MICRO 2023

56th IEEE/ACM International Symposium on Microarchitecture

ArchExplorer: Microarchitecture
Exploration Via Bottleneck Analysis

Chen Bai'# Jiayi Huang®? Xuechao Wei* Yuzhe Ma?
Sicheng Li* Hongzhong Zheng* Bei Yu! Yuan Xie**

! The Chinese University of Hong Kong
2 The Hong Kong University of Science and Technology (Guangzhou)

3 Hong Kong University of Science and Technology

4+ DAMO Academy, Alibaba Group
ALIBABA DAMO ACADEMY %

Oct. 30, 2023

. Outline

@ Introduction

@ Background & Motivation

@ Lessons Learned & Design Principles

@ The ArchExplorer Approach

@ Experimental Setup & Evaluation Metrics
O Results

@ Discussion

2/51

Introduction

. Introduction: Problem Formulation

Microprocessor Microarchitecture Design Space Exploration (DSE)

Given benchmark suites and microprocessor microarchitecture design space, find optimal
microarchitecture parameters that can achieve good trade-offs between performance,
power, and area (PPA).

4/51

. Introduction: Previous Methodologies

¢ Industry:

¢ Expertise of computer architects.

* Academia:

¢ Analytical methodologies: based on mechanistic models with intepretable
equations.234
¢ Black-box methodologies: based on machine-learning techniques.

'Mark D Hill and Alan Jay Smith (1989). “Evaluating Associativity in CPU Caches”. In: [EEE
Transactions on Computers 38.12, pp. 1612-1630; MS Hrishikesh et al. (2002). “The Optimal Logic
Depth per Pipeline Stage is 6 to 8 FO4 Inverter Delays”. In: IEEE/ACM International Symposiiim on
Computer Architecture (ISCA). IEEE, pp. 14-24.

2Guangyu Sun et al. (2011). “Moguls: A Model to Explore the Memory Hierarchy for Bandwidth
Improvements”. In: IEEE/ACM International Symposium on Computer Architecture (ISCA). IEEE,
pp. 377-388.

*Tejas S Karkhanis and James E Smith (2007). “Automated Design of Application Specific
Superscalar Processors: An Analytical Approach”. In: [EEE/ACM International Symposiuim on
Computer Architecture (ISCA), pp. 402—411.

*Stijn Eyerman et al. (2009). “A Mechanistic Performance Model for Superscalar Out-of-order
Processors”. In: ACM Transactions on Computer Systems (TOCS) 27.2, pp. 1-37. 5/51

. Introduction: Previous Methodologies

¢ Black-box methodologies: based on machine-learning techniques.
Some representative approaches:

Regression®’
Ranking®

Bayesian optimization’
etc.

5Engin Tpek et al. (2006). “Efficiently Exploring Architectural Design Spaces Via Predictive
Modeling”. In: ACM International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS) 40.5, pp. 195-206.

*Benjamin C Lee and David M Brooks (2007). “Illustrative Design Space Studies with
Microarchitectural Regression Models”. In: IEEE International Symposium on High Performance
Computer Architecture (HPCA). IEEE, pp. 340-351.

"Dandan Li et al. (2016). “Efficient Design Space Exploration Via Statistical Sampling and
AdaBoost Learning”. In: ACM/IEEE Design Automation Conference (DAC). IEEE, pp. 1-6.

8Tianshi Chen et al. (2014). “ArchRanker: A Ranking Approach to Design Space Exploration”. In:
IEEE/ACM International Symposium on Computer Architecture (ISCA). IEEE.

?Chen Bai et al. (2021). “BOOM-Explorer: RISC-V BOOM Microarchitecture Design Space
Exploration Framework”. In: [EEE/ACM International Conference on Computer-Aided Design (ICCAD).
IEEE, pp. 1-9. 6/51

. Introduction: Limitations of Previous Methodologies

¢ Industry solutions — architects’” bias: whether the solution given by architects is
optimal or how many benefits we can gain based on a sub-optimal solution?

¢ Analytical methodologies — require immense domain knowledge.

¢ Black-box methodologies — require high computing resources.

