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Abstract

Deep learning frameworks optimize the computation graphs
and intra-operator computations to boost the inference per-
formance on GPUs, while inter-operator parallelism is usu-
ally ignored. In this paper, a unified framework, AutoGraph,
is proposed to obtain highly optimized computation graphs in
favor of parallel executions of GPU kernels. A novel dynamic
programming algorithm, combined with backtracking search,
is adopted to explore the optimal graph optimization solution,
with the fast performance estimation from the mixed criti-
cal path cost. Accurate runtime information based on GPU
Multi-Stream launched with CUDA Graph is utilized to de-
termine the convergence of the optimization. Experimental
results demonstrate that our method achieves up to 3.47x
speedup over existing graph optimization methods. More-
over, AutoGraph outperforms state-of-the-art parallel kernel
launch frameworks by up to 1.26 x.

Introduction

Deep neural networks (DNNs) have shown remarkable
power on many tasks such as computer vision (He et al.
2016; Redmon et al. 2016) and natural language processing
(Vaswani et al. 2017; Devlin et al. 2018). The state-of-the-art
models get deeper and larger to achieve better performance,
which causes a great challenge to deployment in actual sce-
narios. As a result, the acceleration of modern DNNSs is in
great demand.

Deep learning (DL) frameworks (Chen et al. 2015; Abadi
et al. 2016; Paszke et al. 2019) represent the neural net-
works as graphs and optimize the graphs to accelerate in-
ference. In the graph, a node represents the atomic DL oper-
ator (e.g., convolution, pooling), and an edge represents the
data dependency between two nodes. A widely used graph
optimization approach is equivalent graph substitutions (Jia
et al. 2019a; Zhao et al. 2022; Xing et al. 2022). TensorFlow,
PyTorch and TVM (Chen et al. 2018) perform greedy rule-
based substitutions in a predefined order. For example, one
rule used by them is to replace convolution, batch normaliza-
tion, and activation with an equivalent fused operator, which
can eliminate intermediate results and reduce memory ac-
cess. MetaFlow (Jia et al. 2019b) allows graph substitutions
with relaxed performance constraints to enlarge the search
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space. It adopts a flow-based method to split the graph and
uses a cost-based backtracking algorithm to find the opti-
mized graphs. To save the engineering efforts for emerging
new operators, TASO (Jia et al. 2019a) takes operator defi-
nitions and specifications, then automatically generates and
verifies graph substitutions, enabling a much larger search
space than manually designed ones. It is non-trivial to find
the graphs with optimal execution time on hardware in this
exponential search space. OCGGS (Fang et al. 2020) intro-
duces partial orders to substitution sequence to prune the re-
dundant sequences and reuses the valid subgraph matching
from the previous step. TENSAT (Yang et al. 2021) relies
on the equality saturation technique to divide the graph op-
timization into two phases, exploration and extraction, to re-
duce the complexity. Despite these advancements, these ex-
isting graph optimization methods (Jia et al. 2019a,b; Fang
et al. 2020; Yang et al. 2021; Bai et al. 2021) focus on
sequential kernel launch frameworks, which is of low ef-
ficiency in the inference stage, given a static neural net-
work with fixed input shape. In other words, only intra-
operator parallelism is considered while no inter-operator
parallelism. Each kernel occupies all the on-chip resources
exclusively during execution though most resources are idle.

