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Introduction

= Recipe Sequence Generation is essential for logic synthesis
optimization, enabling better Quality of Results.

= Previous works typically have low efficiency and are stuck at local
optima.

= WWe propose a logic synthesis optimization framework, AlphaSyn, that
incorporates a domain-specific Monte Carlo tree search (MCTS)
algorithm.
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Summary of previous works

Classification & Prediction

= Classify [1] or predict [2] the QoR of synthesis sequences.
= A large dataset is required for training and evaluation.
= The accuracy is limited and uncertain.

Sequence Generation

= Generate the sequence with specific optimization objectives by RL
13,4], BO [5] or with heuristics [6].

= RL and BO based methods are lack of enough exploration by
performing in a “forward” process, where the sequence is generated as
trajectory and evaluated as a whole.

= The methods with heuristics always explore in the reduced search
space, which results in local optimum.

Motivation Analysis

Table 1. Results for greedy and modified greedy algorithms with design bfly.

Greedy rv  rfz rwz rf rsk6 rwz HEinal
#TNodes 2083 671 319 250 172 91 25324
Modified Greedy| 1w b rf 1rsk6 rwz rf #HEinal
#TNodes 2083 130 963 265 1/4 140 25155

Earlier Transformation matters

= The earlier transformations work effectively during the optimization
and dominate the synthesis sequence’s performance.

= |n AlphaSyn, the “accumulated statistics” of the search tree is closely
related to this observation.

Earlier Transformation matters

= Restructuring logic, allowing more node reduction possibilities, which is
considered to be the long-term effect.

= Taking both immediate and long-term effects into account is necessary
to select each synthesis transformation and optimize them sequence.
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Framework overview
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Figure 1. The overview of AlphaSyn.

= Customized MCTS for Logic Synthesis Optimization. The customized
algorithm SynUCT is developed to take the immediate-long term effect
iInto consideration combined with the exploration-exploitation
trade-off.

= Stable Learning Strategies. Several learning strategies are proposed to
enhance the stability of MCTS with a neural network (PQnet), where
the past observations is used in present sampling.

= Acceleration for MCTS. A resource allocator and an asynchronous
parallel algorithm are developed, then the runtime is reduced and the
performance is maintained.

Domain-Specific MCTS
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Figure 2. The selection phase in MCTS. From the root s” of the search tree,
transformations are selected iteratively based on SynUCT.

Selection
SynUCT:

al = arg max(@t’a + RO 4 Ut’a). (1)
acA

QY% long-term return. R%: immediate reward.
Ub%: balance mechanism:

v/ Nt
Uta:Cpuct Pta . (2)
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Figure 3. Decision making in AlphaSyn.
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Learning Strategies

Collecting data via self-syn, the accumulated ) and exponential distribu-
tion of (Q+R) are stored:

0a (QO,CL 4 RO,CL)l/HJ
% = . (9)
Y peal QU+ ROV)I/F
Input and Output of the model PQnet (fy):
@ ,QL) = folsT, al =1, (T —1) +1). (10)
Loss function:
Ltotal — LCE@O; 7?0> + LMSE(Qgsa QO> (11)

We design the PQnet based on SAGEConv and the self-attention pooling
SAGPool.
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Figure 4. The overview of PQnet.

Acceleration Techniques for AlphaSyn

Resource Allocator.
Search times are gradually decreased as the index increase:

nzsche = Ninit — D - (Z — 1). (12)

Asynchronous Parallelization.
Conditional path-blocking-releasing Asynchronous Parallelization,
Par-SynUCT:

aéar = arg meajc(Qt’a + RV 4 Ube 4 Bl (13)
a
Experienments

Table 2. Comparison with FlowTune [6] for technology mapping on Nangate 45nm
library.

Flowtune [6] | AlphaSyn w/o nn AlphaSyn w/ nn

Design | Area rt Area rt Area Area rt
(um?) () (um?) () (um?)  (pm? ()
bfly 16881.8 969.9516089.0 450.78|15493 15959.2 830.20
dscg 16393.2 913.20/16142.2 411.80|15743 16097.1 958.01
fir 16323.5 922.73115876.9 431.70/15336 15724.4 896.26
ode 93025 47/9.7/719138.4 272.59 9101 9151.2 /10.9/
or1l200 67314 228.24 6756.6 153.9216689.6 6729.1 531.53
syn2 172464 880.14 1 16410.6 490.37|16051.5 16078.1 943.32

13069.0 13289.9 811.72

Average | 13813.1 732.3413402.3 368.53
Ratio  [1.000 1.000 [0.9/0 0.503 0.946 0.962 1.108

Table 3. Comparison with DRILLS [3] and ASPDAC’23 [7] for FPGA mapping.

DRILLS [3]|ASPDAC'23 [7] AlphaSyn w/o nn AlphaSyn w/ nn
Design | LUTs LUTs LUTs rt(s) [LUTs LUTs  rt(s)
max 694 687.8 680.5 7459 674 680 342.56
adder 244 244 244 62.74 244 244  368.74
cavlc 112.2 111.3 106.8 53.14 106 106 321.12
ctrl 28 28 28 38.81 |28 28 341
int2float |42.6 42.3 39.2 56.62 |39 39 332.82
router /0.1 69.5 65.6 2459 |65 65 320.43
priority |133.4 142.9 1356 59.15 131 135 350.11
i2c 292.1 289.32 280.6 47.78 272 280 373.46
sin 1441.5 1438 1439.7 91.02 1435 1438 406.19
square 38894 3889 3877 16627 3875 3877 523.26
sart 4708 4685.3 4415 269.59 4415 4415 589.93
log2 7583.6 7580.1 7580 365.77 |7580 7580 706.96
multiplier| 5678 5672 5687.5 24575 |5670.5 5672 620.53
voter 1834.7 1678.1 1538.8 111.44 1534 1537.4 470.64
div 7944 4 7807.1 6685.3 244.04 15088.4 6650.1 712.57
mem_ctrl|10527.6 |10309.7 9567.7 71.63 19211.5 9513.2 659.67
Average |2826.5 2792.2 2648.2 123.93 12523.0 2641.2 464.99
Ratio 1.000 0.988 0.937 - 0.893 0.934 -
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