7/51

. Introduction: Goal & Approach

Goal
Solve the problem by removing limitations of previous methodologies: remove massive
domain knowledge requirements & mitigate the high computing demands.

Approach

DSE via automated bottleneck analysis.

8/51

. Introduction: Rationales (Thought Experiment)

Perfect machine: unlimited hardware resources.
¢ Performance is constrained only by program’s true data dependencies.
Real machine: limited hardware resources.

¢ Performance is constrained by program’s true data dependencies and resource
constraints.

¢ Two distinct types of resources:

® deficient and exhausted.
¢ abundant and idle.

Resource constraints — the usage dependencies of deficient resources that blocks
instructions from progressing.

9/51

. Introduction: Rationales

Balanced Microarchitecture

A balanced microarchitecture can simultaneously maximize the utilization of each
hardware resource.

Bottleneck
We refer to a bottleneck as insufficient hardware resource that is exhausted by instructions
and results in high program runtime.

The Key to Success

Accurate and efficient identification of types of hardware resources is the first principle to
finding a balanced microarchitecture.

10/51

. Introduction: Findings & Design Principles

Findings
We find that the relations between resource constraints and machine parallelism are
similar to the cask effect.!o!!

How to identify the type of resources?
¢ The utilization status of each resource in the microexecution should be captured.

* Whether the overlapping events matter for the execution time should be considered.
— Call for a global view of the entire microexecution, which the critical path analysis
can help'?.

"Norman P. Jouppi (1989). “The Nonuniform Distribution of Instruction-level and Machine

Parallelism and Its Effect on Performance”. In: IEEE Transactions on Computers 38.12, pp. 1645-1658.
"Laurence] Peter, Raymond Hull, et al. (1969). The Peter Principle. Vol. 4. Souvenir Press London.
2Brian Fields, Shai Rubin, and Rastislav Bodik (2001). “Focusing Processor Policies via

Critical-path Prediction”. In: [EEE/ACM International Symposium on Computer Architecture (ISCA).

IEEE, pp. 74-85. 11/51

. Introduction: Findings & Design Principles

Design Principles for DSE via Bottleneck Analysis

* The dependencies contributing to execution time should be captured as much as
possible.

¢ Concurrent events should be distinguishable.

ArchExplorer is the implementation of the design principles.

12/51

Background & Motivation

. Background & Motivation: Challenges

(a) Performance (b) Power (c) Area

A visualization of the design space for 458.sjeng.

Challenges in microprocessor microarchitecture DSE:
¢ Complicated design space.

* High simulation runtime.

14/51

. Background & Motivation: Findings

Bottleneck Analysis Matters in DSE

Removing microarchitecture bottlenecks can significantly enhance the PPA trade-off.

A Straightforward Heuristic

In the DSE, assigning necessary hardware resources and reducing redundant ones.

¢ DSE starts from a baseline microarchitecture.
® Adjust resources based on the degree of necessity manually.

¢ The ratio of delayed instructions due to the resource’s insufficiency.

15/51

. Background & Motivation: Findings

Table: A baseline microarchitecture specification

] Components \ Hardware Resources
Pipeline width 4
Fetch buffer size in bytes | 64
Fetch queue size in p-ops | 32

Branch predictor unit

local/global/choice predictor
of the tournament: 2048/8192/8192
RAS: 16, BTB: 4096

ROB/IQ/LQ/SQ

50/32/24/24

Physical register

Int RF: 50, Floating-point RF: 50

Functional unit

IntALU: 3, IntMultDiv: 1, FpALU: 2
FpMultDiv: 1, RdWrPort: 1

L11%$ 2-way, 32 KB, 2 cycles
L1 D$ 2-way, 32 KB, 2 cycles
IPC/Power/Area 0.9418/0.2027 W/5.6609 mm?

16/51

. Background & Motivation: Findings

PPA Variations Comparison of Comparative Simulations

Perf

1.2

Ratio %
—

EEE Baseline
— 1Qx2
C O IntMultDivx 2
3 I$ assoc.x2

Power Area Perf?

