

X-Check: GPU-Accelerated Design Rule Checking via
Parallel Sweepline Algorithms

Zhuolun He1, Yuzhe Ma2, Bei Yu1

1 The Chinese University of Hong Kong
2 HKUST(GZ)

Sept. 14, 2022

2/32

1 Background and Motivation

2 Algorithm: Parallel Vertical Sweeping

3 GPU Implementation

4 Experimental Results

Outline

3/32

Background and Motivation

DRC: to ensure the layout does not violate geometric constraints

Width

Spacing

(a) (b)

Typical rules: (a) width and spacing rules in a metal layer; (b) enclosing rule between a metal layer and
a via layer.

Design Rule Checking (DRC)

5/32

• Design rule number explosion in advanced technology

• Many classic parallel algorithms do not scale beyond a few CPU cores [G. Guo+,
DAC’21]

• data parallelism
• task parallelism

• GPUs have demonstrated potential in EDA tool acceleration

Why GPU-Accelerated DRC?

6/32

• to cast a design automation problem into another problem solvable by current
tools/infrastructure

• DreamPlace (analytical placement→ NN training) [Y. Lin+, DAC’19]
• GATSPI (gate-level simulation→ graph manipulation) [Y. Zhang+, DAC’22]
• FastGR (batched net routing ordering→ task scheduling) [S. Liu+, DATE’22]

• to design novel GPU-friendly computation kernels for some critical tasks in the
design flow

• Placement [Z. Guo+, DAC’21]
• GAMER (maze routing) [S. Lin+, ICCAD’21]
• STA [Z. Guo+, ICCAD’20]

Our work is closer to the second methodology.

Methodologies to Develop Efficient GPU-enabled EDA Tool

7/32

Problem (Distance Check (informal))

• Layout: a set of axis-parallel polygonal objects

• Distance rule: any two edges must not be closer than
a predefined minimal distance

• Distance violation: a pair of edges in the layout that
violate the distance rule

• Our task: report all the distance violations

Problem Formulation (informal)

8/32

(We only consider horizontal edges.)

Problem (Distance Check)
Given a setH of horizontal segments in R2, report the
segment pairs fromH2 whose horizontal projection is
nonempty, and vertical distance is smaller than δ.
Formally, we want to report:

{([l1, r1]× y1, [l2, r2]× y2) ∈ H2}
s.t. [l1, r1] ∩ [l2, r2] 6= ∅, |y1 − y2| < δ

Problem Formulation

9/32

1 Sort segment endpoints P by ascending x-coordinates

2 Initialize an empty BST S (using y-coordinates as keys)

3 Scan endpoints from left to right

1 If p is the left endpoint of a segment h = [l, r]× y
1 Range query S for [y− δ, y + δ]
2 Report the corresponding segment pairs
3 Insert h to S

2 Otherwise (i.e., right endpoint)
1 Delete h from S

Complexity: O(n log n + k), optimal:
• element uniqueness problem (lower bounded by Ω(n log n)) reducible to it

• we need Ω(k) time to report all the violations

Sequential Sweepline Algorithm for Distance Check

10/32

Algorithm: Parallel Vertical
Sweeping

Prefix Structure

a[] = (4, 5, 3, 6, 2, 5, 1, 1, 0)

Prefix sums:
s = (4, 9, 12, 18, 20, 25, 26, 27, 27)

Can we do it in parallel?

Another View of Sweep Line

12/32

a[] = (4, 5, 3, 6, 2, 5, 1, 1, 0)

Suppose we have 3 threads.

1 Batching: each thread computes sums of 3 consecutive elements.

s = (?, ?, 12, ?, ?, 13, ?, ?, 2)

2 Sweeping: sweep the partial sums

s = (?, ?, 12, ?, ?, 25, ?, ?, 27)

3 Refining: compute other prefix sums

s = (4, 9, 12, 18, 20, 25, 26, 27, 27)

Parallel prefix sums

13/32

• Key idea: the prefix structure contains a set S of segments that are below current
segment within δ in y-direction

• Remains to check if each pair of segments overlap in the x-direction

a

b c

d

e

f

g

h

i

T1

T2

T3

T4

T5

T6

T7

T8

T1 = [a, a]

T2 = [a, c]

T3 = [b, d]

T4 = [d, e]

T5 = [e, f]

T6 = [f, g]

T7 = [g, h]

T8 = [h, i]

report (a, b)

report (b, d)

report (g, h)

report (h, i)

Segments sorted by y-coordinates Prefix Violation

Vertical Sweeping

14/32

Assume we have n elements evenly distributed to b blocks.
Let si be the size of the i-th prefix structure.

1 Batching: b binary search, O(log(n/b)) depth, O(b log(n/b)) work

2 Sweeping:
∑b

k=1 O(log(s(k−1)n/b + n/b) work and depth

3 Refining: building the i-th prefix structure takes O(log si−1) time. Total work∑n
k=1 O(log(sk−1)), depth maxk

∑n/b
i=1 O(log(s(k−1)n/b+i−1)).

Note that si = O(i).
The worse case: O(n log n) work and O((b + n/b) log n) depth.
When b = Θ(

√
n), the depth is O(

√
n log n).

Complexity Analysis

15/32

• Decompose a problem by the ‘simple’ direction for parallelism, and leave the
‘complex’ work to each individual processor.

