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Abstract

Domain generalization refers to the problem of training
a model from a collection of different source domains that
can directly generalize to the unseen target domains. A
promising solution is contrastive learning, which attempts
to learn domain-invariant representations by exploiting rich
semantic relations among sample-to-sample pairs from dif-
ferent domains. A simple approach is to pull positive sam-
ple pairs from different domains closer while pushing other
negative pairs further apart. In this paper, we find that
directly applying contrastive-based methods (e.g., super-
vised contrastive learning) are not effective in domain gen-
eralization. We argue that aligning positive sample-to-
sample pairs tends to hinder the model generalization due
to the significant distribution gaps between different do-
mains. To address this issue, we propose a novel proxy-
based contrastive learning method, which replaces the orig-
inal sample-to-sample relations with proxy-to-sample rela-
tions, significantly alleviating the positive alignment issue.
Experiments on the four standard benchmarks demonstrate
the effectiveness of the proposed method. Furthermore, we
also consider a more complex scenario where no ImageNet
pre-trained models are provided. Our method consistently
shows better performance.

1. Introduction

Deep neural networks (DNNs) have achieved signifi-
cant success in various applications, assuming the train-
ing and test data are independent and identically distributed
(i.i.d.) [2,12,19,20,25,40,41,47,52]. However, in many
real-world problems, training and testing datasets are col-
lected under different scenarios, which leads to the DNNs
trained on the source data performing poorly on the out-of-
distribution target data. Such performance degeneration due
to domain shift impairs the generalization ability of DNNs.
The literature in domain generalization (DG) aims to ad-
dress this issue by exploiting the diversity of source do-
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Figure 1. (a) PACS dataset is a typical domain generalization
benchmark that contains four domains: Art, Cartoon, Photo and
Sketch with seven categories in each domain. Domain Generaliza-
tion task aims to train the model from multi-source domains (e.g.,
art, photo, sketch) and test on target domain (e.g., cartoon). In the
training stage, the target dataset can not be accessed. (b) Typical
contrastive-based loss (e.g., supervised contrastive loss) exploits
sample-to-sample relations, where different domain samples from
the same class can be regarded as positive pairs. We argue that
optimizing some hard positive pairs may worsen the model gener-
alization. We term it as the positive alignment problem. (c) Based
on our observation, we propose a proxy-based contrastive loss. By
replacing the sample-to-sample relations with proxy-to-sample re-
lations, we largely alleviate the positive alignment problem.

mains to improve model generalization.

Different from domain adaptation task, it is assumed
that only source domains can be accessed during training.
Therefore, most prior works in DG task focus on learn-
ing domain-invariant representations by aligning different
source domains [31,33,35]. Contrastive learning provides
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(a) Contrastive-based Loss

Figure 2. Comparison between contrastive-based loss and proxy-
based loss.  means the sample embedding, and w indicates the
class proxy. + and — indicate the positive samples and nega-
tive samples with respect to the anchor sample x,. All embed-
dings are normalized to a unit hypersphere. (a) Contrastive-based
loss mainly focuses on exploiting dense sample-to-sample rela-
tions, e.g., (x4, x). (b) Proxy-based loss uses proxies to represent
classes. Typically, proxy-to-sample relations e.g, (x4, w) are far
more easier to optimize than sample-to-sample relations with a
low training complexity.

a potential solution to address this problem. The key idea
is to construct multiple positive and negative pairs, which
are then used to learn to optimize a distance metric that
brings the positive pairs closer while pushing the negative
pairs away. By optimizing the contrastive-based objective,
the network can learn generalized features by utilizing rich
sample-to-sample relations from different domains.

In this paper, we find that some conventional contrastive-
based methods (e.g., supervised contrastive learning) are
not effective for domain generalization. One potential rea-
son is that complex positive sample-to-sample relations
hamper the model generalization. A good view is very im-
portant in contrastive-based loss [53] as too easy or too dif-
ficult sample pairs both hinder the model performance. As
shown in Figure 1, in a supervised contrastive learning set-
ting, we sample positive sample-to-sample pairs from dif-
ferent domains. However, some positive pairs are very dif-
ficult to align due to large domain gaps, which degrades the
model generalization.

