1.5523E 408 1.0000 —— —— | 1.0000
VGG19 Baseline 2 | 5.0412E + 07 0.3248 | 569.8779  1.0000 | 2.8346
Klotski | 3.9046E + 07 0.2515 | 2755.4077 4.8351 | 3.1257
Baseline 1 | 7.7422E 4+ 07 1.0000 —— —— | 1.0000
ResNet50 | Baseline 2 | 5.0868E + 07 0.6570 | 628.1705 1.0000 | 1.8228
Klotski | 4.4029E 407 0.5687 | 1672.0000 2.6617 | 1.9678
Baseline 1 | 1.8984E 408 1.0000 —— —— | 1.0000
ResNet152 | Baseline 2 | 1.6460E + 08 0.8671 | 858.0045 1.0000 | 1.2575
Klotski | 1.5240E + 08 0.8028 | 4505.7838 5.2515 | 1.3352
Baseline 1 | 2.5180E + 07 1.0000 —— —— | 1.0000
Inception | Baseline 2 | 1.2733E + 07 0.5057 | 514.9384 1.0000 | 2.8642
Klotski | 8.3088E 4+ 06 0.3300 | 2787.1383 5.4126 | 3.3710
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. Experiments: Comparison to Baselines

Summary

¢ In the 3 x 3 topology, compared to baseline 1 and baseline 2, the solution given by
Klotski outperforms by an average of 44.42% and 10.03% for all DNN workloads. In
the 4 x 4 topology, the numbers are 49.01% and 9.29%. And in the 5 x 5 topology,
they are 52.02% and 9.33%.

¢ Kilotski costs higher runtime than baselines due to that Klotski leverages much time
to solve the scheduling and mapping in the two-stage methodology.

46/58



. Experiments: Ablation Study te,

We investigate the effectiveness of scheduling and mapping by Klotski with an

ablation study. The partition strategy explored by Klotski is leveraged for baseline
2. Baseline 1’s results are also compared.
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Results of the 3 x 3 topology.
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Results of the 4 x 4 topology.
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. Experiments: Ablation Study

Cycles
—~ 1
=
£ 05
=
fa
0
QS 9 Q )
G\' Cﬁ\/ ‘Zf’.) SD% 4 {b}%@
G C’) Q P OQ &L
QA & S x> >
Q\' Q\@ QQ‘)Q

S

Hardware utilization ratio

X 4
.2
= 2
~
QS O Q Vv ) Q
6\ 6\ Qf’b \})\i’b 04 &q,éo
C’) G Q -Q 4®
QA &S X >
Qv Q/@ G@Q
AN

Results of the 5 x 5 topology.
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. Experiments: Ablation Study te,

HW

Summary

¢ In the 3 x 3 topology, Klotski outperforms baseline 1 and baseline 2 by 46.34% and
4.10%. For the 4 x 4 and 5 x 5 topology, the improvments for baseline 1 and baseline
2 are 50.44%, 3.13%, 46.34%, and 3.71%, respectively.
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. Experiments: Lessons Learned 3

@

Summary

¢ Partitioning a DNN model into pops allows better execution performance, even for
cascaded layers structures.

¢ The improvement of the execution performance is non-linear to the increased
hardware utilization ratio. — Analytical partition solution?
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Conclusion



. Conclusion to

A Bayesian optimization-based entropy-directed partition algorithm is proposed for
(ops generation.

A unified formal formulation for the scheduling and mapping is proposed for
dataflow architecture accelerators.

A two-stage methodology decoupling the unified formulation is proposed to make
the solution feasible.

Extensive results show that Klotski can achieve 9.55% and 48.48% higher execution
performance improvement than baselines.
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