
Fast and Accurate Wire Timing Estimation Based on
Graph Learning

Yuyang Ye1, Tinghuan Chen2,3, Yifei Gao1, Hao Yan1, Bei Yu2, Longxing Shi1
1Southeast University 2CUHK 3CUHK-Shenzhen

Abstract—Accurate wire timing estimation has become a
bottleneck in timing optimization since it needs a long turn-
around time using a sign-off timer. The gate timing can be
calculated accurately using lookup tables in cell libraries. In
comparison, the accuracy and efficiency of wire timing cal-
culation for complex RC nets are extremely hard to trade-
off. The limited number of wire paths opens a door for the
graph learning method in wire timing estimation. In this work,
we present a fast and accurate wire timing estimator based
on a novel graph learning architecture, namely GNNTrans. It
can generate wire path representations by aggregating local
structure information and global relationships of whole RC nets,
which cannot be collected with traditional graph learning work
efficiently. Experimental results on both tree-like and non-tree
nets demonstrate improved accuracy, with the max error of wire
delay being lower than 5 ps. In addition, our estimator can
predict the timing of over 200K nets in less than 100 secs. The
fast and accurate work can be integrated into incremental timing
optimization for routed designs.

I. INTRODUCTION

During the IC design flow, static timing analysis (STA)
is crucial for timing closure. However, when a design gets
closer to the tape-out stage, more accurate timing analysis is
necessary to achieve timing optimization without overdesign
for routed design. Path delay calculation in STA is composed
of gate and wire timing estimations. Gate timing can be
calculated accurately and quickly through interpolating look-
up tables in cell libraries. In contrast, wire timing calculation
faces the loss of accuracy and efficiency problems, especially
on complex RC nets.

Wire timing estimation relies on the global RC net structure
formed by parasitic resistances and capacitances [1], [2].
Based on a complex timing model, several commercial STA
tools, such as PrimeTime [3] and Tempus [4], are adopted to
perform timing analysis path by path in RC nets. Due to the
coupling effect, advanced technology nodes bring complicated
non-tree net structures with nontrivial loops and an increas-
ing number of parasitic resistances and capacitances. Thus,
complex timing models cannot provide accurate wire timing
analysis efficiently for a large-scale design on an advanced
technology node [5].

To improve analysis efficiency, early work proposes a ma-
chine learning-based wire timing estimator [5]. For tree-like
nets, the proposed XGBoost model is used to estimate wire
timing by taking manually selected RC net structure features
as input. However, the proposed loop-breaking algorithm fails
to extract important structural information from non-tree nets.

Recently, graph learning has been proposed to fast and
accurately perform machine learning tasks by aggregating

Path 1

Path 2

Path 3

Path 4

Path 6

Path 5

Net A

Path 7

Path on netlist

(a)

Stage1 Stage2 Stage3 Stage4

Loop1 Loop2

Stage5

Source Sink1

Sink2

Path on wire

Drive cell Load cell

Sink2

Source Sink1Net A

Path 1

Path 2

(b)

Fig. 1 Examples of (a) All paths on the netlist; (b) All Paths
on the wire.

101 102 103 104

102

104

106

#Gate

#
P
at
h
on

N
et
li
st

(a)

200 400 600

102

104

106

#Capacitance

#
P
at
h
on

W
ir
e

(b)

Fig. 2 #Path v.s. (a) #Gate on netlist; (b) #Cap. on wire.

information from neighborhoods on graph-like data [6]. More-
over, graph learning is used to solve electronic design au-
tomation (EDA) problems since the circuit netlist is naturally
represented as a graph then structural features are learned and
extracted by the graph learning model [7], [8]. In [9]–[11],
graph neural networks (GNNs) are developed to verify circuit
testability, reliability and manufacturability. Specific blocks,
such as arithmetic blocks, are identified by customized GNNs
at the netlist level [12], [13]. In addition, GNNs are designed
to perform timing analysis [14]–[16]. However, traditional
graph learning methods have extremely low efficiency and
memory issues to perform inference on all paths in circuits
one by one since path number exponentially increases with
gate number in a circuit. Besides, many layers need to be
stacked to extract global information and perform embedding
for long paths. The layer number is at least the maximum
node distance within a graph. Such a deep model inevitably
brings an over-smoothing issue, which significantly degrades
estimation accuracy [17].