Power Power X Area

1 ROBx2 [IntRFx2 — FpRF><2
1 LQx2 — SQx2 CJIntALUX2
COFpALUx2 @ FpMultDivx2 @@ I$ sizex2
I DS sizex2 @ D$ assoc.x2

The bar, e.g., “ROB x2”, indicates the microarchitecture is the same as the baseline except that it

doubles ROB.

* Doubling the number of physical integer registers improves performance by 23.05%
and enhances the PPA trade-off by 27.42%.

® Most instructions are stalled due to insufficient physical integer registers, which
results in 25.71% of instructions in 657.xz_s and 18.94% for 625.x264_s getting stalled

during renaming.

17/51

. Background & Motivation: Critical Path Analysis

Instruction sequence

I

: 1d a0, 40(s2)
12:
13:
14:
15:
16:
17:
18:

cslli a5, 32
csrli a5, 28
cadd a5, a0

sd s5, 0(a5)
Iwu a4, 52(s2),
1d a5, 40(s2)
cslli a4, 4

@ Fetch

@ Dispatch
@ Execute
@ Memory

© Commit

The critical path: 1 +3+1+100+1+ 1+ 1 =108

An overview of the dynamic event-dependence graph.

e Critical path analysis!®

BBrian Fields, Shai Rubin, and Rastislav Bodik (2001). “Focusing Processor Policies via
Critical-path Prediction”. In: [EEE/ACM International Symposium on Computer Architecture (ISCA).

douopuadop surjadig

18/51

. Background & Motivation: Critical Path Analysis

The former dynamic event dependence graph is inaccurate:

¢ The dependence and weights assignment are static without adhering to actual
microexecution.

¢ The critical path cannot accurately characterize the bottlenecks’ contributions to the
overall runtime, even if the modeled critical path length is strictly identical to the
simulation runtime.

19/51

Lessons Learned & Design Principles

. Lessons Learned & Design Principles

444 namd

T1: bgeu a4, a6, -108

12: addi a5, ft0, 48

13: 1d al, 112(s7)

14: ¢_mv ad, a2

15: beq a2, a5, 214

16: beq s10, fi0, 2784

17: addiw a5, a2, -48

18: addi a5, a5, 255

19:¢ liad,9

110: bgeu a4, a5, 246

—— Critical path
Statically assign
incorrect weight
Statically assign

false dependence ..

456.hmmer

TT: c_sdsp 10, 56(sp)
12: ¢_sdsp ft0, 64(sp)
c_sdsp ft0, 72(sp)

sp 0, 88(sp)
sp 0, 96(sp)
sdsp ft0, 104(sp)
18: ¢_sdsp ft0, 112(sp)
19: ¢_sdsp ft0, 120(sp)

sdsp 0, 80(sp) | (D)

110: ¢_sdsp 0, 128(sp)

Indistinguishable
concurrent events
assign false
dependence

(a) Previous DEG formulation statically assigns (b) Previous DEG formulation cannot distinguish
edges and weights without following the actual overlapped events.
microexecution.

(a) and (b) uses Calipers” to demonstrate three kinds of error sources.

"Hossein Golestani et al. (2022). “Calipers: A Criticality-aware Framework for Modeling
Processor Performance”. In: ACM International Conference on Supercomputing (ICS).

21/51

. Lessons Learned & Design Principles

Design Principles
¢ The dependencies contributing to execution time should be captured as much as
possible.
¢ Capturing more resource usages improves the utilization approximation.
¢ Concurrent events should be distinguishable.

¢ The distinguishability unveils whether we matter a concurrent event for
bottleneck contributions to the overall execution time.

22/51

The ArchExplorer Approach

. The ArchExplorer Approach: Overview

Benchmark

_j:{> Initial design generation

{

Design Space

Simulation & Exploration set update

!

Early stopping?

1. New DEG Formulation of Microexecution

!

2. Induced DEG & Critical Path Construction

v

Low Power:

‘Low Area

3. Bottleneck-removal-driven DSE

An overview of the ArchExplorer approach.

24/51

. The ArchExplorer Approach: New DEG Formulation

Highlights of new DEG formulation:
® Nodes represent pipeline stages, and edges represent dependencies.
¢ Align instructions w.r.t. the time instead of pipeline stages.
¢ Dynamic DEG construction.

