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* A gap between lithography resolution and advanced technology nodes.

° Multiple Patterning Lithography can enhance the feature density.




. Problem Formulation

* Layout Decompostion: Decompose one layout onto multiple masks for better
manufacturability.

® Layout decomposition can be formulated as graph coloring. The coloring result
should minimize the weighted sum of conflict cost and stitch cost.

(@) (b)

Figure: Dashed edges are stitch edges, and real lines are conflict edges.



. Literature Review

e Exact Algorithm: Integer Linear Programming’
e Approximation Algorithm:

* Semidefinte Programming?
e Linear Programming3
® Heuristic methods*
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. Motivation

Two important observations:

* Boolean nature of decision variables in ILP formulation = Boolean satisfiability =
Faster convergence.

e Conflict optimization and stitch minimization are two problems nested with each
other = Bilevel Reformulation = Tighter Appriximation.



. Satisfiable Problem

e A propositional logic formula is said to be in Conjunctive Normal Form (CNF) if it is a
conjunction (“and”) of disjunctions (“ors”) of literals.

* A literal is either a boolean variable x or its negation —x.

For example, (p vV g) A (-p VvV —=q) is a CNF, where p, g, —p, —q are all literals. The
disjunctions (p v g) and (=p VvV —q) are also called clauses.

The satisfiability (SAT) problem is to find a satisfying assignment to the boolean
variables such that the CNF formula yields true.




. ILP Formulation for Triple Patterning

min Z Cmn + Z S,‘j,

riE€Pm,Ii€pn,CijeCE sjjE€SE

st Xp+xp <1, VieV,
Xip =+ Xip + X1 + Xjp + Cmn > 1, V¢ € CE,1; € P, 1} € P,
Xit = Xig + Xjt = Xjp — Cn <1, VCj; € CE, 1 € Pm, I} € Pns
= Xip +Xpp — Xpp +Xpp — Cmn <1, V¢ € CE,1j € P, 1} € P,
Xi +Xig + X+ X — Cmp <3, V¢ € CE, 1 € Pm, I} € Pn,
X — X +5S; >0, Vej;eSE,
X —Xp—S; <0, Vej;eSE,
Xip —Xjp +5Sj >0, Vej € SE,
Xip —Xjp —Sjj <0, Vej € SE,
All decision variables are binary.

e
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® SAT indicates that a better solution has been found.

e UNSAT means the previous satisfiable solution is the optimal solution.



A Toy Example

(711 vV 712)

(@21 V 723)
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(z11 VT2 Vo2 VI V Cr2)
)

(T VTR Va2 VI V Cip

(a0 +212 <1)
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Tu + 212+ To1 + 722+ Cr2 2 1
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v
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(Cr2V C13V C2s V C34)

) (Cs4)

(Cr2V Ci3V C2 V Cay,

- Initial Clauses F---

- Initial Clauses

e

)
Ciz+Cia+ Coa + Coa =0

C12+C13+Co3+ 0oy < -1

~-1 Initial Clauses

v

UNSAT




. Construction of Initial CNF

Constraint x; + X, + ... + X > 11is equal to a CNF clause (X1 V Xo V... Xg).

Xi1 + Xjp < 1can be transformed into a CNF clause through the following steps:

® Let the < be > by multiplying —1 on both sides of the inequality. We have
—Xp— X = =1

* Replace X1, xj; by —(1—Xj1), —(1 — Xj7) respectively. We can get B
—(1=Xn) — (1—=X;7) > —1. Here X is the negation of x, and it is easy to see x = x.

* Reorganize the terms we have Xj; +Xj; > 1, which can be represented by a CNF clause
(X1 V Xj).



. Objective Bound to Clause

Consider constraint 5x + 2y + 4z < 5.

Construct a Binary Decision Diagram.

Extract all path to false.
x5 y L false derives clase —x v —y.

0 1 1 .
x =y —z— false derives clase
XV -yV -z

false

false

true

true




. Bilevel Reformulation

The layout decomposition problem can also be formulated as a bilevel
optimization problem. The upper-level optimization problem is given by

rgin > Con+a Y Sjj,

)

fi€pm,Ij€Pn,Cj €CE sjeSE
s.t. constraint (1b) - constraint (1f),
s e 5(0),

where S(C) is the set of optimal solutions of the C-parameterized problem
min Y sj,
S,'IESE

s.t. constraint (1b) - constraint (1j).



. Approximation Algorithm

Upper level decision space
Conflict variable

Lower level decision space

ization

Optimal stitch
variable solution




. Approximation Algorithm

How to solve the bilevel optimization problem?