Modern GPUs possess many computation and memory
resources that provide great potentials for high-performance
computations and are ideal for intensive tensor computations
in DNN models. With the rapid advances in GPUs (NVIDIA
A100 reaches 19.5 TFLOPS of FP32 performance), the ex-
clusive execution of a single DNN operator in the previous
arts can no longer achieve sufficient resource utilization. In
addition, there is a trend in the DL community to replace the
linear chains of operators with multiple branches (Szegedy
etal. 2015; Zhang et al. 2022) to capture diverse and deep in-
formation. The neural networks obtained by neural architec-
ture search (NAS) (Zoph et al. 2018) show similar structures.
Such networks can perform better on GPUs by leveraging
inter-operator parallelism. IOS (Ding et al. 2021) divides the
computation into different stages and uses a dynamic pro-
gramming technique to find the optimized launch schedule
for CNN models. Nimble (Kwon et al. 2020) is a framework
supporting parallel kernel launch for the whole DNN model
and leverages the ahead-of-time (AOT) scheduler to mini-
mize hardware scheduling overhead. Parallel execution for
multi-tenant DNN inference (Yu et al. 2021) is explored by
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Figure 1: Performance of different methods of the same
DNN task on NVIDIA GeForce RTX 2080Ti. PyTorch runs
the computation graph sequentially and gets the worst la-
tency 0.40 ms. TASO (Jia et al. 2019a) optimizes the com-
putation graph aggressively while still launching the com-
putation graph sequentially. Our method fuses the element-
wise operators and keeps the parallel branches while using
multiple streams, achieving the best latency of 0.29 ms.

combining multi-stream and fine-grained scheduling in the
runtime stage. These advancements demonstrate the superi-
ority of the parallel paradigm in many scenarios.

Despite the successes of the inter-operator parallelism on
GPUs, existing graph optimization methods are limited by
their unawareness of the runtime system. The optimization
is only guided by a naive performance estimation for graphs
without runtime feedback. The cost of a node in the graph is
the execution time of the corresponding operator on GPUs,
and the cost of the whole graph is the total costs of all the
nodes in it. Such metric ignores parallel kernel launch sce-
nario and leads the optimization in the wrong direction. For
example, given the DNN task in Figure 1a, PyTorch emits
each operator to a single stream (PyTorch 2022) and exe-
cutes them sequentially. TASO (Jia et al. 2019a) enlarges
the kernel size from 1 x 1 to 3 x 3 by padding with zeros,
then fuses the two convolutions to generate the functionally
equivalent graph in Figure 1b. It has a better cost in terms of
the sum of the execution time of operators, but it breaks the
inter-operator parallelism. Therefore, the actual deployment
performance is unsatisfying. Our method fuses the element-
wise operators but keeps the parallel branches. Each branch
is assigned to an independent GPU stream (CUDA 2022),
with proper synchronization inserted to satisfy data depen-
dency. It achieves the best performance, as shown in Fig-
ure lc.

To mitigate the above issues, we present AutoGraph to op-
timize computation graphs for parallel kernel launch frame-
works by a unified approach that uses both customized cost
function and accurate runtime information. The major con-
tributions of this paper are: (i) we propose a mixed criti-
cal path cost for fast estimation, which reflects the computa-
tion graph performance on the parallel kernel launch frame-
work. (ii) A novel dynamic programming algorithm, com-
bined with backtracking search, is proposed to find promis-
ing candidates for on-board measurements. (iii) We intro-
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Figure 2: A typical substitution rule r.

duce accurate runtime information in the optimization flow.
The latencies of selected candidates based on GPU Multi-
Stream launched with CUDA graph determine the conver-
gence of the optimization. (iv) We evaluate AutoGraph on
representative DNN models. The results demonstrate that
AutoGraph outperforms existing graph optimization meth-
ods with speedup ranging from 1.04x to 3.47x. Moreover,
AutoGraph achieves 1.06x to 1.26x speedup over state-of-
the-art parallel kernel launch frameworks.

Preliminaries

Computation Graph Optimization. A DNN model is de-
fined by a directed acyclic computation graph G = (V, E),
where V represents the set of nodes, F is the set of edges.
An edge (u,v) € E represents a tensor that is the output
of node v and the input of node v. Following prior arts (Jia
et al. 2019b; Fang et al. 2020), we introduce the concept of
the graph substitution rule which defines how to replace a
subgraph with a functionally equivalent one. A substitution
rule contains two templates, the source graph and the tar-
get graph. For any valid inputs, they output the same results.
Following the one-to-one matching between the input and
output nodes, the source graph can be replaced by the target
graph without any influence on the computation results. We
denote a graph substitution rule as r. A typical substitution
rule is shown in Figure 2.