¢ Ascertain the overlapped events.

25/51

. The ArchExplorer Approach: New DEG Formulation

1 D @D O D>
1 D@D B R
5 <

Concurrent events The coordinates of I(1a) is (10, 4)
AHAEDIBH

beq a5, f10, 20
lw as, -36(s0)

Y-axis Instruction Sequence

Critical Path Length: 43 cycles

—_—
X-axis Timeline

D IS Access Latency: 6 cycles D Pipeline Latency: 20 cycles D DS Access Latency: § cyclcs|:| True Data Dependence Latency: 3 cycles |:| Squash Latency due to Branch Miss Prediction: 6 cycles
G D Requestto1s LD Response from IS T Fetch Decode (RO Rename Dispatch (D Issue CMD Memory (P Complete CCD Commit
Merge F2&F (DD Merge Dispatch&lssue CFL Start Vertex CC Terminate Vertex —= Critical path

An overview of the new DEG formulation of microexecution. The critical path is highlighted in red.

26/51

The ArchExplorer Approach: New DEG Formulation

Table: The dependence specification

Type Edge Description

F1(i) — F2(i) Send a request to I$, and get a response for instruction i.

F2(i) — F(i) 1$ puts the instruction i in the fetch buffer, and the fetch stage performs pre-decode or predictions.

F(i) — DC(i) The fetch stage send instruction i to the decoder.

DC(i) — R(i) The decode stage send p-ops of instruction i to the rename.

Pipeline dependence R(i) — DP(i) The rename stage send instruction 7 to dispatch.

DP(i) — 1(i) Schedule instruction 7 to issue.

1(i) — P(i) . L . . o .
1) — M(i) — P(i) Execute instruction i with suitable functional units like ALUs or read /write ports.
P(i) — C(1) Commit instruction 7 after it is finished execution.

Misprediction dependence

P(i) — F1(i + 1)

Instruction i encounters a branch/memory address dependence misprediction.

Insufficient resources delays instruction j, and j requires those resources that instruction 7 releases.

R(@@) — R(j) The edge insertion is according to the scoreboard.
Hardware resource dependence The resources include ROB, IQ, LQ, SQ, as welll as p}}ysmal integer and ﬂoangg-pomf registers.
16) = 1) Insufficient resources delays instruction j, and j requires those resources that instruction i releases.
The resources are functional units, e.g., integer/floating-point ALUs, dividers, efc.
True data dependence 1() — 1() The true data dependence.

The delayed cycles are either due to D$ access or the execution of functional units.

27/51

. The ArchExplorer Approach: New DEG Formulation

Ly EAEACA IO~ S DO
| @@@@Qﬁ@ L D-@D—CO
LEDAEDIEH TO——~(D AD——CO
: |1 D@D T > ED>——CO
2|1 ®..© —

: @“O j
>I'* 11®’ @ X-axis Timeline

The new DEG formulation is applied w.r.t. the code snippet as shown in Figure 4b. And it identifies
the true read /write ports usage dependencies, i.e., I(I1) — I(Ls), I(Is) — I(Is), I(Is) — I(Is), and
I(Ig) — I(Ig)

28/51

. The ArchExplorer Approach: Critical Path Construction

Induced DEG

A connected DEG consisting of horizontal, “skewed”, and virtual edges. The virtual edges
are added to make the new DEG connected.

Rules for constructing Induced DEG:
¢ Connect nodes via time if the two nodes’ time are the closest.

¢ Connect nodes via instruction sequence if the two nodes’ instruction sequence are the
closest.

29/51

. The ArchExplorer Approach: Critical Path Construction

1 D2 —@D'T> z BT
10 D@D L D@D

ST 1 @I

e 2060 D ED——CO

Howaisaba | %CDQD}—.—-.

‘ﬁ?\fd‘?%)ﬁ 5 > ©

% ovas, i) 14%.—.

T 2060) ®~o OO
h@ . DD L
®H

()
I TO——EDIIDANT
Io ST P /

i : Iy 0.