Unlike other EDA problems, there are few paths in each
wire RC net. As shown in Fig. 1(a), there are 7 paths on the
netlist with 11 gates. In contrast, there are just 2 paths on
the wire RC net with 11 capacitances, as shown in Fig. 1(b).
From the graph view, gates in a netlist and capacitances in

an RC net can be regarded as nodes in a graph, and the path
can be defined as a sub-graph consisting of part of nodes.
The path number on RC nets is much smaller than that on
netlists for large-scale designs, as shown in Fig. 2. According
to our statistics on ISCAS89 benchmarks, the numbers of
paths are more than 1 million with just 10k gates, as shown
in Fig. 2(a). In the open-source circuit with 200k nets, the
maximum path number of paths on these nets is just 49, and
most of the nets are composed of 10-30 paths, as shown in
Fig. 2(b). The limited number of wire paths opens a door for
the graph learning method to estimate wire timing effectively
while considering path information.

In this paper, we develop a fast and accurate wire timing
estimator based on a new graph learning architecture, namely
GNNTrans. Compared with other graph-learning-based EDA
works [7]–[16], which just collect the information of nodes
and edges in neighborhoods and ignore the information of
paths, GNNTrans encodes wire paths into path representations
through combining path features and aggregated capacitance
features in RC nets. Compared with prior wire timing work
[5], which sorts RC net structures manually and lacks careful
consideration for relationships among elements, GNNTrans
learns local net structure information and global relationships
among all elements in the whole net using an end-to-end
fashion without additional feature engineering. Our method
is evaluated on tree-like and non-tree nets of open-source
designs when golden timing data is generated through Prime-
Time SI mode. We highlight our contributions as follows.

• To the best of our knowledge, this is the first end-to-end
graph learning-based model for wire timing estimation,
which efficiently exploits the correlations of the wire
timing and RC net information.

• We propose GNNTrans to generate representations of
wire paths based on local structure information and
global relationships in RC nets. Especially, the path fea-
tures in RC net can be considered directly and sufficiently
with a limited computation source which helps improve
estimation accuracy and efficiency.

• Our model is evaluated with open-source designs,
demonstrating the timing estimation ability to generalize
across unseen wires.

II. PRELIMINARIES

A. Problem Formulation

We focus on achieving fast and accurate wire timing
estimation in routed design for complex RC net structures
(especially with many loops) without using a sign-off timer.
To clearly define our problem, we first provide some important
definitions as follows.

Definition 1 (Wire Path). The timing path of a wire, which
is from the source to the target sink.

Definition 2 (Wire Slew). The time required for a signal of
high-to-low or low-to-high transition on a wire is captured
from the signal waveform and defined as fall/rise slew.

Source C C C

C 2C

C

2C

C

C 3C

C
R R

R

R

R

R R

R

R

R

R

R

Sink1

Sink2

Node Edge Path

Path1

Neighbor Node for Source Faraway Node for Source

Neighbor Edge for Source Faraway Edge for Source

Path2

Fig. 3 Equivalent RC graph of Net A shown in Fig. 1(b) with
11 nodes, 12 edges and 2 paths.

Definition 3 (Wire Delay). The time required for a signal
that propagates from the wire source to the target wire sink.

Now our problem formulation is defined as follows.

Problem 1 (Wire timing estimation). Given an RC net with
parasitics and net structure, capture the information of each
path, each capacitance, each resistance, net structure and
their relationships effectively and estimate the wire slew and
wire delay of the wire path based on these information.

B. RC Network from Graph View

As shown in Fig. 3, we model a complex RC net as an RC
graph G = (V,E,P), where each node vi in V represents a
capacitance, and each edge eij in E represents a resistance
connected between node vi and vj . An edge eij and its
connected node vj form a stage. Source is the wire path
source, and Sink1, Sink2 are wire path sinks. Thus, the wire
path q in P from the path source Source to the target sink
Sink1 consists of all nodes and edges visited, which can be
cited as a sub-graph. For non-tree nets, the wire path q is the
shortest path from the source to the target sink. While other
nodes and edges are on the branches.

