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ABSTRACT
The ongoing evolution in process fabrication enables us to step
below the 5nm technology node. Although foundries can pattern
and etch smaller but more complex circuits on silicon wafers, a
multitude of challenges persist. For example, defects on the surface
of wafers are inevitable during manufacturing. To increase the yield
rate and reduce time-to-market, it is vital to recognize these failures
and identify the failure mechanisms of these defects. Recently, ap-
plying machine learning-powered methods to combat single defect
pattern classification has made significant progress. However, as
the processes become increasingly complicated, various single-type
defect patterns may emerge and be coupled on a wafer and thus
shape a mixed-type pattern. In this paper, we will survey the re-
cent pace of progress on advanced methodologies for wafer failure
pattern recognition, especially for mixed-type one. We sincerely
hope this literature review can highlight the future directions and
promote the advancement of the wafer failure pattern recognition.

1 INTRODUCTION
As the physical size of transistors continues to shrink without wors-
ening the performance of chips, an increasing number of integrated
circuit components can be patterned and then etched onto wafers,
thus introducing more functionality and memory capacity. There
isn’t a free lunch, though. The probabilities of defects from modern
fabrication process (including photolithography, etching deposition,
and metallization) on the surface of the wafers increase as well.
Owing to various processes, the types of defects are also diverse.
What’s worse, different defects are coupled on the same wafer be-
cause of recent advances in downsizing technology node and an
increase in wafer size. Typically, after wafer is fabricated, several
tests are performed to check the function of each die on wafer via
a wafer probe. The testing results for the dies are represented as
binary values on the wafer map, and defective dies on a wafer map
are very likely to converge into a specific distribution pattern. Based
on this prior information, experienced experts manually analyze
and recognize these failure patterns in manufacturing processes
to improve yield. This procedure, known as wafer defect pattern
recognition, offers hints and insights into how to improve yield by
reasoning the root cause of defects during fabrication. However,
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Figure 1: The nine kinds of wafer map patterns in
MixedWM38: (a) Center; (b) Scratch; (c) Location; (d) Edge-
Location; (e) 2 single-type defectsmixed (Center, Scratch); (f)
2 single-type defects mixed (Scratch, Location); (g) 3 single-
type defects mixed (Center, Scratch, and Location); (h) 4
single-type defects mixed (Center, Scratch, Location, and
Edge-Location). Each wafer image has 52 × 52 pixels (dies)
with 3 pixel levels: 0, 127 and 255. Locations with pixel level
0 (i.e., the black pixels in wafer images) are not part of the
wafer. Grey pixels with pixel level 127 represent dies with
a passing label, while white pixels refer to those with a fail
label.

this human visual inspection takes a lot of time and is very sub-
jective. Therefore, automated and artificial intelligence-powered
wafer defect recognition process is in demand.

Generally, the defects can coarsely fall into three categories [1]:
random kind, systematic and repeatable type, the combination of
previous two defects. The first type is mainly caused by particles
such as dust that scattered all over the wafer surface. Hence, there is
no specific clustering pattern. This influence on yield can be weak-
ened by improving the stability and accuracy of the fabrication.
The second kind of defects have obvious clustering phenomenon.
The factor of this category is mask-induced or radial variations
during the photolithography [2]. The last one is most common. Al-
most all the defective wafer maps in the most broadly adopted
academia benchmarks such as WM-811K [3] and MixedWM38
[4] belong to the third type. More specifically, WM-811K dataset
contains 8 groups of defective patterns collected from industry,
while MixedWM38 covers 38 classes of frequently occurred mixed-
type defect patterns where 29 categories of mixed defects and 9
types of sing-type wafer patterns exist. For further explanation,
we exemplify some sorts of wafer defect map visualizations from
MixedWM38 in Figure 1.

It is recognized that distinct categories of defects have varied
distribution patterns. For instance, the defects in the Center are
concentrated around or near the center of the wafer in circular or
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Figure 2: The taxonomy of prior arts.

ring-like patterns, and the contaminants in the Scratch display
linear or curvy distribution from the edge towards the center of
the wafer, and the defects in the Edge-Location are clustered
on the edge of the wafer map. It is worth mentioning that these
sorts of defects have determined possible root cause. The Center
category is generated due to abnormality in liquid flow or in liquid
pressure, while the Edge-Location class is caused by pollution
in fabrication. When it turns to mixed-type defects, a fundamental
factor is the challenge brought by the advance of technology node.
To meet the requirements, the integrated circuits are built in a layer-
by-layer style in each die on a piece of silicon wafer [5]. Researchers
believe that different types of defects which come from different
layers are mixed and eventually being a mixed-type one [4].