! Pipeline dependence | I ®/

[skewed"edge | Ir D

—_—
X-axis Timeline

(b)

(a) An example code snippet and its corresponding new DEG formulation. (b) The overview of
induced DEG with edge cost extracted from DEG.

30/51

. The ArchExplorer Approach: Critical Path Construction

Algorithm Critical Path Construction

Require: G: The induced DEG with the edge cost;

1:

10:
11:

node = topological_sort(G);

Initialize edge cost vector d with all zero;
Initialize the path vector p with all zero;
for n < node do
if Ng(n) # () then > Ng(n) are predecessors of n.
din] = arg max d[v] + cost; assign p[n] with v;
veNG(n)
else
din| =0;p[n] =n;
end if
end for

return reverse(p);

31/51

. The ArchExplorer Approach: Bottleneck-removal DSE =

Computation of Bottleneck Contribution

For a critical path p with length L and containing N (non-overlapping) edges, a resource
b’s contribution c(b):

N
c(b) = Lil[p(i) = b]/L, (1)
i=1
For multiple workloads evaluations:
|B| |B|
E(b) = Zwi . Ci(b), Zw,- = 1, (2)
i=1 i=1

32/51

. The ArchExplorer Approach: Bottleneck-removal DSE

Resource reassignment:
¢ The reassigned parameter values are decided based on the design space specification.
® We select the next larger candidate value from the specification if we need to increase
it.
® We decrease them to the next smaller candidate value if they do not have a
contribution.

SQ: 32 — 36

Bottleneck Report for the 4l ROB: 144 — 128

Bottleneck Report for the 3rd Design®

Int/Fp RF: 144 — 128
. RAW 17021

V Base 02
+ D$ Miss {015

.
.

'ORAW -
T —
+ DS Miss [T 0.17 .
+Lack SQ e 0.27

' : ! Lack SQ {03
' T o1 o2 ' ' e
. 0 o but 02 ' 0 0.1 0.2 0.3
e Contributien ...\ e - SEW =32 et
7 ROB: 160 — 144
1.35 %! Area 1.8] 1Q: 48 — 56
\(5/ PC: 151 - Int/Fp RF: 166 — 144. . . .,

Area 2.0 | . Bottleneck Report for the 2nd Design !

\ 2 ' RAW 02 .

1T Bae 02 '

+ DS Miss T70.14 '
VLo —

1 42 RO —— 0385

.

.

.

1PC

1.3r

0.21

0.21 . .
88 . X 0 01 02 03
Power (W) Area (mm?) Contribution 33/51

Experimental Setup & Evaluation Metrics

. Experimental Setup: Simulation Environment

GEMB5: timing accurate simulator'4

MCcPAT: power & modeling tool'®
SPEC CPU2006 (SPEC06)6 & SPEC CPU2017 (SPEC17)Y

Implement ArchExplorer w. Python & C++.

“Nathan Binkert et al. (2011). “The GEMS5 Simulator”. In: ACM SIGARCH computer architecture
news 39.2, pp. 1-7; Jason Lowe-Power et al. (2020). “The GEM5 Simulator: Version 20.0+”. In: arXiv
preprint arXiv:2007.03152.

5Sheng Li et al. (2009). “McPAT: An Integrated Power, Area, and Timing Modeling Framework
for Multicore and Manycore Architectures”. In: IEEE/ACM International Symposiunt on
Microarchitecture (MICRO), pp. 469-480.

16SPEC CPU 2006 (2018). https: //www.spec.org/cpu2006/.

Y7SPEC CPU 2017 (2022). https://www.spec.org/cpu2017/.

35/51

https://www.spec.org/cpu2006/
https://www.spec.org/cpu2017/

. Experimental Setup: Baselines

ArchRanker!8
AdaBoost!?
BOOM—EXplorer20

* Calipers?!