We attempt to address the problem from a proxy-based
approach. A proxy can be regarded as the representative
of a sub-dataset, then ideally more robust to the noise sam-
ples or outliers. A standard proxy-based approach is soft-
max CE loss (i.e., softmax cross entropy loss), where the
proxies are used to represent classes. The major differ-
ence between contrastive-based methods and proxy-based
methods is relation construction. As illustrated in Fig-
ure 2, contrastive-based loss mainly focuses on exploring
rich sample-to-sample relations, while proxy-based loss use
proxies to represent sub-trainset, enables safe and fast con-
vergence but missing some semantic relations. This moti-
vates us to design a proxy-based loss that takes some good

points from contrastive learning. We regard each proxy as
the anchor and consider all proxy-to-sample relations. To
prevent model from getting stuck in some trivial solutions,
we align a projection head on both sample embeddings and
proxy weights and use the new embeddings and new proxy
weights for proxy-based contrastive loss.

Our contributions are as follows: First, we empirically
unveil the degradation of model generalization from posi-
tive alignment problem in contrastive learning. Second, we
propose a novel proxy-based contrastive learning technique
for domain generalization. The proposed technique is fairly
simple yet effective. Third, the proposed algorithm achieves
state-of-the-art accuracy on multiple standard benchmarks
and consistently improves the model performance in a more
complex scenario where ImageNet pre-trained models are
not provided.

2. Related Work

Domain Generalization. Most domain generalization
methods can be categorized into three groups: (1) Data
Augmentation is commonly used to improve the general-
ization of DNNs as a regularization approach. [37, 56, 70]
mainly focus on image-level data manipulation, while [72]
proposes a feature-level augmentation on DG. (2) Learning
Strategy: Some works attempt to promote the model gen-
eralization through learning strategies such as ensemble-
learning and meta-learning. Ensemble learning assumes
each domain contains some domain-specific knowledge that
can be learned better by different networks. Then these net-
works can be combined to improve model generalization.
Meta-learning aims to learn from episodes sampled from
related tasks to benefit future learning. [3,28,30,71] all pro-
vide a promising solution for DG. (3) Domain-invariant rep-
resentation learning: Most works in DG focus on learning
domain-invariant representations. One common approach is
to minimize some statistical metrics, such as MMD [31] and
Wasserstein distance [69]. Another popular method uses ad-
versarial learning [33,46] to align different source domains.
Additionally, some works also propose contrastive-based
methods in DG. For instance, EISNet [58] utilizes both self-
contrastive and supervised contrastive learning with nega-
tive mining in DG. PDEN [32] applies contrastive learning
for single domain generalization. SelfReg [23] dives into
positive pairs alignment in a self-contrastive manner.

Contrastive Learning. Our work is highly motivated by
recent progress in contrastive learning so we also introduce
it here. To prevent model from getting stuck in a trivial
solution, Moca [18] proposes a momentum update strat-
egy, SimCLR [10] instead adds a projection head to pre-
vent model collapse. Later people find that a simple stop-
gradient operation [11, 15] can address the problem eas-
ily even without memory-bank or large batch-size [10, 63]
to provide large amounts of negative pairs. While some



Table 1. Positive alignment loss on PACS benchmark

loss function acc

softmax CE loss 88.1
softmax CE loss w. positive align ~ 86.7

works [15, 66] achieve impressive results without negative
pairs. In practice, large amounts of negative pairs guaran-
tee model performance in relatively simple architectures.
On the other hand, contrastive learning that leverages la-
bel information also shows great success in many research
fields [16,22].

Some analysis on the behavior of contrastive learning

is also inspiring, [60] proposes two important properties in
contrastive learning, named alignment and uniformity. [53]
analyses the influence of different data augmentation in con-
trastive and presents the model can not benefit from either
too weak or too strong augmentation strategies.
Metric Learning. Our work is also inspired by metric
learning. Pair-based losses and proxy-based losses are two
main branches of metric learning. Pair-based methods, such
as [17, 43, 48, 61], focus on sample-to-sample relations.
From this view, contrastive learning can be regarded as a
branch of metric learning. On the other hand, proxy-based
methods such as Proxy-NCA [34] and NormFace [57], fo-
cus on proxy-to-sample relations. Circle Loss [50] pro-
poses a unified metric learning loss function. Proxy-based
methods can be seen as a generalization approach, which
achieves better generalization with low training complexity
with the sacrifice of exploring potential semantic informa-
tion contained in sample-to-sample relations.