There have been numerous academic attempts to automatically
recognize wafer map defect patterns. For a better illustration, we
visualize the taxonomy of these methods in Figure 2. We can ob-
serve that before machine learning-based approaches are developed,
some traditional digital image processing techniques like typical im-
age alignment are utilized in automated defect classification (ADC)
system [6]. Over past decades, machine learning approaches includ-
ing the shallow learning paradigm and the deep learning paradigm
have been broadly accepted in our community. They are anticipated
to play an ever-more-important role in upgrading the quality of
chip designs that come from the execution of complete CAD flows
and subroutines, in addition to improving the standard models used
in CAD tools [7–19]. Due to their exceptional performance, the
learning-based defect recognition approaches are highlighted in
our work, particularly the deep learning-driven ones. In the follow-
ing, we will summarize a few illustrative artworks based on the
taxonomy displayed in Figure 2.

The rest of the paper is organized as follows. Section 2 will
give an overview of the wafer failure pattern recognition problem.
Section 3 will summaries the shallow learning techniques-based
works. Section 4 will introduce the existing deep learning-based
arts including the advanced wafer-level frameworks, pattern-level
and die-level approaches. Section 5 will conclude the whole paper
and have some discussions.

2 PROBLEM DESCRIPTIONS
Most wafer failure pattern recognition frameworks typically take
wafer maps as inputs, and their output should be accurate recog-
nition results. One significant benefit of viewing the wafer maps

as images is that by retaining the wafer maps in their image repre-
sentation, the defect information may be preserved the best. Wafer
failure patterns, which are by nature spatial patterns, can thus be
categorized visually.

It is essential to note that the single-type defect problem is the
special instance of mixed-type one. As a result, the corresponding
single-type recognition frameworks can be thought of as the pro-
totypical solution to the mixed-type issue. We will provide some
representative existing methods for single-type and mixed-type
defect issues.

3 SHALLOW LEARNING-BASED
RECOGNITION PARADIGM

A large amount of pioneered artworks [3, 5, 20–25] have been put
forth based on shallow learning-based recognition paradigm.

In the manner of clustering paradigm, some studies take into
account creating a pre-defined probability distribution function
for each defective pattern. A comparison of distribution models
using the information criterion is then used to evaluate which
statistical model is most suited. These methods assume that wafer
maps will behave a mixture of defect clusters, with each cluster
being represented by a particular distribution model. As a result,
the mixed-type defect recognition can be resolved. For example,
[22] put up with a multi-step approach via a statistical model-based
clustering. The first step acts like denoising, which divides all local
(or systematic) failures from the global (or random) failures Second,
a clustering technique is used to group the local defective dies
into clusters. Finally, assigning the appropriate statistical model
to each defective pattern. It is worth noticing that the clustering
technique works on dies. On the contrary, in the other clustering-
basedworks like [25], clusters of wafer-level maps are first built, and
then the failure pattern recognition work is assigned to experienced
engineers. Briefly, the clustering-based methods are significantly
reliant on the expertise of the professionals because of building the
distribution model or labeling work.

In the taste of classification paradigm, the feature vector of a
wafer map is usually manually-crafted. For example, Wu et al. [3]
trickily design radon-based and geometry-based features to feed
the support vector machine classifier, while Yu et al. [24] exploit a
manifold learning algorithm, joint local and non-local linear dis-
criminant analysis, to obtain the features for the consequent Fisher
discriminant classifier. It is in clear view that the domain knowl-
edge of expert engineers is once again required when manually
designing the feature. Such methods do not fully automate feature
design or labeling for failure wafer patterns. Even worse, the feature
design component and the follow-up classifier separate, causing
the convergence of the entire failure classification framework to
sub-optimality.

Briefly stated, when faced with complicated and varied multi-
patterns, the performance of the aforementioned shallow learning-
based approaches is typically inadequate.

