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Abstract—The integration of a complex set of Electronic Design
Automation (EDA) tools to enhance interoperability is a critical
concern for circuit designers. Recent advancements in large lan-
guage models (LLMs) have showcased their exceptional capabili-
ties in natural language processing and comprehension, offering a
novel approach to interfacing with EDA tools. This research paper
introduces ChatEDA, an autonomous agent for EDA empowered
by a large language model, AutoMage, complemented by EDA
tools serving as executors. ChatEDA streamlines the design flow
from the Register-Transfer Level (RTL) to the Graphic Data
System Version II (GDSII) by effectively managing task planning,
script generation, and task execution. Through comprehensive ex-
perimental evaluations, ChatEDA has demonstrated its proficiency
in handling diverse requirements, and our fine-tuned AutoMage
model has exhibited superior performance compared to GPT-4
and other similar LLMs.

I. INTRODUCTION

Electronic Design Automation (EDA) encompasses a crucial
set of software tools utilized for circuit design, analysis, and
verification. These tools are organized within a complex de-
sign flow, featuring intricate programming interfaces. Notably,
advanced RTL-to-GDSII design platforms like OpenROAD [1]
and iEDA [2] consist of numerous procedures and adjustable
parameters. Commercial tools, with their extensive functionali-
ties and options, offer even more comprehensive capabilities. In
practice, circuit design engineers employ these tools iteratively
to achieve their design objectives, often resorting to custom
scripts for specific operations. Conventionally, scripting lan-
guages such as TCL have been the de facto means of interacting
with EDA tools [3], which is tedious and prone to errors.
Recently, the field of natural language processing (NLP) has
undergone a revolutionary transformation with the emergence
of large language models (LLMs) such as GPT-3 [4], GPT-
4 [5], Claude2 [6], and Llama [7], [8]. Extensive training
on large corpora enables large language models to acquire
emergent abilities [9], including the capacity to reason and
comprehend complex concepts, by learning intricate patterns
and relationships in language. This allows these models to
demonstrate remarkable accuracy and fluency in a variety of
NLP tasks, such as natural language understanding and gener-
ation. To leverage their potential in specialized domains [10]—
[12], instruction tuning [13] fine-tunes LLMs with domain-
specific corpora, resulting in remarkable performance on these
specialized domains. Specifically, Vicuna [14], Guanaco [15],
and Orca [16], have applied instruction tuning to train LLMs,
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Fig. 1 Overview of AutoMage powered ChatEDA. With Au-
toMage as the controller and EDA tools as the executors, the
workflow consists of three stages: 1) Task planning; 2) Script
Generation; 3) Task execution;
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making use of the outputs produced by the GPT, and thereby
achieving significant outcomes.

Furthermore, scholars have initiated exploration into the
incorporation of tools or models into LLMs. Toolformer [17], a
groundbreaking methodology, integrates external API tags into
text sequences, thus facilitating LLMs to connect with external
tools. This tool utilization, coupled with the capacity for logical
reasoning, broadens the LLM’s potential as a robust general
problem solver. Several proof-of-concept demonstrations, in-
cluding AutoGPT [18] and BabyAGI [19] serve as motivational
illustrations.

In this context, we propose ChatEDA, an expert LLM de-
signed to generate code for manipulating EDA tools based on
natural language instructions. In other words, ChatEDA is an
LLM-driven autonomous agent system for EDA, functioning as
the agent’s intellectual hub, responding to human instructions
and manipulating the EDA tools via APIs to deliver autonomous
Register-Transfer Level (RTL) to Graphic Data System Version
II (GDSII) capabilities without necessitating any code writing.
Our contributions include 1) ChatEDA, the first LLM-powered
EDA interfacing framework and methodology; 2) a fine-tuned
language model, AutoMage, that is purpose-built to enhance
the capabilities of ChatEDA; and 3) comprehensive evaluations
to show the superior performance of ChatEDA and AutoMage,
surpassing GPT-4 and other well-known LLMs in various tasks.