¥Tianshi Chen et al. (2014). “ArchRanker: A Ranking Approach to Design Space Exploration”. In:
IEEE/ACM International Symposium on Computer Architecture (ISCA). IEEE.
“Dandan Li et al. (2016). “Efficient Design Space Exploration Via Statistical Sampling and
AdaBoost Learning”. In: ACM/IEEE Design Automation Conference (DAC). IEEE, pp. 1-6.
Chen Bai et al. (2021). “BOOM-Explorer: RISC-V BOOM Microarchitecture Design Space
Exploration Framework”. In: [EEE/ACM International Conference on Computer-Aided Design (ICCAD).
IEEE, pp. 1-9.
*'Hossein Golestani et al. (2022). “Calipers: A Criticality-aware Framework for Modeling
Processor Performance”. In: ACM International Conference on Supercomputing (ICS). 36/51

. Experimental Setup: Design Space

Table: Design space of an OoO RISC-V processor

Components | Description Hardware Resource | #

fetch/decode/rename/dispatch/

- . 811

Pipeline width issue/writeback commit width 181 8
Fetch buffer fetch buffer size in bytes 16,32, 64
Fetch queue | fetch queue size in p-ops 8:48:4 11

local predictor size of the
Tournament BP
Global/Choice | global predictor size of the

Local predictor 512, 1024, 2048 3

2048, 4096, 8192 3

predictor Tournament BP
RAS return address stack size 16:40:2 13
BTB branch target buffer size 1024, 2048, 4096 3
ROB reorder buffer entries 32:256:16 15
IntRp | humber of physical 10:304:8 18
integer registers
number of physical
Fp RF floating-point 40:304:8 18
registers
1Q number of.instruction 16:80:8 9
queue entries
LQ number of load queue entries 8
SQ number of store queue entries 8
IntALU number of integer ALUs 4
IntMultDiv numbr:r.of integer multipliers 5
and dividers
FpALU number of floating-point ALUs 2
. number of floating-point
FpMultDiv multipliers and d{svi}::lers L2 2
1$ size the size of I$ in KB 16, 32, 64 3
I$ assoc. associative sets of I$ 2,4 2
DS size the size of D$ in KB 16,32, 64 3
D$ assoc. associative sets of D$ 2,4 2
Total size 8.9649 x 107

! The values are start number:end number:stride 37 / 51

. Evaluation Metrics

Two main metrics:
¢ Pareto hypervolume.

* Number of simulations.

“‘Q:; Yy © Dominated Data
oW -Q v O Pareto solutions
fl" (R @) i Pareto hypervolume
e LY
; Yy
@ i.Q
o @
Vg Low Power

The visualization of Pareto hypervolume in Perf-Power space. Pareto hypervolume is the area
bounded by P(Y) = {y1,y2,y3, ¥4} and the reference point vo.

PVy, (P(Y))

/Y 1y ool —] 1y # yldy,

(©)
38/51

y«€P(Y)

Results

. Results: Comparison w. DSE Methodologies

SPEC CPU2006 results

3600

Q
y = 15.80 L
;E 16 L4200~ e
£ l
2 3000
T = ,
= .
g 12 !
= :
Q—< 10 | | 1
0 1200 2400
Simulations

—— ArchRanker [12]
— BOOM-Explorer [§]

The visualization of Pareto hypervolume curves in terms of the number of simulations.

Pareto hypervolume

12 1

—_
o O

SPEC CPU2017 results

| |
0 1600 3200

Simulations

—— AdaBoost [37]
—— ArchExplorer

40/51

. Results: Comparison w. DSE Methodologies

—
—
AT
—
Table: Comparison under two cases.
Methods SPEC CPU2006 SPEC CPU2017
Pareto hypervolume at y = 15.80 | # of Simulations at x = 3000 | Pareto hypervolume at y = 15.60 | # of Simulations at x = 2400
of Simulations Ratio Pareto hypervolume | Ratio | # of Simulations Ratio Pareto hypervolume | Ratio
ArchRanker [Chen et al. 2014] 2736 1 15.9185 1 1296 1 16.4542 1
AdaBoost [D. Li et al. 2016] 3132 1.1447 15.6785 0.9849 2208 0.7037 15.9359 0.9685
BOOM-Explorer [Bai et al. 2021] 2064 0.7544 16.0854 1.0104 1120 0.8642 16.7416 1.0175
ArchExplorer 708 0.2588 16.3473 1.0269 560 0.4321 17.0198 1.0344

Summary of comparison results w. DSE methodologies:

In SPEC06, compared to ArchRanker, AdaBoost, and BOOM-Explorer, ArchExplorer
uses 14.47% more, 24.56% fewer, and 74.12% fewer simulations when y = 15.80,
respectively.