To apply the rule r to a computation graph G, we have to
find a subgraph of G that can match up with the source graph
in r. To guarantee such substitution is valid, each node in the
source graph can only be mapped to a node with the same
type. Additional constraints on operators can be included to
confine the mapping. For example, the nodes of the source
graph in Figure 2 can only be mapped to convolution oper-
ators with same padding, stride and kernel size. After find-
ing such mapping, we can replace the subgraph of G with
the target graph in r, and the newly generated computation
graph will compute the same results as G. Different substi-
tution rules can be performed repeatedly to form complex
graph optimization, as shown in Figure 1.

Parallel Kernel Launch. GPUs support parallel kernel
execution by using multiple streams (CUDA 2022). A sin-
gle stream is a sequence of kernels that execute in order,
while the multiple streams can execute their kernels in par-
allel with higher utilization of memory and computation re-
sources. When launching DNN models in multiple streams,
explicit synchronizations across streams are needed to sat-
isfy the data dependencies of some operators since opera-
tions from different streams can execute in any relative or-
der. CUDA Graph (CUDA 2022) is the ideal multi-stream
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scheduling method on GPU to minimize the scheduling
overhead (e.g., kernel initialization and context switching).
It is a record of the tasks that a stream and its dependent
streams perform. CUDA Graph only needs to be defined
ahead of time and then can be launched any number of times
fast and efficiently, which meets the requirements of DNN
model deployment seamlessly.

Cost Measurement. There are two types of costs in our
context, one is estimated by inference frameworks in the unit
of an operator, and the other one is the end-to-end on-board
performance. For a computation graph, the actual execution
latency on GPU is denoted by Cy,, and the estimated per-
formance is denoted by Cg. Ideally, Cr should align with
C'r,. Existing techniques (Jia et al. 2019a,b; Fang et al. 2020;
Yang et al. 2021) compute C'r by summing up the costs
of nodes in the graph. The cost of a node is the execution
time of the operator (with specific input shape and param-
eters) on the hardware. This naive cost estimation method
degrades the performance of graph optimization algorithms.
A more accurate cost function is needed for the parallel ker-
nel launch scenario.

Problem Formulation. Given an initial computation
graph G, a set of substitution rules R = {ry,r2,...,rm}, and
the latency cost measurement Measure(:), the problem is
to find an optimized graph G,p: with minimal latency cost
Cr,. . by applying a sequence of substitution rule r in R.

opt

AutoGraph

The brief flow of our framework is shown in Figure 3. First,
the initial computation graph is divided into multiple sub-
graphs to enable fast optimization. Then, a dynamic pro-
gramming algorithm, combined with backtracking search,
is adopted to explore the graph optimization solutions. Can-
didate graphs with low customized cost are selected for on-
board measurement, and the runtime feedback is utilized to
guide the optimization.

Flow-based Graph Partition

Most modern DNN models are too large for direct compu-
tation graph optimization, and numerous substitution rules
and optimization iterations worsen the situation. Therefore,
an effective graph partitioning strategy, which can reduce the
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Figure 4: A flow-based graph partition method is recursively
applied to graph G until the size of each subgraph is less
than the lower threshold Sizer. Then we scan the mini-
mum partitioning set P, and merge the adjacent subgraphs
to form new subgraphs with a size less than the upper thresh-
old Sizer, which is also performed recursively.

search space while maximizing optimization opportunities,
is highly desired. We first use a flow-based graph partition
method to divide a computation graph into independent sub-
graphs. Then, possible merged subgraphs are enumerated to
increase the optimization opportunities. Figure 4 illustrates
the process.