III. WIRE TIMING ESTIMATION

A. Overall Flow

In order to handle Problem 1, we propose a graph learning
method GNNTrans, as illustrated in Fig. 4. It mainly consists
of three modules: standard GNN, graph transformer and pool-
ing. The standard GNN extracts local structural information by
aggregating features through edges. Then graph transformer
extracts global structural information by aggregating all capac-
itance and resistance in the RC net. Based on the local and
global information, the pooling module efficiently generates
wire path representation for each path. Multilayer Perceptron
layers (MLP s) take the generated representations as input
to fast and accurately estimate wire slew and wire delay.
Moreover, the circuit timing path arrival time can be estimated
by the cumulative addition of our estimated wire delay and
cell delay from the timing library.

B. Data Representation

The RC net graph G = (V,E,P) is represented with node
feature matrix X: {xi,∀i ∈ V} for each capacitance, path
feature matrix H: {hq,∀q ∈ P} for each path and weighted
adjacency matrix A = [ai,j]. Each element aij is the value
of resistance between node vi and vj .

One-hop neighbors Two-hop neighbors

GNN
Layers

Transformer
Layers

Multi-head self-attentionFaraway nodes

Pooling

Path

Path
Representation

RC Graph

Fig. 4 The architecture of GNNTrans. A GNN module con-
sisting of L1 layers learns local, short-range structures, then
a Graph Transformer module consisting of L2 layers learns
global, long-range relationships. Finally, a pooling module
embeds these information and path features to generate wire
path representations.

Original Node and Path Features: In order to use GN-
NTrans, we define an initial node feature vector xi ∈ Rdx×1

for each capacitance and an initial path feature vector hq ∈
Rdh×1 for each wire path as listed in TABLE I. dx and
dh are the dimensions of the node feature vector and path
feature vector, respectively. In total, most of the features
in the node feature matrix X and path feature matrix H
are extracted from RC parasitic results generated through
StarRC and design constraints. The downstream capacitance
values and stage delays on the path are calculated through the
Elmore delay calculation [1]. Downstream capacitance is the
accumulated capacitance reachable by resistance on the path.
Stage delay is the Elmore delay of each stage. These features
are totally chosen based on circuit-domain knowledge and
parameter-sweeping experiments.
Weighted adjacency matrix: When there is an edge between
between node vi and vj , the weight aij is the value of
resistance between capacitance vi and capacitance vj .
Labels: The real wire slew Sr

wire and delay Dr
wire for each

wire path are generated via PrimeTime with SI mode [3].
An example of our data structure is shown in Fig. 5. Since

there are few wire paths in an RC net, no memory issue is
caused by our graph learning method while considering node,
edge and even path features. In other words, as shown in
Fig. 2, unlike gate-level paths, wire paths have few numbers,
which allows our graph learning method to perform inference
more efficiently without much more memory overhead. Each
path information contains its node, edge and path features. By
aggregating these features, our model can accurately estimate
wire timing on each wire path.

C. GNN Module: Learning Local Structure Information

To learn the RC net graph’s local structural information, we
update a node’s representations by aggregating information
from its neighbors with graph connectivity. For different
structures, the neighbor information is aggregated together
with different methods. There are L1 GNN layers stacked
together to increase the receptive field of the GNN module,
which helps learn more structural information. Based on the

Node
Features

Path
Features

Weighted
Adj.

RC Graph: nodes, paths

Path 1

Path 2

Fig. 5 The example of data representation of RC graph in our
work: node feature matrix, path feature matrix and weighted
adjacency matrix.

TABLE I Raw node and path features used in GNNTrans.
Type Name Description

Node

capacitance value values of capacitance
num of input nodes number of input nodes
num of output nodes number of output nodes
tot input cap total input capacitance
tot output cap total output capacitance
num of connect. res number of connected resistance
tot input res total input resistance
tot output res total output resistance
downstream cap Elmore downstream capacitance
stage delay Elmore stage delay

Path

input slew input transition time
dir. of drive cell drive strength of drive cell
func. of drive cell functionality of drive cell
dir. of a load cell drive strength of load cell
func. of load cell functionality of load cell
ceff of load cell effective capacitance of load cell
Elmore delay wire path Elmore delay
D2M delay wire path D2M delay

typical GraphSage models [6], we customize the GNN layers.
In GraphSage, each element in the adjacency matrix is binary
and only indicates whether there is an edge or not, i.e.,
connectivities. The node features are always aggregated av-
eragely without considering diverse edge information. In our
model, however, each element in the adjacency matrix is the
resistance value between two neighbor capacitances, which
contains the various edge information. To take advantage
of resistances information in RC net, we employ the edge
weights while aggregating the representations of the neighbor
node for node vi in the ℓ1-th GNN layer as follows:

