

AlphaSyn: Logic Synthesis Optimization with Efficient Monte Carlo Tree Search

上海人工智能实验室 Shanghai Artificial Intelligence Laborator

Zehua Pei¹, Fangzhou Liu², Zhuolun He¹, Guojin Chen¹, Haisheng Zheng², Keren Zhu¹, Bei Yu¹

¹The Chinese University of Hong Kong ²Shanghai Artificial Intelligence Laboratory

Introduction

- Recipe Sequence Generation is essential for logic synthesis optimization, enabling better Quality of Results.
- Previous works typically have low efficiency and are stuck at local optima.
- We propose a logic synthesis optimization framework, AlphaSyn, that incorporates a domain-specific Monte Carlo tree search (MCTS) algorithm.

Keywords: Logic synthesis, MCTS, GNN

Summary of previous works

Classification & Prediction

- Classify [1] or predict [2] the QoR of synthesis sequences.
- A large dataset is required for training and evaluation.
- The accuracy is limited and uncertain.

Sequence Generation

- Generate the sequence with specific optimization objectives by RL [3,4], BO [5] or with heuristics [6].
- RL and BO based methods are lack of enough exploration by performing in a "forward" process, where the sequence is generated as trajectory and evaluated as a whole.
- The methods with heuristics always explore in the reduced search space, which results in local optimum.

Motivation Analysis

Table 1. Results for greedy and modified greedy algorithms with design bfly.

Greedy	rw	rfz	rwz	rf	rsk6	rwz	#Final
#TNodes	2083	671	319	250	172	91	25324
Modified_Greedy	rw	b	rf	rsk6	rwz	rf	#Final
#TNodes	2083	130	963	265	174	140	25155

Earlier Transformation matters

- The earlier transformations work effectively during the optimization and dominate the synthesis sequence's performance.
- In AlphaSyn, the "accumulated statistics" of the search tree is closely related to this observation.

Earlier Transformation matters

- Restructuring logic, allowing more node reduction possibilities, which is considered to be the long-term effect.
- Taking both immediate and long-term effects into account is necessary to select each synthesis transformation and optimize them sequence.

Reference

[1] C. Yu, H. Xiao, and G. De Micheli, "Developing synthesis flows without human knowledge," in ACM/IEEE Design Automation Conference (DAC), 2018.

[2] A. B. Chowdhury, B. Tan, R. Carey, T. Jain, R. Karri, and S. Garg, "Bulls-Eye: Active few-shot learning guided logic synthesis," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2022. [3] A. Hosny, S. Hashemi, M. Shalan, and S. Reda, "DRiLLS: Deep reinforcement learning for logic synthesis," in IEEE/ACM Asia and South Pacific Design Automation Conference (ASPDAC), 2020.

[4] K. Zhu, M. Liu, H. Chen, Z. Zhao, and D. Z. Pan, "Exploring logic optimizations with reinforcement learning and graph convolutional net-work," in ACM/IEEE Workshop on Machine Learning CAD (MLCAD), 2020.

[5] A. Grosnit, C. Malherhe, R. Tutunov, X. Wan, J. Wang, and H.B. Ammar.

[5] A. Grosnit, C. Malherbe, R. Tutunov, X. Wan, J. Wang, and H.B. Ammar, "Boils: Bayesian optimisation for logic synthesis," in IEEE/ACM Proceedings Design, Automation and Test in Eurpoe (DATE), 2022.

[6] W. L. Neto, Y. Li, P.-E. Gaillardon, and C. Yu, "FlowTune: End- to-end automatic logic optimization exploration via domain-specific multi-armed bandit," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2022.

[7] G. Zhou and J. H. Anderson, "Area-driven FPGA logic synthesis using reinforcement learning," in IEEE/ACM Asia and South Pacific Design Automation Conference (ASPDAC), 2023.

Framework overview

Figure 1. The overview of AlphaSyn.

- Customized MCTS for Logic Synthesis Optimization. The customized algorithm SynUCT is developed to take the immediate-long term effect into consideration combined with the exploration-exploitation trade-off.
- Stable Learning Strategies. Several learning strategies are proposed to enhance the stability of MCTS with a neural network (PQnet), where the past observations is used in present sampling.
- Acceleration for MCTS. A resource allocator and an asynchronous parallel algorithm are developed, then the runtime is reduced and the performance is maintained.

Domain-Specific MCTS

Figure 2. The selection phase in MCTS. From the root s^0 of the search tree, transformations are selected iteratively based on SynUCT.

Selection SynUCT:

$$a^{t} = \arg\max_{a \in \mathcal{A}} (Q^{t,a} + R^{t,a} + U^{t,a}). \tag{1}$$

 $Q^{t,a}$: long-term return. $R^{t,a}$: immediate reward. $U^{t,a}$: balance mechanism:

$$U^{t,a} = c_{puct} \cdot P^{t,a} \cdot \frac{\sqrt{N^t}}{N^{t,a} + 1}.$$
 (2)

Expansion & Evaluation Define the **reward** $R^{\mathcal{T}}$:

$$R^{\mathcal{T}} = \operatorname{sgn}(O^{\mathcal{T}-1} - O^{\mathcal{T}}) \cdot \sqrt{\frac{|O^{\mathcal{T}-1} - O^{\mathcal{T}}|}{baseline}}.$$
 (3)