Splitting a graph into two disjoint parts disables the graph
substitutions spanning them because the substitution rules
can not be applied to either side. Therefore, we aim to pre-
serve most graph substitutions when partitioning the initial
graph. For each node v € V, we define its capacity cap(v)
as the number of different mappings that map the node to a
node in the source graph of a substitution rule r. Our objec-
tive is to find the node set V.,+ with minimal capacity sum
to split the graph G. To find such node set, we construct a
flow network G, from the graph G to enable the network
flow algorithm. The idea is to use two separate nodes and an
edge with weight cap(v) to denote each single node from the
original graph. The details of the network construction can
be found in the appendix. Finding the node set V¢ in G is
equivalent to finding the minimum cut in G,. The Boykov-
Kolmogorov algorithm (Boykov and Kolmogorov 2004) is
used to find the minimum cut. The entire computation graph
G is recursively divided into independent subgraphs smaller
than a threshold Sizej,, which form the minimum partition-
ing set Pp, = {p1,p2,--.,pn}, as shown in Figure 4.

We notice that the node capacity keeps changing during
the graph optimization process. However, it is unrealistic to
frequently update the partitioning result for the entire graph
during the search. Regarding this issue, possible merged
subgraphs are enumerated to increase optimization opportu-
nities. After the flow-based partition, the minimum partition-
ing set Py, is scanned. If the size of two adjacent subgraphs
(pi, pi+1) do not exceed an upper threshold Sizer;, we merge
them to form a new subgraph and repeat this process in a re-
cursive manner as shown in Figure 4. Each subgraph now is
suitable for subsequent optimization. We denote the set of
the beginning subgraphs containing input nodes as P, and
collect all the subgraphs’ adjacency information for further
reference.
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Figure 5: An illustration of our backtracking search. Our
method takes each subgraph as the input graph for fast op-
timization. Available substitution rules are applied to gener-
ate new graphs. Nodes in the critical path are assigned with
higher weights when calculating costs. Graphs whose mixed
critical path cost is 3 times worse than the best current value
are stopped from further exploration.

Cost-based Graph Optimization

We first introduce the backtracking search method, which is
utilized to optimize each subgraph. The optimization solu-
tions for the entire graph are explored by the proposed dy-
namic programming algorithm. Our customized cost, con-
sidering inter-operator parallelism, serves as the selection
criterion.

Backtracking Search via Mixed Critical Path Cost.
Equivalent computation graphs with different runtime per-
formances can be generated by applying suitable substitu-
tion rules to a computation graph. Exhaustively enumerat-
ing all the possible results is of low efficiency, and we use
a backtracking search method to find optimized graphs in-
stead. It relies on the cost of each graph to prune the search
space. Fast and accurate estimation is needed to perform the
optimization efficiently.

As shown in Figure 1, the naive cost estimation in existing
works ignores the inter-operator parallelism and misguides
the optimization for the parallel kernel launch framework.
We propose the mixed critical path cost in Equation (1) as
the selection criterion. We define V. as the set of nodes on
the critical path. And the critical path is the longest path in
terms of cost sum. Because the computation graph is a DAG,
the critical path can be extracted efficiently via topological
sort. Since the operators on the critical path must be exe-
cuted in order, the critical path cost is the lower bound for
the computation graph execution. But we notice that there
are numerous graphs with the same critical path cost, while
the costs of the rest routes still need to be considered to make
a further selection. Thus, we consider both the critical path
cost and the total cost. And we use a hyperparameter « to
control the critical path cost weight. As is shown, when cal-
culating the total cost, the critical path cost is already col-
lected once.

Cg=a Z cost(v) + Z cost(v)
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Figure 5 illustrates our backtracking search. Thanks to our
graph partition procedure, we can perform the backtracking
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Figure 6: An illustration of a transition state in our dy-
namic programming + backtracking search algorithm. At
current state p = ps, we directly retrieve the solution for
the subproblem M CP[G — ps] cached in previous steps by
MCP|G — p1 — p2]. Optimization for current subgraph p is
performed via our backtracking search.

search on each subgraph to enable fast graph optimization.
We take each subgraph as the input graph. In each search
round, we find all the possible mappings and generate cor-
responding new candidate graphs via the rules. Candidate
graphs of mixed critical path cost within 8 times of the
current best value are collected for the next search round.
Complex graph optimizations composed of multiple substi-
tutions can be found automatically. We set 3 = 1.1 to al-
low temporarily increasing the cost in intermediate steps,
encouraging more exploration. The extra critical path cost
prevents the optimization from forming large kernels in the
critical path, preserving the inter-operator parallelism. The
experimental results show its effectiveness. Our backtrack-
ing search is flexible. It can return the best graph in terms of
the mixed critical path cost or a batch of promising candi-
dates for further verification.