x
(ℓ1)
i = ReLU(W

(ℓ1)
1 x

(ℓ1−1)
i +W

(ℓ1)
2 aiu

∑
u∈N(vi)

x(ℓ1−1)
u),

(1)
where W

(ℓ1)
1 and W

(ℓ1)
2 denote the learnable matrices. ReLU

is a nonlinear function. x(ℓ1−1)
i is the node representation of vi

generated in the (ℓ1-1)-th layer. For the first layer, x(0)
i is the

original node feature xi defined in Section III-B. x(ℓ1)
i is the

node representation generated in the ℓ1-th layer. N (vi) is the
neighbor node set of vi. The new aggregation method consid-
ers edge information to help the GNNs become more powerful
in the 1-Weisfeiler-Lehman (1-WL) isomorphism test. After
L1 GNN layers learning, the pre-node representations X(L1):
{x(L1)

i ,∀i ∈ V} are generated.

D. Graph Transformer Module: Learning Global Relation-
ships

GNN module aggregates information from neighbor nodes
with existing graph connectivity, which helps learn structure

Fig. 6 The illusions of self-attention mechanism (left) and
applied multi-head self-attention mechanism (right). In a
multi-head self-attention mechanism, the global information
is aggregated in two ways: from different nodes and from
different representation subspaces (heads).

information. GNNs can aggregate information from beyond
local neighborhoods by stacking layers, effectively broadening
the GNN receptive field. However, GNN’s performance will
degrade dramatically when its depth increases, which is an
over-smoothing issue [17]. Besides, the global long-range
dependencies among each capacitance and resistance cannot
be captured by GNNs with a limited receptive field, which
will degrade the accuracy of wire timing estimation based on
GNNs. Inspired by the self-attention mechanisms’ success,
we propose to use the multi-head self-attention mechanism
in the transformer to learn the global information without an
over-smoothing issue.

Once getting the pre-node representations X(L1):
{x(L1)

i ,∀i ∈ V}, we input them into graph transformer
module to learn global relationships among each node.
The GNN module aggregates the neighbor information
based on the edge weight aij (the value of resistance
between two nodes). Different from the GNN module, the
multi-head self-attention mechanism is used to aggregate all
element information of the whole RC net and extract global
information. The self-attention map ã

(k,ℓ2)
i,u between node vi

and vj on k-head in (L1 + ℓ2)-th layer is expressed as:

ã
(k,ℓ2)
i,u = softmax

(
W

(k,ℓ2)
Q x

(L1+ℓ2−1)
i (W

(k,ℓ2)
K x

(L1+ℓ2−1)
u)T

√
dk

)
,

(2)
where W

(k,ℓ2)
Q , W (k,ℓ2)

K are learnable linear transformation
matrices of query and the key for single attention head k
in ℓ2-th transformer layer. X(L1+ℓ2−1) is the input node
representation generated in the last layer and dk is the
dimension of the queries and the keys. For the first layer,
the input is the pre-node representations X(L1). Based on the
single self-attention map, the node representation of vi can be
updated based on aggregating information using a multi-head
self-attention map:

x
(L1+ℓ2)
i = x

(L1+ℓ2−1)
i

+W
(ℓ2)
3 ∥Kk=1

∑
u∈V

ã
(k,ℓ2)
iu

(
W

(k,ℓ2)
V x(L1+ℓ2−1)

u

)
, (3)

Wire Path Representations

Path
Features

Node
RepresentationsRC Graph: nodes, paths

Path 1

Path 2

Fig. 7 The illusions of wire representations, which are com-
posed of path features and node representations.

where W
(ℓ2)
3 , W

(k,ℓ2)
V are learnable linear transforma-

tion matrices. ∥ denotes concatenating operation. Note that
x
(L1+ℓ2−1)
i learns global relationships in transformer layers,

because the u ∈ V and V is the node set of given RC net. K is
the number of heads. After L2 layers, the final node represen-
tations X(L1+L2): {x(L1+L2)

i ,∀i ∈ V} are generated which
contains local structure information and global relationships
among all nodes in RC graph. As shown in Equation (3) and
Fig. 6, the graph transformer can learn global information in
two ways. Firstly, from a graph perspective, the transformer
allows every node to attend to every other node, which means
it can aggregate information from ‘faraway’ nodes regardless
of the edge connections (totally different from GNN models).
More importantly, the graph transformer module can learn the
most important node-node relationships globally, instead of
favoring nearby nodes. It is different from the GNN module.
Secondly, from a single node perspective, multi-head attention
(K attentions in our work) allows the node to jointly attend
to information from different representations with different
heads.