II. THE ScOPE OF CHATEDA

ChatEDA serves as an autonomous agent tailored for Electronic
Design Automation (EDA) tools, providing users with a conver-
sational interface to interact with these tools. Specifically, users
can express their requirements in natural language prompts,



#1: User Requirement

For the design named “aes” on the platform "asap7", please perform synthesis with a clock period of 5, followed
by floorplan with a core utilization of 70%. Then, execute placement with a density of 0.8. Next, proceed with CTS
to fix 40% of violating paths. Finally, evaluate the performance after routing using "power" metric.

| task1: set up the EDA tool |
| func: set_up() :
| args: |
I

i |
[} I

design_name: "aes" i !
platform: “asap7” i func: cts() |
Lo 1 | : args: :
-------------- i tns_end_percent: 40 ,

—

ask2: perform synthesis
unc: run_synthesis()

—h

: task6: perform routing :
___________ e | func: gIong_routeO 1
detail_route() |
task3: execute floorplan !
func: floorplan()
args:
core_utilization: 70

| task7: evaluation |
i func: get_metric() 1

e e | args: :

| task4: perform placement )

: func: placement() !

| args:

: density: 0.8

stage: "route"
metrics: ["power"]

\

J

#3: Script Generation

I'# Initialize ]
eda_= chateda() 1

|
[ e e U e
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[ # Perform routing !
| eda.global_route() ]

Fig. 2 Language functions as a conduit enabling ChatEDA to integrate EDA tools for resolving complex EDA tasks. Within the
framework, ChatEDA acts as the controller that harmonizes and orchestrates the collaboration among various tools. ChatEDA first
formulates a task list derived from user requirements, subsequently generating scripts corresponding to these decomposed tasks.

and ChatEDA’s objective is to generate executable programs
(scripts) that align with the user’s specific needs.

Problem 1. (Target of ChatEDA) Develop an LLM-driven
framework capable of processing natural language command
as input, and generates an executable program to fulfill user
requirements through the invocation of EDA tool APIs.

1II. CHATEDA

ChatEDA, an LLM powered agent, is specifically designed
for RTL-to-GDSII flow automation. The main objective of
ChatEDA is to understand and respond to user requirements in
natural language. In order to achieve this, ChatEDA is capable
of breaking down complex user requirements into smaller, more
manageable sub-tasks and subsequently utilizing appropriate
EDA tools to address them.

As illustrated in Fig. 1, AutoMage, an LLM fine-tuned with
EDA expert knowledge, serves as the central processing unit
of ChatEDA. After receiving a natural language requirement
from the user, AutoMage first interprets the requirement and
decomposes it into a set of sub-tasks, known as task planning.
Then, based on the decomposed smaller tasks and the spec-
ifications for the external tools, e.g., OpenROAD, AutoMage
generates python scripts for accomplishing these tasks. Ulti-
mately, ChatEDA executes the generated script to get the final
output for the user requirement. We will detail the workflow
and the training process of AutoMage in the following sections.

A. Task Planning
Within the scope of automating the RTL-to-GDSII flow via
EDA tools, a myriad of user requests often encapsulate complex
intentions. Primarily, it is crucial for the agent to understand
human natural language requirements. Owing to the robust
performance of AutoMage, ChatEDA can interpret the tasks
that need to be executed based on human requirements.
Furthermore, given the complexity of automating the RTL-to-
GDSII flow, orchestrating several sub-tasks becomes necessary
to achieve the anticipated result. Hence, we propose task
planning as the first stage of ChatEDA. This phase employs
AutoMage to assess the user requirement and decompose it into
a series of structured tasks subsequently. Fig. 2 illustrates an
example of the task planning process. For the given requirement
expressed in long and complicated natural language, ChatEDA
can decompose this into a series of ordered sub-tasks via
AutoMage, which can be easily handled by leveraging the EDA
tools, such as logic synthesis, floorplan, placement, ezc.

B. Script Generation

After the completion of the task planning phase, manageable
sub-tasks are devised, thereby promoting the efficient orches-
tration of the complex task. Each sub-task is executable through
the corresponding APIs from the EDA tools. Subsequently,
it becomes necessary to formulate a script to invoke these
APIs for task execution. During the script generation phase
as depicted in Fig. 2, a sequence of text encompassing the
API specifications, user requirements, and the decomposed sub-
tasks, is utilized as the input for AutoMage. Then, AutoMage
will outcome a Python script that can be executed directly
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Fig. 3 Overview of Instruction Tuning. During the instruction
tuning process, we use the self-instruction paradigm to con-
struct our instruction pool via GPT. Then we apply the QLoRA
technique for efficient instruction fine-tuning.

to perform an RTL-to-GDSII flow for efficient architectural
and design space exploration, early Quality of Results (QoR)
prediction, and detailed physical design implementation.

