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Background and Motivation



Point-Based Methods vs. Voxel Based Methods

Voxel-Based methods

• Advantages: Good data locality and regularity

• Disadvantages: Large memory footprint

Point-Based methods

• Advantages: Small memory footprint

• Disadvantages: Irregular memory access and bad spatial locality

Previous Works of Point Cloud Analysis
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A classical point + voxel framework

Voxel + Point methods
• Advantages: Taking the advantages of Voxel-based and Point-based method.

• Disadvantages: Not very effective due to the large cost of voxel branch.

Previous Works of Point Cloud Analysis
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Can we use 2D convolution to handle 3D voxel data?
• Lower computational overhead than 3D convolution.

• 2D convolution has many useful techniques to increase accuracy such as transformer.

We should mapping 3D data into 2D space.

Motivation
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Reshape Hilbert Curve
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Left: The mapping scheme of Reshape function. Right: The mapping scheme of Hilbert curve.
Hilbert curve has better locality because it has no “jump connections" like reshape function.

Hilbert Curve
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Advantages of Hilbert curve:
• No jump connection, which leads to better locality

• Lower space-to-linear ratio

• Better clustering property

Hilbert Curve
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Efficient Point Cloud Analysis
Using Hilbert Curve
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The main framework of our model.

Our Proposed HilbertNet
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Given a 3D feature V∈(C,R,R,R) with channel size C, we separate it into R slices
along Z axis.
Then, 2D n-th order Hilbert curveHn(s) is used to encode each slice (as shown in
Equation (1)).

V∈R×R×R →


Vs1
Vs2

...
VsR

 Hn(s)−→


s1
s2
...

sR

 = I. (1)

The sequences s1, s2...sR∈ (C,R2) andHn(sk) = Vsk, k = 1, 2...R.

Voxelization and Hilbert Flattening Module
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Given a 3D feature V∈(C,R,R,R), the traditional Trilinear interpolation is performed
as:

O = Reshape(V) ∗ Flinear, (2)

• The addition of empty grids with non-empty grids will weaken the output
non-empty part of feature.

• The Reshape(·) function is not locality preserving.

Trilinear Interpolation
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Given a 2D feature I∈(C,R2,R) that flattened by 3D feature and the target point cloud
feature O∈(M,C), The proposed Hilbert interpolation L(·) is performed as follow:

O = L(I),where

HdMe(O) =

{
(I · Wh) ∗ Flinear, M ≤ R3;
I ∗ Flinear, M > R3.

(3)

Here dMe represents the closest curve order that the corresponding Hilbert curve
has at least M points. Then first binarize featuremap I along channel C, obtaining
IB and apply sum filter to IB, obtainingWB:

WB = IB ∗ Fsum. (4)

Hilbert Interpolation
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Hilbert Pooling

Regular Pooling

…

…

Hilbert pooling and regular max pooling

Due to the specialty of I, we design a novel pooling technique to harvest spatial
information named Hilbert pooling P(·), specifically:

MaxPool3D(H−1
n (I)) Hn−1(s)−→ = I ′ = P(I), (5)

whereH−1
n (I) is the inverse operation of Equation (1), which transform 2D feature

into 3D.

Hilbert Pooling
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In order to get the richer spatial feature in 2D branch, we introduce Self-attention,
a powerful tool for global feature collection. Our proposed Hilbert attention
includes:

Query Key Value

Softmax

Output

Input

Hilbert attention.

Hilbert Attention
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1 Intra-Slice Correlation (Key). VHFM module transforms each slice Vsk into sequence
sk, k ∈ [1,R]. Then, a pointwise linear projection σ(·) with weight wkey:

σ(I) =
∑
ek∈sk

wkeyek (6)

is applied along sk for intra-slice level feature extraction, which collects pointwise
feature along Hilbert curve.

2 Inter-Slice Corelation (Query). To collect pointwise features between sk, we
introduce inter-slice correlation. Specifically, the linear projection φ(·) is used:

φ(I) = σ(I>), (7)

where φ(·) collects pointwise feature across Hilbert curve.

3 Mixed Correlation.. Acts as a 4× 4 convolution. Finally, Hilbert attention is gathered
by considering the importance between inter-slice and intra-slice feature:
HA = Softmax(φ(I)σ(I))γ(I).

Hilbert Attention
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Experimental Results



(a) Left to right: Point Cloud, GT, HilbertNet.

PointNet KPConv HilbertNetGround Truth(b) Left to right: Point Cloud, GT, PointNet, KPConv, HilbertNet.

(a) Visualized results on S3DIS Area 5 dataset; (b) Quantitative comparison.

Visualization
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Table: Results of S3DIS Area 5

PointNet PointCNN PCCN MinkowskiNet KPConv PointTransformer HilbertNet

ceiling 88.8 92.3 92.3 91.8 92.8 94 94.6
floor 97.3 98.2 96.2 98.7 97.3 98.5 97.8
wall 69.8 79.4 75.9 86.2 82.4 86.3 88.9
beam 0.1 0.3 0 0 0 0 0

column 3.9 17.6 6 34.1 23.9 38 37.6
window 46.3 22.8 69.5 48.9 58 63.4 64.1

door 10.8 62.1 63.5 62.4 69 74.3 73.8
table 59 74.4 66.9 81.6 81.5 89.1 88.4
chair 52.6 80.6 65.6 89.8 91 82.4 85.4
sofa 5.9 31.7 47.3 47.2 75.4 74.3 73.5

bookcase 40.3 66.7 68.9 74.9 75.3 80.2 82.7
board 26.4 62.1 59.1 74.4 66.7 76 74.7
clutter 33.2 56.7 46.2 58.6 58.9 59.3 60.1

mIoU 41.1 57.3 58.3 65.4 67.1 70.4 70.9

Results on S3DIS dataset
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Table: Results on ModelNet40 & ShapeNetPart datasets

ModelNet40 ShapeNetPart

Method Acc Method mIoU

VoxNet 85.9 Kd-Net 82.3
Subvolume 89.2 PointNet 83.7
PointNet 89.2 SO-Net 84.9
DGCNN 92.9 3D-GCN 85.1
PointASNL 92.9 DGCNN 85.2
Grid-GCN 93.1 PointCNN 86.1
PCT 93.2 PVCNN 86.2
SO-Net 93.4 KPConv 86.4
CurveNet 93.8 CurveNet 86.6

Ours 94.1 Ours 87.1

Results on ShapeNetPart and ModelNet40 datasets
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Table: Comparison of methods

Method voxel size Inference time mIoU

3D-UNet 643 347ms 84.2
PVCNN 323 62.5ms 86.0
HilbertNet-L 643 42.1ms 85.8
HilbertNet-M 643 59.2ms 86.4
HilbertNet 643 91.6ms 87.1

Here we use ShapeNetPart as benchmark. We propose HilbertNet-M (median)
and HilbertNet-L(light) during the experiment. HilbertNet-M has 0.5× C and
HilbertNet-L has 0.25× C, where C is the channel number of the features in
HilbertNet.

Computational Cost
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Table: Computational cost and GPU Memory of different methods. The tested voxel
resolution is 323. (FLOPs: floating point operations)

Method FLOPs GPU Memory

3D Convolution 18.86G 162M
2D Convolution 4.45G 148.7M
Sparse 2D Convolution 1.47G 49.6M
NonLocal 0.34G 4G
Hilbert Attention 0.32G 47.8M

Computational Cost
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THANK YOU!