E. Pooling Module: Representing Wire Paths

In the pooling module, all the node representations
X(L1+L2): {x(L1+L2)

i ,∀i ∈ V}, are selected and combined
with original wire path features H: {hq,∀q ∈ P} to form
wire path representations F : {fq,∀q ∈ P}. As shown in
Fig. 7, the node representations on the wire path are summed
up, averaged and concatenated with original path features to
generate path representations for each path:

fq = (
1

Nq

∑
vi∈Vq

x
(L1+L2)
i)∥hq, (4)

where Vq is the node set of wire path q and Nq is the number
of nodes on wire path q.

F. Predicting Wire Timing

Based on the wire path representations F : {fq,∀q ∈ P},
we use a multilayer perceptron layer MLP to predict the wire
slew and delay under SI mode. For predicting the wire slew
for each path, the multilayer perceptron layer takes the wire
path representations as input. A trainable parameter θ in the
multilayer perceptron layer MLP is introduced.

Sq = MLP (θ | fq), (5)

where Sq is the wire slew estimation result of wire path q.
For predicting the wire delay for each path, the multilayer

perceptron layer takes the wire path representations and the
estimated wire slew results as inputs. A new trainable param-
eter ϕ in the multilayer perceptron layer MLP is introduced.

Dq = MLP (ϕ | fq, Sq), (6)

where Dq is the wire delay estimation result of wire path q.

IV. EXPERIMENTAL RESULTS

We use PyTorch to implement our models. Our models are
trained on a Linux machine with 32 cores and 4 NVIDIA Tesla
V100 GPUs in parallel. The total memory used in training
is 128GB. Synopsys StarRC extracts RC parasitics, and the
golden timing report is generated by Synopsys PrimeTime
with SI mode [3] with TSMC16nm technology. The clock
period is set to 1.5ns on a 72-core 2.6GHz Linux machine
with 1024 GB memory. We use the R2 score to evaluate the
accuracy of the relative wire slew/delay and path arrival time
on the testing benchmarks. The larger R2 score means higher
accuracy. In addition, the maximum absolute error of path
arrival time is reported.

We train and evaluate our GNNTrans on open-source de-
signs (including Opencore designs [20]). The nets, includ-
ing tree-like and non-tree nets, are split into training and
testing cases as shown in TABLE II. The training process
is to minimize the Mean-Squared Error (MSE) between the
estimated slew/delay (Swire and Dwire) and the ground truths
in PrimeTime timing reports (Sr

wire and Dr
wire). The overall

training progress is end to end, and the trainable matrices and
parameters include: W

(ℓ1)
1 and W

(ℓ1)
2 (∀ℓ1 ∈ {1, ..., L1})

in GNN module; W
(k,ℓ2)
Q , W

(k,ℓ2)
K , W

(k,ℓ2)
V , and W

(ℓ2)
3

(∀k ∈ {1, ...,K}, ∀ℓ2 ∈ {1, ..., L2}) in Graph Transformer
module; θ and ϕ in MLP layers. The model training progress
consumes about 19 hours on a single GPU. However, the
parallel training method on multiple GPUs achieves a 7.2×
speedup on our servers. Our entire prediction procedure is
only based on the net information and learned parameters.
The inductive model can be shared across different designs
without loss of accuracy even if they are unseen.

A. Accuracy of Estimated Wire Slew and Delay

We compare our GNNTrans with prior work [5] and the
state-of-the-art graph learning methods, such as GCNII [17],
GrapgSage [6], GAT [18] and graph transformer [19], in
the wire slew and delay estimation. Note that the residual
connections and identify matrix [17] are adopted to alleviate
the over-smoothing issue. Open-source cases in TABLE II
are used for training and testing. In GNNTrans, we use
L1 = 20 GNN layers and L2 = 10 Transformer layers.
All other graph learning models are used to generate node
representations with search depth L = 20 layers (based on the
model’s performance results). Mean pooling modules are used
to generate wire path representations. MLP modules are used
to predict wire slew/delay based on wire path representations.
The experimental results in TABLE III show that the proposed
GNNTrans significantly outperforms all baselines.