DP-based Optimization Solution Search. Among all the
possible subgraphs, we need to perform graph substitutions
on an optimal graph partitioning sequence that leads to the
best performance for the entire graph. A valid graph parti-
tioning sequence spans all parts of the graph G. After opti-
mizing each subgraph in the sequence, we can stitch them
to construct the entire optimized computation graph. The
minimum partitioning set Py, is one of them, but it is not
the optimal choice in most cases. We observe that different
graph partitioning sequences share the same sub-sequence,
and thus we design a dynamic programming algorithm to
find the optimization solution efficiently.

To find the optimal solution for a computation graph G,
we first divide it into G — p and p. p is the subgraph gen-
erated in the graph partition process. And p is always cho-
sen from the beginning part of current G, which can have
multiple choices. Specifically, if G is the initial graph, p is
chosen from the beginning subgraph set P,. Otherwise, p is
chosen from the subgraphs adjacent to the previous choice
that induces the current divided graph. For simplicity, we de-
note current available subgraph set as P.. We enumerate all
the p € P, optimize p with the backtracking search method
and reduce the original problem to a sub-problem, finding
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the optimal solution for G — p. We denote M C P|G] as the
mixed critical path cost of the optimal solution for G, and
denote BSMCPlp] as the mixed critical path cost returned
by applying backtracking search on p. The above idea can
be described by the recursive formulation in Equation (2).

MCP|G] = ;l’éifgl (MCP|G —p]|+ BSMCP[p]). (2)

Figure 6 shows a transition state in our dynamic program-
ming + backtracking search algorithm. There are seven dif-
ferent subgraphs from Figure 4. At start, the subgraphs in the
beginning subgraph set P, = {p1,ps} are enumerated, and
p1 is explored by the backtracking search to perform graph
substitutions first. py and pg are the subgraphs adjacent to
p1, and they will be explored next. When exploring ps, the
original problem M CP|G] is reduced to MCP[G — p1 — p2],
which is solved in the same manner. And the mixed critical
path cost of the optimal solution for G — p; — p» is stored in a
hash table. When we reach the current state with p = ps, the
backtracking search is applied to optimize the current sub-
graph, and the problem is reduced to M CP[G — ps] that is
the same as M C'P[G — p; — pz2]. Thus, we can directly obtain
the result from the hash table to avoid redundant computa-
tions. After running the dynamic programming algorithm,
we can construct the complete optimization solution based
on the hash table, which achieves the best mixed critical path
cost on graph G. The pseudocode of our DP-based method
is provided in the appendix.

On-board Verification

Previous computation graph optimization methods termi-
nate before on-board measurement, lacking actual runtime
information in the optimization process. This downgrades
the performance of the final optimization result, and mean-
while the complex parallel kernel launch scenario aggravates
such a problem. Therefore, we propose to introduce runtime
information to guide the optimization. To acquire such in-
formation, we implement the parallel kernel launch runtime
system in our framework.

Specifically, we leverage GPU multi-stream to exploit the
inter-operator parallelism of the computation graph. The op-
erator nodes on different branches are assigned to different
streams, and proper synchronization events are inserted into
the streams to guarantee the data dependencies. Figure 7
shows an example. An ideal stream assignment should maxi-
mize the operator concurrency while minimizing the number
of synchronizations. We adopt the maximum matching algo-
rithm in Nimble (Kwon et al. 2020) to find such assignment.