Multi-objecitves reward:

$$R^{\mathcal{T}} = (1 - \beta) \cdot R_1^{\mathcal{T}} + \beta \cdot R_2^{\mathcal{T}}. \tag{4}$$

Then new nodes are **expanded** with initial statistics:

$$\{N^{\mathcal{T},a} = 0, Q^{\mathcal{T},a} = 0, P^{\mathcal{T},a} = p^{\mathcal{T},a}\}.$$
 (5)

Backpropagation

Update the node visit count:

$$N^t \longleftarrow N^t + 1. \tag{6}$$

Update the long-term return Q^t , all $t < \mathcal{T}$:

$$Q^t \longleftarrow \lambda \cdot \max_{a \in A} (Q^{t,a} + R^{t,a}). \tag{7}$$

Decision Making

Take action T_i depends on the statistics:

$$T_i = \arg\max_{a \in \mathcal{A}} (Q^{0,a} + R^{0,a}). \tag{8}$$

Figure 3. Decision making in AlphaSyn.

Learning Strategies

Collecting data via *self-syn*, the accumulated Q and exponential distribution of (Q+R) are stored:

$$\pi^{0,a} = \frac{(Q^{0,a} + R^{0,a})^{1/\kappa}}{\sum_{b \in \mathcal{A}} (Q^{0,b} + R^{0,b})^{1/\kappa}}.$$

Input and Output of the model PQnet (f_{θ}) :

$$(\vec{p}^{\mathcal{T}}, Q_{es}^{\mathcal{T}}) = f_{\theta}(s_i^{\mathcal{T}}, \ a_i^{\mathcal{T}-1}, \ (\mathcal{T}-1)+i). \tag{10}$$

Loss function:

$$L_{\text{total}} = L_{\text{CF}}(\vec{p}^0, \vec{\pi}^0) + L_{\text{MSF}}(Q_{es}^0, Q^0). \tag{11}$$

We design the PQnet based on SAGEConv and the self-attention pooling SAGPool.

Figure 4. The overview of PQnet.

Acceleration Techniques for AlphaSyn

Resource Allocator.

Search times are gradually decreased as the index increase:

$$n_{sche}^{i} = n_{init} - D \cdot (i-1). \tag{12}$$

Asynchronous Parallelization.

Conditional **path-blocking-releasing** Asynchronous Parallelization, **Par-SynUCT**:

$$a_{par}^{t} = \arg\max_{a \in \mathcal{A}} (Q^{t,a} + R^{t,a} + U^{t,a} + B^{t,a}).$$
 (13)

Experienments

Table 2. Comparison with FlowTune [6] for technology mapping on Nangate 45nm library

	Flowtune [6]		AlphaSyn w/o nn		AlphaSyn w/ nn			
Design	Area	rt	Area	rt	Area	Ārea	rt	
	(μm^2)	(s)	(μm^2)	(s)	(μm^2)	(μm^2)	(s)	
bfly	16881.8	969.95	16089.0	450.78	15493	15959.2	830.20	
dscg	16393.2	913.20	16142.2	411.80	15743	16097.1	958.01	
fir	16323.5	922.73	15876.9	431.70	15336	15724.4	896.26	
ode	9302.5	479.77	9138.4	272.59	9101	9151.2	710.97	
or1200	6731.4	228.24	6756.6	153.92	6689.6	6729.1	531.53	
syn2	17246.4	880.14	16410.6	490.37	16051.5	16078.1	943.32	
Average	13813.1	732.34	13402.3	368.53	13069.0	13289.9	811.72	
Ratio	1.000	1.000	0.970	0.503	0.946	0.962	1.108	

Table 3. Comparison with DRiLLS [3] and ASPDAC'23 [7] for FPGA mapping.

	DRiLLS [3]	ASPDAC'23 [7]	AlphaSyn w/o nn		AlphaSyn w/ nn		
Design	LUTs	LUTs	LŪTs	rt (s)	LÛTs	LŪTs	rt (s)
max	694	687.8	680.5	74.59	674	680	342.56
adder	244	244	244	62.74	244	244	368.74
cavlc	112.2	111.3	106.8	53.14	106	106	321.12
ctrl	28	28	28	38.81	28	28	341
int2float	42.6	42.3	39.2	56.62	39	39	332.82
router	70.1	69.5	65.6	24.59	65	65	320.43
priority	133.4	142.9	135.6	59.15	131	135	350.11
i2c	292.1	289.32	280.6	47.78	272	280	373.46
sin	1441.5	1438	1439.7	91.02	1435	1438	406.19
square	3889.4	3889	3877	166.27	3875	3877	523.26
sqrt	4708	4685.3	4415	269.59	4415	4415	589.93
log2	7583.6	7580.1	7580	365.77	7580	7580	706.96
multiplier	5678	5672	5687.5	245.75	5670.5	5672	620.53
voter	1834.7	1678.1	1538.8	111.44	1534	1537.4	470.64
div	7944.4	7807.1	6685.3	244.04	5088.4	6650.1	712.57
mem_ctrl	10527.6	10309.7	9567.7	71.63	9211.5	9513.2	659.67
Average	2826.5	2792.2	2648.2	123.93	2523.0	2641.2	464.99
Ratio	1.000	0.988	0.937	-	0.893	0.934	-