4 DEEP LEARNING-BASED RECOGNITION
PARADIGM

In the last ten years, deep learning approaches have seen substan-
tial progress in a variety of vision-related tasks. As a result of
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Figure 3: The illustration of the data augmentation and se-
lective wafer defect recognition network (reproduced from
[26]).

the success, the deep learning-based recognition paradigm has
been extensively investigated and explored, and has become the
mainstream in the academia. As mentioned, the mixed-type defect
problem can be narrowed down to the single-type issue, and the
associated single-type frameworks can serve as the prototype for
mixed-type defect recognition. Thus, we review a wide range of
deep learning-based studies looking into the solutions to sing-type
defect recognition problem as well as the mixed-type one. Figure 2
shows three parallel defect recognition branches formed by all the
techniques at three distinct levels: wafer-level, defect pattern-level,
and die-level (i.e., pixel-level).

4.1 Wafer-level Frameworks
Due to the superior performance and the robustness to random
noise, convolutional neural network (CNN) has been frequently ap-
plied to classify wafer failure patterns. [27] develops a CNN model
made up of 8 convolutional layers and 2 fully connected layers for
defect recognition. Compared with manual feature design in shal-
low learning, the proposed methods effectively extracts valuable
information fromwafer map through the convolution operation. Be-
sides, data augmentation techniques like vertically or horizontally
flipping, slightly rotating wafer maps in a pure computer vision
(CV) fashion is exploited in the training stage. Since the semicon-
ductor manufacturing process becomes more complex and very
sophisticated, it is challenging to collect enough various defect
patterns. To address the issue, Ji et al. [28] apply generative ad-
versarial networks (GANs) [29] to supplement the lack of training
data, and finally improve the performance of the CNN’s classifier.
[30] designs an improved GAN model integrated with CNN and
other deep learning models called adaptive balancing generative
adversarial network for identification of defective patterns in wafer
maps. [31] brings up some insightful data augmentation methods
including chip reverse, translate, and combine.
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Figure 4: The proposed wafer failure pattern classifier (re-
produced from [32]).

Based on the foundation laid by the prior research, Alawieh
et al. [26] present a defect pattern classification framework built
upon deep selective learning (showed in Figure 3(b)), integrating
a reject option which can further increase model accuracy by not
making predictions for samples with a high probability of misclas-
sification. Moreover, the convolutional auto-encoder network (seen
in Figure 3(a)) is harnessed as the core to synthesize wafer maps for
data augmentation. It provides the chance to incorporate the data
generation and recognition parts into a unified framework. The
highlight of this method is considering the combination of deep
learning-enabled recognition and manual inspection so that the
possibility of method grounding increases. Another spotlight work
is [32]. Different from the prior arts, Geng et al. [32] observe and
attempt to tackle two major problems existing in previous works
and the widely used benchmark (e.g., WM-811K). One is although
a few works [26, 27, 33] exploit some wafer synthesis techniques
to alleviate the imbalance issue, the generation process and the
consequent classifier calibration are isolated to each other. Addi-
tionally, synthesis may lead to the label perturbation. Another is
most earlier arts disregard unlabeled wafer maps. Hence, in [32],
the few-shot learning and self-supervised learning paradigms are
combined, and an end-to-end wafer failure pattern classifier based
on a deeper and wider backbone (i.e., Inception-v4 [34]) is built.
The working mechanism is depicted in Figure 4. The majority of
the wafer-level frameworks have similar architectures with those
in Figures 3 and 4.

Mentioning to mixed-type issue, the following is a summary of
a number of noteworthy works. As one of the pioneer works offer-
ing CNN-based recognition method, [33] utilizes a simple network
consisting of 3 convolutional layer and 2 fully connected layers. In
addition, the authors point out that the experimental benchmark is
plagued by the imbalanced distribution problem. In order to feed
enough training data, 28600 synthetic wafer maps of 22 classes
include sing-type and mixed type defects are generated via numeri-
cal simulation. Then, 1191 real wafer maps are adopted for CNN
performance evaluation. Kyeong et al. in [36] adopt several CNN
models to classify the mixed-type wafer defect patterns. Specif-
ically, an individual classification model is built for each single
defect pattern. When classifying mixed-type defect patterns, each
model checks whether the relevant pattern exists. In this work, 16
defects mixed with four basic types: circle, ring, scratch,
and zone are considered. However, when the category number of
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Figure 5: The architecture of the transformer-based defect recognition (reproduced from [35]).