It is a fast analytical approach, which can be embedded
into our framework seamlessly. Based on the node-to-stream
mapping, CUDA Graph is used to pre-run the computation
graph once and trace invocations of GPU kernels and alloca-
tions of GPU memory. In the inference stage, CUDA Graph
replays the recorded parallel kernel launch schedule without
the extra overhead. The computation graph is launched in
this way to achieve its best deployment performance, and the
end-to-end latency is treated as the golden metric for guiding
the optimization flow.

Since it is infeasible to measure every new graph on the
runtime system, we only sample the top-k candidates for on-
board verification each time. Candidates with improved per-
formance are selected for next optimization iteration.

Overall Optimization Flow

Combining all the aforementioned methodologies our opti-
mization flow are shown in Algorithm 1. All the selected
graphs are maintained in a priority queue @ and popped
in increasing order of end-to-end latency. For each popped
graph, independent subgraphs are found via our flow-based
graph partition method and stored in a set P. Then the opti-
mal optimization solution is found by our dynamic program-
ming algorithm to generate new candidate graphs, and can-
didates with top-k mixed critical path cost are collected in a
heap H. These candidates are measured on the parallel ker-
nel launch runtime system, and candidates with improved
performance are inserted to  for further exploration. Fi-
nally, the optimized computation graph Gy is returned.

Algorithm 1: Optimization Flow

Input: Initial computation graph G, a set of substitution rules R,
latency cost measurement Measure(-).
Output: An optimized graph Gop:.

I: Gopt < G,CL,,, < Measure(Q);

20 Q< {Gopt; CLop 13 > graph priority queue Q
3: while Q # @ do

4: Gcand> CLcand - QPOP(),

5: if CLcand < CLom then

6: Gopt — Gcand7 CLopt — CLcand;

7. GraphPartition(Geand, R, P); > subgraph set P
8: GraphOptimizatioin(Geend, R, P, H); > candidate

heap H

9: for all Gr.eoo € H do
10: ClLew < Measure(Gnew);
11: if CLnew S CLopt then
12: Q.insert(Grew, ClLyew);

13: return Gop¢;

Experiments
Experimental Settings

We conduct all the experiments on an Intel(R) Xeon(R)
Silver 4114 CPU@ 2.20GHz. The hardware platform is
an NVIDIA GeForce RTX 2080Ti GPU with CUDA 11.0,
cuDNN 8.0.5, and PyTorch 1.7. Seven modern DNNs are
benchmarked in the experiments, and the details of the mod-
els are shown in Table 1. Inception-v3 (Szegedy et al. 2016)



Table 1: DNN Models Used in Our Experiments.

Table 2: Model inference latency results (ms).

JIT TASO+JIT I0S Nimble TASO+Nimble Ours

Type Name block# input shape Model
Inception-v3 11 [1, 3,299, 299] Inception-v3
ResNet-50 16 [1,3,224,224] ResNet-50
CNN ResNeXt-50 16 [1, 3,224, 224] ~
NasNet-A 18 [1,3,224,224] Rl\elzljﬁftt 20
NasNet-Mobil 12 1, 3,224,224 iy
BTe Vool [ ] NasNet-Mobile
RNN RNNTC-SRU 10 [l x 10, 1024] RNNTC-SRU
Transformer BERT 8 [16 x 64, 1024] BERT

8.839 7.819 3.788  3.174 2.928 2.799
4.566 4.554 3284 2144 1.988 1.905
7.540 7.369 3.056  7.708 5.933 2.892
13.891 10.843 9.583  6.483 13.086 5.850
10.155 8.085 3.821  2.320 6.540 1.883
1.496 1.307 - 0.486 0.387 0.387
11.011 9.026 - 6.923 6.473 6.240

and ResNet-50 (He et al. 2016) are widely used networks
for image classification. ResNeXt-50 (Xie et al. 2017) in-
troduces a new grouped convolution operator to replace the
residual block and improves the model accuracy. NasNet-A
(Zoph et al. 2018) and NasNet-Mobile (Zoph et al. 2018)
are the representative CNN models with complicated model
structures discovered by neural architecture search. RNNTC
(Lei et al. 2017), a model for natural language processing
tasks, is also tested. It is a sequence-to-sequence RNN model
built on the simple recurrent unit (SRU) (Lei et al. 2017).
BERT (Devlin et al. 2018), i.e., Bidirectional Encoder Rep-
resentation from Transformers, is a powerful model which
stacks the complicated transformers and has obtained state-
of-the-art results on many tasks.