TABLE III shows all the wire slew/delay prediction accu-
racy (R2 score) results on non-tree nets. Compared with graph

learning methods, the accuracy of the traditional machine
learning method [5] is extremely low. The main reason is
that the loop-breaking algorithm brings much more induced
error. Our GNNTrans is significantly better than other graph
learning methods. The average R2 scores of GNNTrans reach
0.978 and 0.970, which outperforms GCNII by 0.148/0.168,
GraphSage by 0.112/0.120, and GAT by 0.133/0.150. The
primary reason is that they consider only node features and
local structure information and has a performance degradation
for large-scale designs with long-range elements. Moreover,
compared with Graph Transformer, our method achieves gains
of 0.165/0.180 on average. We also compare the accuracy
of wire timing estimation on all nets, including tree-like and
non-tree nets, and the results are shown in TABLE IV. Our
method can achieve 0.990 and 0.986 accuracy on average
in wire slew and delay estimation. Furthermore, considering
complex global relationships without over-smoothing issues,
our method significantly improves accuracy on large-scale
designs, compared with other GNN methods.

B. Accuracy of Path Arrival Time

The circuit timing path arrival time can be obtained by
combining wire delay/slew estimated by our method and
gate delay/slew predicted using PrimeTime [3]. TABLE V
shows the path arrival time prediction accuracies based on
our method and the conventional machine learning method
[5]. Note that the baseline results are from the golden timing
analysis tool, PrimeTime SI mode [3]. In TABLE V, there
is an obvious difference between Primetime timing reports
and timing results with the machine learning method [5]. The
traditional method [5] cannot achieve an accurate estimation.
The average R2 score is 0.648 and the maximum absolute
error reaches 74.59ps

We test GNNTrans with three different configurations:
PlanA (L1=25, L2=5), PlanB (L1=20, L2=10), PlanC (L1=15,
L2=15). According to the R2 scores, the accuracy of our
work reaches 0.968, 0.985, and 0.981 on average under three
different configurations, respectively. Our GNNTrans with
more GNN layers can get higher accuracy for small designs.
Our GNNTrans with more Transformer layers can get higher
accuracy for large-scale designs. And the average maximum
absolute errors using different plans are just 3.48ps, 1.93ps
and 1.70ps. It shows that our graph learning-based method
obtains more accurate path delay results than prior work [5].
And our method is flexible and general to improve estimation
performance while solving different designs.

C. Runtime

More importantly, the wire timing estimator costs 55.7s on
average for different designs scaling from 40k to 200k nets,
as shown in TABLE V. The runtime of our method is just
97.6s while solving 200k nets in the largest design. Compared
with predicting gate timing using Primetime SI mode, the
runtime of analyzing wire timing is reduced significantly by
our method. The fast and accurate method is beneficial to
improving efficiency in the physical design optimization flow.

TABLE II Benchmark statistics.
Benchmark #Cells #Nets (Non-tree) #FFs #CPs

Train

PCI BRIDGE 1234 1598 (279) 310 456
DMA 10215 10898 (1963) 1956 1475
B19 33785 34399 (8906) 3420 5093

SALSA 52895 57737 (16802) 7836 9648
RocketCore 90859 93812 (38919) 16784 12475
VGA LCD 56194 56279 (20527) 17054 8761

ECG 84127 85058 (31067) 14,018 13189
TATE 184601 185379 (51037) 31,409 27931
JPEG 219064 231934 (73915) 37,642 36489

NETCARD 316137 317974 (76924) 87,317 46713
LEON3MP 341000 341263 (81687) 108,724 50716

Total 1390111 1075068 (402026) 326470 212766

Test

WB DMA 40962 40664 (9493) 718 9619
LDPC 39377 42018 (10257) 2048 7613

DES PERT 48289 48523 (9534) 2983 10976
AES-128 113168 90905 (42657) 10686 24973

TV CORE 207414 189262 (53147) 40681 33706
NOVA 141990 139224 (36482) 30494 39341

OPENGFX 219064 231934 (62395) 37,642 47831
Total 810264 782530 (223965) 125252 221890

TABLE III Estimation accuracy of non-tree nets (R2 score).