defect patterns rises, more CNN model is required. Wang et al. [37]
present a tensor voting method to extract and separate mixed-type
patterns from wafer maps. It firstly partition mixed-type defect pat-
terns into clusters, and then a simple decision tree is constructed
to extract region and curve patterns by tensor voting process. The
experimental results suggests the effectiveness of the proposed
method in identifying both single and mixed-type defect patterns.
[4] exploits a deformable convolutional network for mixed-type
issue. To selectively sample from mixed defects and then extract
features from wafer maps, an improved deformable convolutional
unit is devised. Additionally, a multi-label output layer is enhanced
with a one-hot encoding strategy, which decomposes extracted
mixed features into each fundamental single defect. It can be in-
ferred that the computational cost is much higher than vanilla CNN
model. More importantly, this research has significantly advanced
the research of mixed-type defect recognition by releasing a bench-
mark, MixedWM38. Very recently, [35] firstly present a multi-scale
information fusion transformer for mixed-type wafer recognition
issue. The authors argue that due to the working paradigm (e.g.,
padding and down-sampling) and the limitations of the convolution
operator (e.g., fixed-size kernels), CNN models are more likely to
ignore crucial information of some defects and lack the global view
of wafer maps. Observing the proposed framework in Figure 5, the
MSF-network is comprised of two convolutional layers and a pixe-
lated attention block (i.e., PA-Block), while the transformer encoder
encodes the positional information provided by the MSF-network.
The architecture makes use of CNN’s local perception and trans-
former’s global perception to fuse the corresponding information.

4.2 Pattern-level and Die-level Frameworks
In light of the fact that each die has the label indicating pass or
fail in the test, the pattern-level and pixel-level operations can be
carried out after wafer maps translating into images. In addition

to reporting the defect classes, the defect pattern-level and die-
level methods show more thorough information covering pattern
locations, shapes, etc, which would help with further analysis and
provide a better reasoning.

Pattern-level techniques can predict some bounding boxes which
would contain certain patterns. As illustrated in Figure 6, the out-
put results may include the prediction (𝑝𝑐 ), the center coordinates,
widths, and heights of the boxes and the confidence (𝐶) that each
bounding box contains a defect pattern. [38] applies the YOLOv3
[39], a popular object detection model in computer vision, to detect
defects. To collect the training data, [38] uses the image-capturing
system to scan hundreds of industrial dies. The GAN model is
subsequently adopted to generate synthetic data to supplement
the dataset. Credited to YOLOv3, this method outperforms Faster
R-CNN [40] and SSD [41] which are another well-known object
detection models. Despite the excellent performance of the method
in [38], the inference cost is much higher than the baselines, which
makes practical usage more difficult. [42] uses the single shot de-
tector (SSD) [41] to detect defects quickly and deliver superior
recognition performance. To train the default boxes to effectively
represent the patterns’ positions, a matching strategy that identi-
fies the default boxes that are significantly related to the ground
truth bounding boxes is required. As a matching strategy, the Jac-
card overlap coefficient between the ground truth boxes and the
default boxes is calculated. The ground truth bounding box is then
matched to the default boxes only if the Jaccard overlap score is
higher than 0.5. Further, researchers found that the category de-
pendencies among defects are clearly distinct from those among
typical objects in CV. It is not possible to directly utilize the object
detection methods in CV for recognizing defects. To resolve this
issue, [43] develop a category-related non-maximum suppression
(CR-NMS) method which employs the Cover Percent (CoP) instead
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Figure 6: An example of pattern-level recognition (repro-
duced from [44]).

of Intersection over Union (IoU) to guide the bounding box regres-
sion. Moreover, a two-stage bounding box regression algorithm is
proposed to remove the duplicate boxes.