For x = 3000, the gained Pareto hypervolume of ArchExplorer surpasses

BOOM-Explorer, AdaBoost, and ArchRanker by 1.58%, 4.20%, and 3.32%,
respectively.

In SPEC17, ArchExplorer can save 74.63% of simulation budgets at most and achieve
6.80% higher Pareto hypervolume.

41/51

[©)
]
=]

Results: Comparison w. DSE Methodologies

w

[N

Perf?
Powerx Arca

—

ArchRanker’s [12] Explorations

BOOM-Explorer’s [8] Explorations

« ArchRanker’s [12] Pareto Frontier

=BOOM-Explorer’s [8] Pareto Frontier

0.6

o

AdaBoost’s [37] Explorations
ArchExplorer’s Explorations
+AdaBoost’s [37] Pareto Frontier
« ArchExplorer’ Pareto Frontier

The visualization of Pareto frontiers and the
distributions of PPA trade-offs for all methods.

Summary of visualization results:

¢ The visualization suggests that
ArchExplorer outperforms other
methods not by exploring more
higher-performance microarchitectures
but higher power and area efficiency

designs.

¢ ArchExplorer’s Pareto designs achieve
an average of 2.26 in the trade-off,
surpassing BOOM-Explorer, AdaBoost,
and ArchRanker by 15.81%, 7.47%, and
18.63%, respectively.

42/51

Results: Comparison w. Best Balanced Designs

SPEC CPU2006 results =
0.6 sr £
o N e 5
‘ = £ 6 X
= 04f g ; g
B =4 z
1f g = 2
£ 02 ERL &
oL A%
S S FE $ &
S F S S g8
W ST S
TN R
o8 0%
¥ S ¥
A —
=
g
. 0.6 = 8r < 15
L g < | M
0Ll 041 £ 51
M = 4 2
1k 0.2] g ol < o5f
3 =
0 0 oL . DR .
5 (9 . 5 o & PP AP T TP P APl P T AP & N S S e X & S
& \1,((o qy/&\ W P I LS & & FEEF & &
ST ST TE ST FN ¥ I F A ST
NGNS NS ST HFTY IO WY RSN
© P AT & P S Y&
RIS ¥ S ¥ S
¢ S <

== ArchRanker [12] =8 AdaBoost [37] T=IBOOM-Explorer [8] =3 ArchExplorer

Comparisons between the Pareto designs in performance and power.

Summary of comparison results w. best balanced designs:

¢ ArchExplorer’s Pareto design is better than other methods by an average of 56.05%
and, at most, 64.29% in the PPA trade-off in SPEC06.

¢ ArchExplorer’s Pareto design is better than other methods by an average of 49.53%

higher PPA trade-off in SPEC17.
43/51

. Results: Comparison w. Calipers

Experimental setup: A sub-design space including 1296 very similar designs.

Rationales:
* Calipers? only targets performance.

¢ Calipers does not provide how to search with the previous DEG formulation.

ZHossein Golestani et al. (2022). “Calipers: A Criticality-aware Framework for Modeling
Processor Performance”. In: ACM International Conference on Supercomputing (ICS).

44/51

. Results: Comparison w. Calipers

SPEC CPU2006 results SPEC CPU2017 results
C—Calipers [24] =3 ArchExplorer

Comparisons w. Calipers [D. Li et al. 2016].

Summary of comparison results w. Calipers:

The solution found by ArchExplorer outperforms Caliper’s by 2.11% in performance,
4.36% lower power and 2.38% lower area on average in SPEC06.

In SPEC17, we receive a 1.88% higher performance compared to Calipers.
These improved performance benefits are gained by only using 48 simulations in

ArchExplorer. 45/51

Discussion

. Discussion

The new DEG formulation can assist research in
¢ ML-assisted microprocessor performance modeling & enhanced DSE.
¢ Criticality-driven instruction scheduling.

¢ Program analysis & compiler research.