• The emphasis is different from the sequential version: we use sweepline to deal with
the hard direction and maintain the easy direction for efficient query

• In the distance check case: horizontal is the hard direction (2 endpoints per segment,
no total order)

Insight: Designing Parallel Algorithms

16/32

The complex decomposition: sweepline

The simple
decomposition:
data structure The complex decomposition: parallel kernels

The simple
decomposition:
parallel
sweepline

Insight: Sequential vs Parallel

17/32

GPU Implementation

• The sweepline framework is divide-and-conquer (GPU-friendly)

• dynamic algorithm selection: don’t invoke GPU if not necessary

• kernel granularity

• tile-wise
• polygon-wise
• per prefix structure
• per check

• Sorting?

Implementation Details

19/32

Two commonly used parallelizable sorting algorithms
• Merge sort

• comparison-based
• e.g., when you pass a comparison function object as an argument to
thrust::sort

• Radix sort

• non comparison-based
• works for numeric data types (e.g., int) and default comparators

Sorting on GPU

20/32

1 // Assume we want to sort array by S::key.
2 // n is the length of the array.
3 // effectively equivalent to thrust::sort(array, array+n);
4 template <typename S>
5 void sort_long_arrays(S *array, int n) {
6 int *keys; // the buffer for keys
7 int *indices; // the buffer for indices
8 S *tmp; // the buffer for permutation
9

10 // step 0: properly allocate the buffers
11 cudaMallocManaged(...)...

Copy-Sort-Permute 1/2

21/32

1 // step 1: Copy
2 for (int i = 0; i < n; ++i) {
3 keys[i] = array[i].key;
4 indices[i] = i;
5 }
6 // step 2: Sort
7 thrust::sort_by_key(keys, keys+n, indices);
8 // step 3: Permute
9 thrust::copy_n(

10 thrust::make_permutation_iterator(
11 array, indices),
12 n, tmp);
13 thrust::copy_n(tmp, n, array);
14 }

Copy-Sort-Permute 2/2

22/32

gcd aes bp_be bp

101

102

103

104

R
un

ti
m

e
(s

)
thrust::sort CSP Mixed

Runtime of enclosing check on Metal 1 in log scale.

Speedup by CSP

23/32

21 25 29 213 217 221 225
10−2

10−1

100

101

102

CSP outperforms from here

Array length

R
u
n
ti
m
e
(m

s)
Merge sort

Copy-Sort-Permute

When to use CSP?

24/32

Experimental Results

• Implemented in C++ and CUDA

• Integrated into KLayout1 (version 0.26.6)

• Baseline: KLayout DRC Engine (8 threads)

• Test cases synthesized from OpenROAD2

• Environment:

• Intel Xeon 2.90 GHz Linux machine with 128 GB RAM
• One NVIDIA GeForce RTX 3090 GPU
• NVCC 11.4, GNU GCC 10.3

1https://klayout.de
2https://github.com/The-OpenROAD-Project

Setup

26/32

https://klayout.de
https://github.com/The-OpenROAD-Project

Design Layer #Tiles #Polygons #Edges #Edge/Polygon
Width Check Time (s)

KLayout X-Check Speedup

gcd
Metal1 1 391 24440 62.5 <0.1 0.1 -
Metal2 1 1229 4916 4.0 <0.1 <0.1 -

aes
Metal1 16 17739 2059906 116.1 2.9 3.0 0.97×
Metal2 16 76007 304028 4.0 0.2 0.1 -

bp_be
Metal1 56 34747 27245522 784.1 21.9 19.3 1.13×
Metal2 56 393834 1575336 4.0 0.4 0.4 -

bp
Metal1 144 107706 52595418 488.3 38.9 33.0 1.18×
Metal2 144 833588 3334352 4.0 0.9 0.9 -

Average 1.09×

Stats and Width Check

27/32

Design Layer
Enclosing Check Space Check

KLayout X-Check Speedup KLayout X-Check Speedup

gcd
Metal1 38.4 2.4 16.00× 12.6 2.4 5.25×
Metal2 2.5 2.5 1.00× 6.4 2.4 2.67×

aes
Metal1 15470.4 12.3 1257.76× 4493.8 67.5 66.57×
Metal2 2227.0 14.5 153.59× 2778.5 9.9 280.66×

bp_be
Metal1 66194.6 128.6 514.73× 6718.7 123.7 54.31×
Metal2 3089.2 147.4 20.96× 4171.5 16.6 251.30×

bp
Metal1 98370.4 235.3 418.06× 14019.7 233.4 60.07×
Metal2 3958.7 276.6 14.41× 5164.4 65.9 78.37×

Average 61.36× 45.00×

Enclosing Check and Space Check

28/32

(a) KLayout (b) X-Check

Each horizontal bar is for one thread. The purple and gold portions are for the merge and the check
stages, respectively.

Runtime Breakdown: Width Check

29/32

Each horizontal bar is for one thread. The purple portion is for merge, gold for sort, blue for prefix
build, orange for violation report, and black for the rest, respectively.

Runtime Breakdown: Enclosing Check

30/32

• Parallel sweepline algorithm for DRC

• GPU implementation considerations

• Integration into an end-to-end flow

• Future work

• Parallelize/Accelerate the merge stage
• GPU infrastructure: associative data structures and thread-safe solution

Conclusion

31/32

THANK YOU!

	Background and Motivation
	Algorithm: Parallel Vertical Sweeping
	GPU Implementation
	Experimental Results