C. Task Execution

After script generation, ChatEDA runs the script with the
Python interpreter, and subtasks are then executed by leveraging
EDA tools. Given its demonstrated efficacy in script generation
and task execution, ChatEDA can be a critical agent for reliable
RTL-to-GDSII flow automation.

D. Instruction Tuning for AutoMage

To guarantee the reliability of ChatEDA, knowing when and
how to use the tools, which is determined by the LLM’s
capability, is of vital importance. AutoMage is an expert LLM
that specializes in the utilization of EDA tools, which is barely
learned in open-source LLMs. To integrate the expert knowl-
edge into LLMs, instruction tuning is an effective approach
that enables LLMs to benefit from the pairing of domain-
specific natural language descriptions and their corresponding
responses. Therefore, we incorporate instruction tuning to train
AutoMage, the core controller of ChatEDA, based on the open-
source LLMs (Llama2 [8]). The process of instruction tuning
mainly includes three parts, self instruction, instruction collec-
tion, and instruction fine-tuning, which detailed as following.

Self Instruction. For instruction tuning, we need to collect
high-quality instructions to teach LLMs how to utilize EDA
tools via APIs. Since high-quality instructions are expensive,
the self instruction paradigm has gained popularity in recent
days [20]. The main idea is to use different instruction templates
to query GPT-3.5/4 and get more instructions from them
automatically. Self instruction paradigm is designed based on
in-context learning [21] ability of GPT-3.5/4. In this work,
as shown in Fig. 3, we use some instances with the format
<requirement, plan, script> as in-context examples to align
GPT-3.5/4 and produce the instructions.

Instruction Collection. In alignment with the self-instruction
paradigm, approximately 1500 instructions were devised for the
purpose of instruction tuning. Given that GPT-3.5 and GPT-4
also generate erroneous data, some of the data were manually

created or adjusted. Concurrently, we conducted a thorough
proofreading of the generated dataset to confirm the correct
application of the EDA tools.

Instruction Fine-tuning. During the process of fine-tuning,
each instruction comprises both a requirement and a response,
with the response encompassing a plan and a script. To en-
sure an appropriate model sequence length, requirements and
responses from the entire training set are concatenated, utilizing
a unique token to demarcate these segments. An autoregressive
objective is applied, zeroing out the loss on tokens derived from
the user requirement, thus backpropagation is confined solely
to response tokens.

Considering the imperative need for expedient training, as
shown in Fig. 3, we adopt the QLoRA technique [15] to
facilitate efficient fine-tuning. QLoRA leverages 4-bit Nor-
malfloat (NF4) Quantization and Double Quantization tech-
niques to achieve high-quality 4-bit fine-tuning. This approach
is typically paired with paged optimizers to mitigate mem-
ory spikes during gradient checkpointing, thereby preventing
potential Out-of-Memory errors. QLoRA’s efficacy allows us
to guarantee the performance of instruction fine-tuning using
LLMs on a large model scale (30B/70B), an accomplishment
traditionally impeded by memory overhead constraints. QLoRA
augments a linear projection in a transformer layer of LLMs
through an additional factorized projection. As shown in the
dash box of Fig. 3, given a linear projection, Y = XW, the
computation is as follows:

YBFI® = XBFISdoubleDequant (P2, 5P, W)

| XBF16Y BFI6F BFl6
where W is original weights and L; and L, are ad-
ditional QLoRA weights. The final weights can be com-

bined without extra inference costs. Here, the function
doubleDequant(ctP32, bt WD) can be obtained by:

dequant(dequant(cEF32, 5Pty Wity — WBFI6, 2)

The matrix W is of size NF4 and is quantized to 4-bit precision.
The constant cs is of size FP8. We choose a blocksize of 64 for
‘W to achieve higher quantization precision, and a blocksize of
256 for co to conserve memory. This choice is based on recent
results showing that 8-bit quantization does not significantly
degrade performance compared to 16-bit quantization.