Benchmark Wire Slew/Delay Estimation Accuracy of Non-tree Nets (R2 score)
DAC20 [5] GCNII [17] GraphSage [6] GAT [18] Trans. [19] GNNTrans

WB DMA 0.721/0.693 0.894/0.846 0.912/0.907 0.907/0.872 0.851/0.804 0.987/0.979
LDPC 0.714/0.705 0.871/0.829 0.904/0.893 0.881/0.872 0.817/0.781 0.991/0.985

DES PERT 0.703/0.662 0.906/0.871 0.918/0.872 0.897/0.851 0.824/0.807 0.984/0.975
AES-128 0.684/0.651 0.824/0.819 0.846/0.829 0.832/0.824 0.807/0.791 0.979/0.962

TV CORE 0.607/0.594 0.738/0.709 0.819/0.806 0.791/0.748 0.795/0.769 0.969/0.957
NOVA 0.664/0.631 0.795/0.781 0.834/0.829 0.819/0.802 0.783/0.774 0.976/0.971

OPENGFX 0.568/0.537 0.781/0.759 0.827/0.816 0.792/0.773 0.812/0.803 0.962/0.959
Average 0.666/0.639 0.830/0.802 0.866/0.850 0.845/0.820 0.813/0.790 0.978/0.970

TABLE IV Estimation accuracy of all nets (R2 score)

Benchmark Wire Slew/Delay Estimation Accuracy of All Nets (R2 score)
DAC20 [5] GCNII [17] GraphSage [6] GAT [18] Trans. [19] GNNTrans

WB DMA 0.823/0.791 0.915/0.909 0.944/0.921 0.932/0.916 0.912/0.875 0.999/0.994
LDPC 0.815/0.797 0.908/0.863 0.925/0.917 0.913/0.907 0.862/0.859 0.995/0.991

DES PERT 0.837/0.822 0.924/0.913 0.927/0.899 0.902/0.899 0.875/0.861 0.997/0.990
AES-128 0.802/0.760 0.879/0.867 0.883/0.872 0.845/0.824 0.867/0.854 0.987/0.982

TV CORE 0.795/0.782 0.821/0.810 0.844/0.837 0.831/0.824 0.889/0.876 0.989/0.986
NOVA 0.783/0.710 0.854/0.847 0.872/0.865 0.845/0.831 0.876/0.871 0.984/0.980

OPENGFX 0.769/0.729 0.835/0.827 0.864/0.851 0.840/0.829 0.897/0.869 0.982/0.979
Average 0.803/0.770 0.877/0.862 0.894/0. 880 0.873/0.861 0.882/0.866 0.990/0.986

TABLE V Path arrival time estimation accuracy, including R2 score / MAE (ps), and runtime (s) comparison. “MAE” represents
maximum absolute error. PlanA (L1=25, L2=5), PlanB (L1=20, L2=10), and PlanC (L1=15, L2=15) are GNNTrans with 3
different configurations, which helps test our work in different ways.

Benchmark
Path Delay Estimation Accuracy: R2 score and MAE(ps) Runtime(s)

PrimeTime Piror Work Our Work STA-SI Our Work
STA-SI DAC20 [5] PlanA PlanB PlanC Full Gate Wire Total

WB DMA 1.0000/0.00 0.746/42.45 0.999/0.57 0.997/0.59 0.972/1.52 276.7 136.2 25.1 161.3
LDPC 1.0000/0.00 0.722/58.21 0.998/0.64 0.996/0.67 0.981/0.83 365.9 200.4 32.9 233.3

DES PERT 1.0000/0.00 0.709/37.32 0.999/0.43 0.997/0.71 0.983/1.05 386.3 186.7 27.4 214.1
AES-128 1.0000/0.00 0.654/71.27 0.954/5.32 0.984/2.32 0.990/1.14 593.7 340.5 56.7 397.2

TV CORE 1.0000/0.00 0.527/127.58 0.928/8.56 0.976/4.27 0.981/3.94 614.6 400.6 60.2 460.8
NOVA 1.0000/0.00 0.604/84.61 0.967/2.64 0.979/1.25 0.985/0.91 1133.8 491.2 87.3 578.5

OPENGFX 1.0000/0.00 0.574/100.67 0.931/6.18 0.969/3.68 0.975/2.54 1185.4 567.3 97.6 664.9
Average 1.0000/0.00 0.648/74.59 0.968/3.48 0.985/1.93 0.981/1.70 650.91 331.84 55.31 387.16

V. CONCLUSION

In this work, we apply graph learning techniques to estimate
wire timing, which helps speed up timing optimization. A new
graph learning architecture, called GNNTrans, is proposed to
encode wire paths into path representations containing whole
net information. Experimental results on open-source designs
show that the wire timing estimator based on GNNTrans is
accurate meanwhile fast.