3. Method
3.1. Motivation

We start by motivating our method before introducing
its details. We empirically find that some conventional
contrastive-based approaches do not contribute to domain
generalization task, so we conjecture that there exists a pos-
itive alignment problem where complex pairs may ham-
per the model generalization. Since most contrastive-based
losses consider both positive pairs and negative pairs, we
first introduce a loss function inspired by [61] that only
considers multi-positive sample-to-sample pairs to verify
our hypothesis. Assume x;, x; are sampled from differ-
ent source domains in the same class. Let z = Fyp(x) be the
features extracted by the feature extractor Fy, we have:

1
Lpos = _log(1+ Y exp(~z'2-a), (D)

where z;, z; are two normalized embeddings, « is the scale

factor. We use a simple softmax CE loss as our baseline.
We use a classical DG benchmark PACS to validate our

hypothesis. From Table 1, we can observe that the pro-

posed positive alignment objective does not contribute to
the performance, which motivates us to design a novel loss
function to address the issue. More details can be found in
Section 4.

3.2. Problem Formulation

Domain generalization aims to train a model that can
generalize to the unseen target domains by utilizing mul-
tiple source domains. The source domains and target do-
mains D = {Dy, Ds,...Dg } share a common label space.
In each domain, samples are drawn from a dataset Dy =
{(«%, y¥)}e, where N, is the number of labeled samples
in the domain Dy,. Our goal is to learn a generalized model
G from a collection of source datasets that performs well on
target data. We consider an object recognition model com-
posed of a feature extractor, Fyp : X — Z, where Z is a
feature embedding space and a classifier G : Z — RC,
where C' denotes the number of classes in the label space.

To introduce our method, we first review softmax CE
loss and contrastive-based loss. Then we analyze their prop-
erties from different angles. Based on the analysis, we
present our proxy-based contrastive loss.

3.3. Review Softmax CE loss

First we review softmax CE loss. Formally, we define the
vectors of proxies as w; (1 = 1,2,...,C) in final FC layer
to represent each target class. Here C' is the number of the
classes. We define z as the feature embedding generated by
the feature extractor Fy, the softmax CE loss can be given
by:

exp(w, 2;)
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LCE = — log
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where w, represents the target class. In softmax CE loss,
we associate each anchor sample & with all class proxies
and measure their similarities with softmax function. Soft-
max CE loss is an efficient way to learn class proxies with
low training complexity i.e., O(C'N). Given C classes, tra-
ditional SVM [51] needs to learn @ classifiers using
one-vs-one strategy while C' SVMs will be trained indepen-
dently using one-vs-all strategy. In contrast, softmax CE
loss only needs to learn C' classifiers by aligning a proxy
weight (i.e., w) for each class, the decision boundary for
each pair of class is (w; — 'wj)Ta: = 0, where 4, j are class
indexes.

3.4. Review contrastive-based loss

Though softmax CE loss is efficient, one bottleneck is
that it only considers proxy-to-sample relations. There-
fore, it ignores rich semantic sample-to-sample relations.
In contrast, Contrastive-based loss considers rich sample-
to-sample relations. The key idea is to learn a distance
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Figure 3. (a) Self-contrastive loss samples the positive pairs from different views of the same sample and computes the similarity matrix
in a contrastive manner. (b) Supervised-contrastive loss constructs the positive pairs from different samples belonging to the same class.
(c) Softmax loss only considers proxy-to-sample relations and constructs positive pairs and negative pairs based on each sample. (d)
Proxy-based contrastive loss associates each proxy with all data samples, and thus introduces large amounts of negative samples.

that pulls the positive pairs closer and pushes negative pairs
apart. To simplify the problem, we do not consider the
multi-positive scenario here. Assuming a mini-batch con-
taining N + 1 samples, each anchor sample x can be as-
sociated to IV other samples where the sample pairs from
same class are recognized as positive pairs, a contrastive-
based loss can be given by:

exp(z; z4 - @)

LCL = — log (3)

exp(z] z4 - @) + Y exp(z] z— - @)’
where « is the scale factor.