)

IV. EXPERIMENTS

A. Setup

AutoMage is a fine-tuned model based on the Llama2-70B [8]
architecture. For efficient fine-tuning on Llama2 using QLoRA,
we implement a linear learning rate schedule using paged lion
[22] 8-bit optimizer [23], initiating with a learning rate of 1 x
10~%, no weight decay, a batch size of 128, and a sequence
length of 4096 tokens. Ultimately, the model is fine-tuned for
15 epochs on 8xA100 with 80G memory each.

During the inference phase, the user‘s requirement prompts
in natural language. These can be designed for a simple task
(e.g. “Perform routing for the processor design on the asap7
platform.”) or delineate a broader, more general goal (e.g.
“Please show me how to complete the design flow in the



script.”’). Subsequently, API documentation is appended to the
user’s prompt before being processed by AutoMage. The output
of AutoMage is the executable script.

As for evaluation, we consider notable LLMs including
Claude2 [6], GPT-3.5 [4], and GPT-4 [5] as our baselines for
performance assessment. To ensure a comprehensive compari-
son, we utilize different LLMs as the core controllers for our
autonomous agent, ChatEDA. The target API is a simplified
python wrapper of OpenROAD [1].

B. Evaluation of LLMs

An objective evaluation system was developed to assess the task
planning and script generation capabilities of LLMs designed
for automated script generation. The system uses a three-
tiered grading scheme, with Grade A representing the highest
achievement. Grade A is awarded to LLMs that demonstrate
coherent task planning and generate accurate scripts. Grade B
indicates respectable but imperfect performance, assigned to
LLMs that plan logically but falter in script generation. Grade
C denotes failure in both planning and scripting.

During the evaluation process, we provide 50 cases including
various tasks for comprehensive inspection. As summarized in
Figure 4, our proposed AutoMage achieved the best perfor-
mance, correctly earning Grade A for 88% of test cases. This
significantly exceeds the 58% Grade A attained by the next
highest performer, GPT-4. While GPT-4 exhibited reasonably
strong capabilities, it struggled to differentiate between lower
quality responses, assigning Grade B and C more evenly at 34%
and 8% respectively. In contrast, AutoMage reliably identified
the highest grade-worthy responses. The other LLMs, Claude2
and GPT-3.5, performed noticeably worse than AutoMage,
with Claude2 achieving 44% Grade A and GPT-3.5 only 32%
Grade A. This highlights their comparative deficiencies. In
summary, AutoMage substantially outperformed GPT-4 and
other LLMs by consistently assigning appropriate high grades.
The considerable margin between AutoMage and second-place
GPT-4 demonstrates the advances of our method in grading
performance. Our experiment affirms AutoMage as the current
state-of-the-art LLM for this evaluation task, which will be the
most reliable controller of ChatEDA.

AutoMage 0 M GradeA
W Grade B
Grade C
8.0
Claude2
52.0
0 20 40 60 80 100

% Percentage
Fig. 4 Evaluation results for AutoMage compared to other
notable LLMs. AutoMage outperforms other notable LLMs by
a significant margin in task planning and script generation

C. Case Studies

In this section, we analyze five tasks involving user interac-
tions with EDA tools through a conversational interface. It
is important to note that this exploration is not exhaustive
due to the limitations inherent in this qualitative study. For
instance, controlling all possible variables, such as the vast
array of responses the LLM can generate for a given prompt, is
beyond our reach. As a result, our conclusions are based on a
selected group of samples deemed representative. Nonetheless,
we contend that the description of these exemplars will enhance
our understanding of the robust performance of AutoMage,
which enhances the reliability of AutoMage powered ChatEDA.
Given that GPT-4 is the best LLM in baselines during the script
evaluation, we focus exclusively on our AutoMage and GPT-
4. For each task, we first outline the user’s requirements and
subsequently present the scripts generated by both models.

Task 1: Performance Evaluation. The initial task necessitates
the model’s successful execution of the comprehensive process,
inclusive of the evaluation phase. This task underscores the fun-
damental application of the LLMs and their usage sequence in
relation to the API interfaces. It is evident that both AutoMage
and GPT-4 have completed this task satisfactorily. The output
by GPT-4 is omitted since it is very similar to what AutoMage
writes.