® Single level reduction: the reduced single-level problem is shown exactly as the
original ILP formulation.

* Nested optimization: solves the lower-level optimization problem corresponding to
every upper-level member until convergence.

Our approximation algorithm:

e Get the assignments of upper-level variables by solving the upper-level problem
ignoring the lower-level variables (Conflict Minimization).

® Solve the lower-level problem with fixed conflict variables obtained from the
previous step (Stitch Minimization).



. Evaluation of Our Exact Algorithm

Table: Results on ISCAS benchmarks. “RT” indicates runtime.

‘Circuit ‘ ILP [Li+20] ‘SDP[VUHE)]‘ EC [ia+17] Ours ‘
Cost RT(s) | Cost RT(s)| Cost RT(s) | Cost RT(s)
C432 0.4 0.087 0.4 0.027 0.4 0.021 0.4 0.029
C499 0.0 0.081 0.0 0.028 0.0 0.025 0.0 0.030
C880 0.7 0.083 0.8 0.032 0.7 0.026 0.7 0.034
C1355 0.3 0.062 0.3 0.039 0.3 0.036 0.3 0.044
C1908 0.1 0.063 0.1 0.054 0.1 0.051 0.1 0.056
C2670 0.6 0.109 0.6 0.084 0.6 0.079 0.6 0.090
C3540 1.8 0153 | 1.8 0412 1.8 0100 | 1.8 0.123
C5315 0.9 0.217 0.9 0.147 0.9 0.130 0.9 0.156
6288 214 2999 | 273 0.434 | 21.4 0300 | 21.4  0.606
C7552 2.3 0.402 2.3 0.235 3.1 0.208 2.3 0.255
S1488 0.2 0.082 0.2 0.051 0.2 0.043 0.2 0.057
S38417 24.4 2352 | 31.6 1445 | 244 0771 24.4 2.072
S$35932 48.0 6.451 | 66.0 4.248 | 48.7 2.034 | 48.0 6.069
S38584 47.6  6.533 | 58.5 4.195 | 47.7 2216 | 47.6 5.915
S15850 43.7 5.854 | 56.3 3.821 | 44.0 2.075 | 43.7 5.415
[Avg Ratio [1.00 179 [ 111 085 [ 1.02 067 [1.00 1.00




. Evaluation on Large Benchmarks

Table: Layout decomposition results on ISPD19 benchmarks. “RT” indicates runtime.

Circuit ILP [Li+20] SDP [Yu+15] EC [Jia+17] Ours

Cost RT (s) Cost RT (s) Cost RT (s) Cost RT (s)
test1_100 242.9 56.24 297.7 2.61 390.5 9.51 242.9 5.73
test5_101 452.0 78.32 549.8 5.60 629.8 16.73 452.0 10.65
test6_102 153.4 188.56 191.7 35.58 344.1 59.21 153.4 69.79
test8_100 6005.9 82.13 6206.2 32.27 6245.6 34.39 6005.9 37.55
test9_100 9223.3 128.91 9532.4 52.72 9664.0 56.08 9223.3 60.50
test10_100 | 10449.5 244.93 | 10910.1 85.52 11130.6  128.96 | 10449.5 103.32
Avg. Ratio 1.00 4.43 113 0.67 1.40 1.19 1.00 1.00
testl_101+ 71.8 2370.45 107.4 19.65 168.7 71.51 75.1 6.87
test2_100+* 5236.7 12941.22 7259.4 187.31 9893.7 1404.07 5391.3 124.58
test2_102+ 213.4  7810.46 526.7 304.76 593.9 2722.24 211.8 149.37
Avg. Ratio 0.98 167.07 175 2.13 2.30 13.30 1.00  1.00

" Our approximation algorithm is enabled. For ILP, we set the timelimit to 3600s.



. Runtime Improvement of SAT-based Decomposer

Advantage 1: The scale of SAT problems remains controllable.
e Original ILP constraints are all cadinality constraints (all coefficients are 1).
e Cadinality constraints can be converted to clauses easily.

* The CNF obtained from cadinality constraints is relatively small.



. Runtime Improvement of SAT-based Decomposer

Advantage 2: Optimality is easier to prove.
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Figure: A case study on convergence of ILP and SAT-based decomposers. The first dashed
line indicates when an optimal solution is found, and the second indicates when the
Q@ optimality is proven. "



. Evaluation of Our Approximation Algorithm
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As the graphs get larger, our approximation algorithm remains effective, while the
runtime of other methods can grow drastically.
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