The die-level methods assign a label to each die (or pixel) in a
wafer map image such that pixels with the same label share cer-
tain characteristics, as shown in Figure 7. [45] applies semantic
segmentation models like SegNet [46], U-Net [47], and FCN [48]
into the wafer defect recognition. The inputs to the network are
wafer maps with defect clusters and random defects, while the tar-
get outputs have only the defect clusters. In the training dataset,
the basis defect patterns are randomly combined to generate the
mixed-type wafer map. Though the testing performance on 1191
real wafers is good, the testing set is small and non-public. Besides,
in [45], the segmentation algorithms are directly employed with-
out any specific customization for the wafer tasks. [49] proposes
a qualitative and quantitative analysis approach for the mixed-
type wafers. The boundary detection method via U-Net and an
overlapped pattern unwrapping approach are utilized to segment
pattern groups and overlapped patterns, respectively. The mixed-
type wafers are then transformed into multiple single-type wafers.
A CNN classifier is calibrated to predict classes of single-type de-
fects. After segmentation and recognition, the defects are remapped
to the original mixed-type wafers to calculate the sizes of the de-
fects, which reflects the impacts of the defects. The mixed-type
wafer dataset is generated by the superimposition of single-type
wafers, which would be impractical in real industrial environments.
The experimental results of [49] show its performance advantages
over classical methods such as Gaussian mixture model, infinite
warped mixture model, and support vector clustering. [50] har-
nesses the Mask R-CNN as the segmentation model cooperating
with a data pre-processing method for mixed-type wafer defect
recognition. During data pre-processing, mask labeling, rotational
and copy-paste data augmentation are used to gather sufficient
mask-annotated mixed-type wafer maps. Then the Mask R-CNN
model is trained with the constructed dataset to classify and locate
distinct defect patterns. The output layers of the network have
two branches: the first utilizes a fully connected layer to predict
the object class and the position of the bounding box, and the sec-
ond employs convolutional layers to obtain the detailed pattern
segmentation masks. [51] exploits a residual attention block that
combines an attention mechanism with a residual block to improve
the U-Net to segment a mixed defect. The residual block [52] ac-
cepts the input as it is and adds it to the learned function to solve
the gradient vanishing problem as the network gets deeper. The
residual blocks are added to each step of the contracting path and
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Figure 7: The segmentation example for the wafer defect de-
tection (reproduced from [49]).

the expanding path in the U-Net. The attention method follows
the [53] and sequentially applies channel attention and spatial at-
tention in the residual block. Channel attention aggregates the
spatial information by max-pooling and average pooling opera-
tions. Spatial attention firstly concatenates two aggregated values
generated by performing max pooling and average pooling along
the channel axis of the feature map, and then multiplies the feature
map with the input channel attention map element-wisely. Similar
to [50], [54] studies a lightweight encoder-decoder-based model,
WaferSegClassNet, which has two branches for segmentation
and classification respectively. The encoder uses a series of convo-
lution blocks with pooling layers to extract multi-scale defective
pattern information. The decoder block serves a dual purpose of
performing classification and producing the semantic segmentation
masks by recovering the spatial information.

In a nutshell, even though these wafer recognition algorithms
have positive outcomes in their experiments, the typical object
detection and segmentation methods are almost directly applied
without being tailored to mixed-type wafer defects problems.

5 CONCLUSION AND FUTURE DIRECTIONS
In this paper, we have surveyed the recent line of arts in techniques
of wafer failure pattern recognition, especially for mixed-type is-
sue. These arts contribute to promoting the advancement of defect
recognition. In the future, we believe the following aspects are
worth studying.

(1) Confidential wafer data in each foundry may not be insuf-
ficient to calibrate a reliable model. On the other hand, learning-
based techniques by their very nature rely on absorbing enormous
amounts of data in order to train and test algorithms. The conflict
between the security of wafer information and the development of
a learning-based wafer recognition method emerges. One potential
solution to this dilemma is using the federated learning paradigm
[55]. Instead of storing all data on one server, in federated learning,
each foundry trains the model locally with its wafer map data and
then uploads the local model to the central server. The central server
aggregates local models and then sends back the model updates
to each foundry. During the procedure, all local data is still kept
confidential, while the robust defect recognition model is built.

(2) Although deep learning-based algorithms have demonstrated
superior performance, these algorithms are susceptible to pertur-
bations (e.g., random defects). It poses a great challenge to the
deployment of these methods in real semiconductor wafer manu-
facturing systems. Studying the concepts of adversarial attacks and
defenses [56] come into being a possible prospect.

(3) As wafer defect patterns get increasingly complicated, effec-
tively extracting and fusing multi-level features from wafer-level
to die-level becomes substantial. Moreover, how to incorporate
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the prior information like the statistical distribution of each defect
pattern is worthy of further thought.
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