USER: I want to test the area and power performance of the
design “leo” on “sky130” setting core utilization is 60%. 1
need to perform cts, routing, placement, and so on.
AUTOMAGE

eda = chateda()

eda.final_report ()

final_performance = eda.get_metric("final", ["area", "power"])

Task 2: Parameter Grid Search. The second task necessitates
the execution of a grid search by LLMs, exhibiting a significant
reliance on logic, including the traversal of parameters. This
task further scrutinizes the LLM’s comprehension of each
API argument. Evidently, both AutoMage and GPT-4 have
performed superbly, demonstrating their logical prowess and
exemplary understanding of API arguments.

USER: Your task is to grid search on or the design “how” on
“ef180” platform for parameters core_utilization, clk period,
and placement density.

AUTOMAGE

# Define grid search par
core_utils = [¢
clk_periods = ,
densities = [0.6, 0.7, 0.8]
for core_util in core_utils:
for clk_period in clk_periods:
for density in densities:
eda chateda ()

eda.setup ("how", "gf180", verilog="how.v")

eda.final_report ()




GPT-4

import numpy as np
eda = chateda.chateda ()

eda.setup (design_name="how", platform="gf180")

core_utilization_range np.arange (0.1, .0, 1)
clock_period_range = np.arange (1, , 1)
placement_density_range = np.arange (0.1, 1.0, 0.1)

Task 4: Customized Optimization. Customized Optimization
necessitates parameter tuning in the model, in accordance with
the search space stipulated by the user. This process rigor-
ously assesses the model’s comprehension of the tune function
and each API interface parameter’s significance. It is evident
that AutoMage aptly comprehends the requirement for user-

for core_utilization in core_utilization_range:
for clock_period in clock_period_range:
for placement_density in placement_density_range:
eda.run_synthesis (clock_period=clock_period)
eda. final_report ()

tns = eda.get_metric(stage="final", metrics=["tns"])

.append ({
e_utilization": core_utilization,
clock_period,

ensity": placement_density,

Task 3: Parameter Tuning Method. The ensuing task neces-
sitates the model to furnish a parameter-tuning solution. An
investigation into the LLM’s application of the tune function
simultaneously scrutinizes its capacity to offer an appropriate
parameter space. Given the lack of adequate priors, LLMs can’t
ascertain an exact parameter range. Nonetheless, it is observable
that AutoMage, compared with GPT-4, leans more towards
generating a complex search space, endowing AutoMage’s
parameter tuning strategy with enhanced potential. TABLE I
shows the result of parameter tuning. With the support of DSE
engines, the design implemented by LLM-generated scripts
outperforms default parameter settings for the platform.

USER: For the design “aes” on “nangate45” platform, fix
clock period to be 5. Write me a script to optimize area and
power using the parameter tuning method.

AUTOMAGE

def tuning_func(core_utilization, core_aspect_ratio, core_margins,
<> macro_place_halo, macro_place_channel, density, tns_end_percent):
eda = chateda()
eda.final_report ()
metrics = eda.get_metric("final", ["area"
return metrics
param_space {
e

re_utilization": {"minmax": [

o": {"minmax":

: {"minmax": [0.6, 0. t .

percent": {"minmax": [30, 1, "step": 5}
xecute tuning

tune (tuning_func, param_space)

GPT-4

eda = chateda ()
eda.setup (design_name="a

platform="nangate45")

eda.run_synthesis (clock_period=5)

eda.final_report ()

area = eda.get_metric (stage
power = eda.get_metric (stage

1", metrics=[":
", metrics=

return area + power

tune (run_flow, param_range)

customized parameter tuning, whereas GPT-4 demonstrates a
deficient understanding of the concept of parameter combina-
tion optimization. This reveals a more profound understanding
of the EDA tools’ interface and the logic of parameter tuning

in AutoMage than in GPT-4.

USER: Please provide an optimal digital layout for our
“high_end_gpu” project in the “nangate45” technology.

Follow these steps:

1) Keep the clock period static at 5 during the synthesis.

2) At the floorplan stage, adjust only the core utilization,
ranging it from 60% to 85% with a step of 5% and keep
the rest of the parameters as their default values.

3) At the placement stage, try adjusting the density from

0.55 to 1 with an increment of 0.05.

4) At the CTS stage, fix from 30% to 60% of the violating

paths with a step of 5%.