ACKNOWLEDGEMENT

This work is supported by the National Natural Sci-
ence Foundation of China (No. 62274034 and 61904030)
and The Research Grants Council of Hong Kong SAR
(No. CUHK14209420).

REFERENCES

[1] W. C. Elmore, “The transient response of damped linear networks with
particular regard to wideband amplifiers,” Journal of applied physics,
vol. 19, no. 1, pp. 55–63, 1948.

[2] C. J. Alpert, A. Devgan, and C. Kashyap, “A two moment RC delay
metric for performance optimization,” in Proc. ISPD, 2000, pp. 69–74.

[3] Synopsys, “Primetime user guide,” http://www.synopsys.com/Tools/
Implementation/SignOff/Documents/primetime ds.pdf, 2015.

[4] Cadence, “Tempus user guide.” https://www.cadence.com/content/
tempustiming-signoff-solution.html, 2015.

[5] H.-H. Cheng, I. H.-R. Jiang, and O. Ou, “Fast and accurate wire timing
estimation on tree and non-tree net structures,” in Proc. DAC, 2020.

[6] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” Proc. NIPS, vol. 30, 2017.

[7] T. Chen, G. L. Zhang, B. Yu, B. Li, and U. Schlichtmann, “Machine
learning in advanced IC design: A methodological survey,” IEEE MDAT,
2022.

[8] Y. Ma, Z. He, W. Li, L. Zhang, and B. Yu, “Understanding graphs in
EDA: From shallow to deep learning,” in Proc. ISPD, 2020.

[9] Y. Ma, H. Ren, B. Khailany, H. Sikka, L. Luo, K. Natarajan, and B. Yu,
“High performance graph convolutional networks with applications in
testability analysis,” in Proc. DAC, 2019.

[10] T. Chen, Q. Sun, C. Zhan, C. Liu, H. Yu, and B. Yu, “Deep H-GCN: Fast
analog IC aging-induced degradation estimation,” IEEE TCAD, 2022.

[11] S. Sun, Y. Jiang, F. Yang, B. Yu, and X. Zeng, “Efficient hotspot
detection via graph neural network,” in Proc. DATE, 2022.

[12] Z. He, Z. Wang, C. Bail, H. Yang, and B. Yu, “Graph learning-based
arithmetic block identification,” in Proc. ICCAD, 2021.

[13] Z. Wang, Z. He, C. Bai, H. Yang, and B. Yu, “Efficient arithmetic block
identification with graph learning and network-flow,” IEEE TCAD,
2022.

[14] K. K.-C. Chang, C.-Y. Chiang, P.-Y. Lee, and I. H.-R. Jiang, “Timing
macro modeling with graph neural networks,” in Proc. DAC, 2022.

[15] Z. Guo, M. Liu, J. Gu, S. Zhang, D. Z. Pan, and Y. Lin, “A timing engine
inspired graph neural network model for pre-routing slack prediction,”
in Proc. DAC, 2022.

[16] Y. Ye, T. Chen, Y. Gao, H. Yan, B. Yu, and L. Shi, “Graph-learning-
driven path-based timing analysis results predictor from graph-based
timing analysis,” in Proc. ASPDAC, 2023.

[17] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li, “Simple and deep
graph convolutional networks,” in Proc. ICML, 2020.

[18] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Lio, and
Y. Bengio, “Graph attention networks,” stat, vol. 1050, p. 20, 2017.

[19] V. P. Dwivedi and X. Bresson, “A generalization of transformer net-
works to graphs,” arXiv preprint arXiv:2012.09699, 2020.

[20] OpenCores, http:///opencores.org/, 2021.

 http://www.synopsys.com/Tools/Implementation/Sign Off/Documents/primetime_ds.pdf
 http://www.synopsys.com/Tools/Implementation/Sign Off/Documents/primetime_ds.pdf
 https://www.cadence.com/content/tempustiming-signoff-solution.html
 https://www.cadence.com/content/tempustiming-signoff-solution.html
 http:///opencores.org/