End-to-end model inference latency is adopted as the per-
formance metric. We compare our method with both sequen-
tial and parallel kernel launch frameworks. All the frame-
works are based on cuDNN libraries for fair comparisons.
PyTorch (Paszke et al. 2019) is the most widely adopted
development tool and the representative sequential kernel
launch framework. We use PyTorch with Just-In-Time com-
pilation (PyTorch-JIT 2022) to enhance the inference per-
formance. Nimble (Kwon et al. 2020) and 10S (Ding et al.
2021) are the state-of-the-art parallel kernel launch frame-
works, which exploit inter-operator parallelism extensively
to accelerate model inference. To compare with existing
graph optimization methods, we transform the optimized
computation graphs found by TASO (Jia et al. 2019a) to
formats accepted by PyTorch-JIT and Nimble to obtain the
end-to-end latencies. They are also included as baselines.

In our method, the 157 substitution rules from TASO (Jia
et al. 2019a) are used as the substitution rule set R. The cor-
rectness of these rules has been verified. We set o = 0.25 as
the weight of critical path cost and set 8 = 1.1 for the back-
tracking search. The lower threshold Sizey and the upper
threshold Sizey are set as 40 and 120, respectively. In each
iteration, the top-20 candidate graphs are collected for on-
board verification. The optimization results are not sensitive
to most of the hyperparameters. Detailed ablation studies on
the hyperparameter settings are provided in the appendix.

End-to-end Performance

We compare the end-to-end inference performance of the
benchmark models between our method and the baselines.
We adopt the same inference setting with (Jia et al. 2019a;
Kwon et al. 2020; Ding et al. 2021) for a fair comparison.
The experimental results are shown in Table 2. JIT in Ta-

ble 2 represents PyTorch with JIT optimization. We conduct
each model inference 50 times and report the average perfor-
mance. Our method consistently obtains the best results on
all the benchmark models, which demonstrates the signifi-
cant advantages of our framework over the baselines. Com-
pared with PyTorch-JIT (Paszke et al. 2019) and PyTorch-
JIT with computation graphs optimized by TASO (Jia et al.
2019a), our method achieves huge speedup, demonstrating
the necessity to make use of inter-operator parallelism. In
the parallel kernel launch scenario, our method outperforms
the state-of-the-art frameworks IOS (Ding et al. 2021) and
Nimble (Kwon et al. 2020) on all benchmark models with
speedup ranging from 1.06x to 1.26x, which proves that
exploiting graph optimization and inter-operator parallelism
simultaneously can further improve the inference perfor-
mance. IOS (Ding et al. 2021) only supports CNN model
execution, therefore the latency results of IOS for RNNTC-
SRU and BERT are unavailable. Compared with applying
TASO (Jia et al. 2019a) to Nimble (Kwon et al. 2020), our
method achieves speedup ranging from 1.04x to 3.47x on
the benchmark models. This significant performance gain
comes from our customized cost and accurate runtime infor-
mation, which helps our framework find the most suitable
graph optimizations for the parallel kernel launch runtime
system.

Case Studies for Graph Optimizations

To understand how our method finds better optimized com-
putation graphs compared with baselines, we exemplify the
NasNet and ResNeXt in detail.