Multi-core formulation is also expected based on the new DEG formulation.

Codes repo: https://github.com/baichen318/arch-explorer

47/51

https://github.com/baichen318/arch-explorer

THANK YOU!

)

. References [

Chen Bai et al. (2021). “BOOM-Explorer: RISC-V BOOM Microarchitecture Design
Space Exploration Framework”. In: IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, pp. 1-9.

Nathan Binkert et al. (2011). “The GEM5 Simulator”. In: ACM SIGARCH computer
architecture news 39.2, pp. 1-7.

Tianshi Chen et al. (2014). “ArchRanker: A Ranking Approach to Design Space
Exploration”. In: IEEE/ACM International Symposium on Computer Architecture
(ISCA). IEEE.

Stijn Eyerman et al. (2009). “A Mechanistic Performance Model for Superscalar
Out-of-order Processors”. In: ACM Transactions on Computer Systems (TOCS)
27.2, pp. 1-37.

Brian Fields, Shai Rubin, and Rastislav Bodik (2001). “Focusing Processor Policies
via Critical-path Prediction”. In: IEEE/ACM International Symposium on
Computer Architecture (ISCA). IEEE, pp. 74-85.

Hossein Golestani et al. (2022). “Calipers: A Criticality-aware Framework for
Modeling Processor Performance”. In: ACM International Conference on
Supercomputing (ICS).

49/51

)

. References 11

Mark D Hill and Alan Jay Smith (1989). “Evaluating Associativity in CPU
Caches”. In: IEEE Transactions on Computers 38.12, pp. 1612-1630.

MS Hrishikesh et al. (2002). “The Optimal Logic Depth per Pipeline Stage is 6 to 8
FO4 Inverter Delays”. In: IEEE/ACM International Symposium on Computer
Architecture (ISCA). IEEE, pp. 14-24.

Engin Ipek et al. (2006). “Efficiently Exploring Architectural Design Spaces Via
Predictive Modeling”. In: ACM International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS) 40.5, pp. 195-206.

Norman P. Jouppi (1989). “The Nonuniform Distribution of Instruction-level and
Machine Parallelism and Its Effect on Performance”. In: [EEE Transactions on
Computers 38.12, pp. 1645-1658.

Tejas S Karkhanis and James E Smith (2007). “Automated Design of Application
Specific Superscalar Processors: An Analytical Approach”. In: [EEE/ACM
International Symposium on Computer Architecture (ISCA), pp. 402—411.

Benjamin C Lee and David M Brooks (2007). “Illustrative Design Space Studies
with Microarchitectural Regression Models”. In: I[EEE International Symposiiim
on High Performance Computer Architecture (HPCA). IEEE, pp. 340-351.

50/51

. References 111

Dandan Li et al. (2016). “Efficient Design Space Exploration Via Statistical
Sampling and AdaBoost Learning”. In: ACM/IEEE Design Automation
Conference (DAC). IEEE, pp. 1-6.

Sheng Li et al. (2009). “McPAT: An Integrated Power, Area, and Timing Modeling
Framework for Multicore and Manycore Architectures”. In: [EEE/ACM
International Symposium on Microarchitecture (MICRO), pp. 469-480.

Jason Lowe-Power et al. (2020). “The GEMb5 Simulator: Version 20.0+”. In: arXiv
preprint arXiv:2007.03152.

Laurence] Peter, Raymond Hull, et al. (1969). The Peter Principle. Vol. 4. Souvenir
Press London.

SPEC CPU 2006 (2018). https://www.spec.org/cpu2006/.

SPEC CPU 2017 (2022). https://www.spec.org/cpu2017/.

Guangyu Sun et al. (2011). “Moguls: A Model to Explore the Memory Hierarchy
for Bandwidth Improvements”. In: I[EEE/ACM International Symposium on
Computer Architecture (ISCA). IEEE, pp. 377-388.

51/51

https://www.spec.org/cpu2006/
https://www.spec.org/cpu2017/

	Introduction
	Background & Motivation
	Lessons Learned & Design Principles
	The ArchExplorer Approach
	Experimental Setup & Evaluation Metrics
	Results
	Discussion
	References