Lastly, gather metrics for chip area and power consumption

once routing is finished.
AUTOMAGE

def tuning_func(core_utilization, density, tns_end_percent):
eda chateda ()

eda.setup ("

eda.detail_route ()

metrics = eda.get_metric("route", ["area",
return metrics

params = {

tune (tuning_func, params)

GPT-4

eda = chateda()

eda.setup (design_name="high_end_gpu", platform="nangate45")
eda.run_synthesis (clock_period=5)

def floorplan(core_utilization):
eda.floorplan(core_utilization=core_utilization)

performance = eda.get_metric(stage="floorplan", metrics=["area", "

return performance
params = ("core_utilization": {"minmax": [60, 85], "step": 5}}
tune (floorplan, params)

def placement (density) :
eda.placement (density=density)

performance = eda.get_metric (stage="place", metrics=["area", "power"

return performance
params = {"density": {"minmax": [0.55, 1], "step": 0.05}}
tune (placement, params)
e : [ parameter

tns_end_percent) :

eda.cts (tns_end_percent=tns_end_percent)

performance = eda.get_metric(stage="cts", metrics=["area"

return performance
params = {"tns_end_percent": {"minmax": [30, 60], "step": 5}}
tune (cts, params)

o

eda.final_report ()

chip_area = eda.get_metric(stage="final", metrics=["area"])
= eda.get_metric(stage="final", metrics=["g
", chip_area)

sumption: ", power_consumption)




Desien Ik Default GPT3.5 GPT-4 AutoMage
cs1g ¢ WNS  Power Area WNS  Power Area WNS  Power Area WNS  Power Area
aes 0.82 -0.149  233.6 42059.4 -0.115 232.0 420594 -0.167 2363 52828.7 -0.150 250.7 34977.7
ged 0.74 -0.555 1.723 1355.54 >0 1.230  983.14 >0 1.230  983.14 >0 1.231  746.13
ibex 2.8 -0.082 1452 56237.5 -0.095 139.0 56237.5 -0.095 139.0 56237.5 -0.095 139.0 56237.5
jpeg 1.7 -0.058 636.6 191214 -0.030 628.6 191214 -0.030 628.6 191214 -0.030 628.6 191214
Average Power*Area (Scaled) 1.31 1.10 1.17 1.00

TABLE I Results of parameter tuning for power and area optimization
semantic errors, which are manually fixed before running experiments.

Task 5: Clock Period Minimization. Throughout the process
of instruction tuning, we guided AutoMage on utilizing the API
interface based on our specific needs. However, we did not teach
it to modify the parameters using self-feedback derived from the
evaluation outcomes. In the final test case, we scrutinized how
the LLM adjusts the API arguments via self-feedback to achieve
the user-requested evaluation results. Intriguingly, AutoMage
successfully accomplished the provided test case, an endeavor
in which GPT-4 failed. This underscores AutoMage’s profound
comprehension of utilizing EDA tools.

USER: Try to find out the smallest valid clock period for
the design “leon” on “asap7” platform. Note that a clock
period is valid only if the “wns” metric at the final stage is
non negative.
AUTOMAGE

def finc - d_clock_period(clock_period) :
eda_tool = chateda()
eda_tool.setup (design_name

i_smallest_val
"leon", platform="asap7"

eda_tool.final_report ()

final_metrics = eda_tool.get_metric("final", ["wns"])
if final metrics > H
return True
else:
return False

clock_periods = [1, 2, 3, 4, 5] # replac
smallest_valid_clock_period
for clock_period in clock_periods:
if find_smallest_valid_clock_period(clock_period) :
smallest_valid_clock_period = clock_period
break
print (smallest_valid_clock_period)

GPT-4

chateda.chateda ()

w(clock_period)
eda.setup (design_name=

", platform="asap7"

eda.final_report ()
wns = eda.get_metric(stage="final",
return wns

metrics=["wns"

" {"minmax": [1, 10], "step":

paran = ("cloc

tune (func=run_flow, param=param)

V. CONCLUSION

Interfacing EDA tools is essential for unleashing circuit design
productivity. In this work, we propose to an LLM-powered au-
tonomous agent for EDA, which enables a conversational inter-
face for designers to interact with the design flow. Technically,
ChatEDA integrates a fine-tuned AutoMage, which orchestrates
the design flow through task planning, script generation, and
task execution. ChatEDA handles various user requirements
well, outperforming other LLM models like GPT-4 and so on.
We hope this work could inspire next-generation EDA tool
evolution.
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