Figure 8 illustrates the different optimization choices be-
tween our method and TASO on NasNet cell. Due to the
naive cost function, TASO accepts any graph substitution
rule which reduces the total cost of all the operators. As a
result, TASO applies all the three substitutions for each cell
in the network and transforms the multi-branch structures
into a single link with large kernels. The reduction of kernel
launch overhead fails to offset the extra computation work-
load induced by these fused operators. These large kernels
accumulate in the critical path and cause significant perfor-
mance degradation on parallel kernel launch runtime system.
Therefore, TASO fails to find computation graphs with im-
proved performance for NasNet-A and NasNet-Mobile on
Nimble, only achieving poor performance of 13.086 ms and
6.540 ms, respectively. With the help of the mixed critical
path cost and the advanced DP-based optimization method,
our method rejects the two substitutions which break the
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Figure 8: Different graph optimization choices on NasNet
cell. dwc and avg refer to depth-wise convolution and av-
erage pooling. There are three valid graph substitutions. In
(D and ), the two dwc and two conv can be fused. In Q),
the two avg followed by add can be replaced by a single op-
eration. TASO applies all the three substitutions and forms
large kernels in the critical path. Our method only chooses
@ and keeps the parallel branches, which reduces the com-
putation and preserves the inter-operator parallelism.
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Figure 9: Different optimizations on ResNeXt block. TASO
changes the group number from 32 to 8 for all the convolu-
tions. Our method sets some convolutions with group num-
ber 8 and some with 4, guided by the runtime information.

inter-operator parallelism and only merges the two aver-
age pooling operators to reduce computation. Therefore,
our method keeps most parallel structures in NasNet-A and
NasNet-Mobile, which leads to the best performance of
5.850 ms and 1.883 ms.

Figure 9 shows the different computation graphs found
by TASO and our method for ResNeXt block. ResNeXt re-
places the residual block in ResNet with 32 branches of
small convolutions, and the implementation is equivalent to
a group convolution with group number 32. TASO changes
the group number from 32 to 8 for all the blocks in ResNeXt
based on the estimated cost and achieves improved infer-
ence performance of 5.933 ms on Nimble. Our mixed criti-
cal path cost tends to set the group number as 4 for all the
blocks to increase inter-operator parallelism. However, with
the DP-based optimization and the on-board verification, our
method finds a mixture of group number 8 and 4 can main-
tain a balanced resource usage and improve the overall effi-
ciency. Our method sets the blocks in ResNeXt with group
number 8 and 4 alternately, which achieves the best infer-
ence latency of 2.892 ms.

Ablation Studies

To validate the graph optimization and the dynamic pro-
gramming method, we compare the results of different set-

tings where graph optimization or dynamic programming is
disabled, as shown in Figure 10. It demonstrates that we can
improve the inference latency by performing suitable graph
substitutions. The optimal optimization solution found by
our DP-based method leads to optimized graphs with bet-
ter performance.
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Figure 10: Performance comparisons between different set-
tings. “w/o. Opt.” means directly measuring the initial com-
putation graph. “w/o. DP” means directly using the mini-
mum partitioning set without our DP-based method.
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Figure 11: The normalized throughput comparisons of dif-
ferent frameworks on various batch sizes for NasNet-
Mobile.

We optimize NasNet-Mobile on our framework with dif-
ferent batch sizes. Figure 11 shows our method consistently
outperforms all the baselines, which demonstrates the gen-
erality of our method. Although a larger batch size provides
more intra-operator parallelism, we can still exploit inter-
operator parallelism and graph optimization to further im-
prove the inference performance.

Conclusion

Existing computation graph optimization methods lean on
sequential GPU kernel execution, which fails to utilize
inter-operator parallelism and thus impairs system capabil-
ity within a parallel kernel launch framework. We identify
the potential of combining graph optimization and inter-
operator parallelism to boost the inference performance and
propose a unified approach. The proposed framework, Auto-
Graph, can optimize DNN computation graphs with a novel
dynamic programming + backtracking search algorithm us-
ing customized performance estimation and accurate run-
time information. We show that AutoGraph can achieve up
to 3.47x performance improvement on various widely used
DNNs compared with previous arts. Moreover, AutoGraph
outperforms state-of-the-art parallel kernel launch frame-
works by up to 1.26x.
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