Hard pair mining. We define s, as the positive pair score
ie., 2, 1, s, as the negative pair score, i.e., z; z_. Tak-
ing scale factor A into consideration, we can derive Equa-
tion (4), where max[s?, — s, indicates the pair of (s, s,,)
with the largest distance. Therefore, contrastive-based loss
can implicitly conduct hard pair mining by controlling the
scale factor. Hard pair plays an import role in contrastive-
based loss, which can help the network learn a better deci-
sion boundary, as well as preventing the network from get-
ting stuck in trivial solution. By considering a large amount
of negative pairs, contrastive-based loss can learn more in-
formative sample embeddings.

ot o exp(a - 5)
= lim ——1lo .
L= e a & exp(a - sp) + 25\7;11 exp(a - s7,)
1 N-1 _ @
— Tim - i
= Jlim —log(1+ >~ exp(a(sh, — sp)))

j=1

= max[s), — sp] .

Gradients Analysis. As illustrated in Figure 3, we can ob-
serve that both softmax CE loss and contrastive-based loss
construct positive pairs and negative pairs with different
relations and can use softmax function to generate output
probabilities. Further, the gradients of the positive score and
negative score in loss with softmax function can be given
by:

0L _ {pi—l, if i is positive; )

0s; Di, if i is negative.
Given Equation (5), we can further derive that
D i gTL]- = |gTi| as Y p; = 1 where i represents the pos-

itive index and j represents the negative index. The equa-
tion demonstrates that by pulling the positive pair closer, the
negative pairs are pushed by the same strength. Then the
number of negative pairs becomes a double-edged sword.
In contrastive-based loss, each positive sample pair has to
push other negative sample pairs away, which motivates the
positive pair to get a higher score. In domain generalization,
some positive pairs are formed from different distributions
that are difficult to align, which may impair model perfor-
mance.

3.5. Proxy-based Contrastive Learning

Softmax loss is efficient in learning class-proxy and en-
ables a fast and safe convergence but does not consider the
sample-to-sample relations. Contrastive-based loss utilizes
rich sample-to-sample relations, but suffers from the high
training complexity for optimizing dense sample-to-sample
relations. Thus some complex relations may hinder the per-
formance. It’s not trivial to design a novel loss function that
takes advantage of both softmax CE loss and contrastive-
based loss.

For each anchor sample x;, we associate it with all sam-
ples in mini-batch, we ignore the positive pair and only con-
sider the negative pairs. On the other hand, we use target
class proxy to form the positive pair with the anchor sam-
ple. The proxy-based contrastive loss can be given by:

1 exp(w] z; - a)
tren = L Sl Iz
i=1

where Z is given by:

c—-1 K

Z = exp(w:zi~a)+z exp(wy zj-a)+ Z exp(z zj-).

k=1 j=1,j#i



Here N is the number of samples in one mini-batch, w,
denotes the target class proxy weight of ;. C'is the number
of classes, K is the number of negative pairs in all ;-based
sample-to-sample relations. Both sample embedding i.e., z
and proxy weights i.e., w are normalized. « is the scale
factor.

Projection Head. We further consider applying projection
head for both sample embedding, i.e., z and proxy weight,
i.e., w inspired by [10]. A projection head is a small net-
work that maps the embedding to the space that proxy-based
contrastive loss is applied. We use a three-layer MLP A(-)
as sample embedding projection head and one-layer MLP
g(-) projection head for proxy weight. Thus the new em-
bedding and proxy weight can be given by e; = h(z;) and
v; = g(w;). The motivation of applying the projection head
is not trivial. Since proxy-based methods are effortless to
get converged, the output of the score function tends to be a
sparse matrix, which does not have enough strength to push
proxy, i.e., w and sample embedding z to explore more
semantic feature. A projection head can map both proxy
weight and sample embedding to another space. Then the
proxy-based contrastive loss is applied, which is harder to
converge than softmax loss. Then both proxy weights and
sample embedding can learn more meaningful features by
the back-propagation.

In-domain negative pair generation and domain sam-
pling strategy. We also consider an in-domain negative
pair generation. As discussed in the previous subsection,
hard pairs play an important role in contrastive learning. In
practice, some negative pairs which are formed by different
domains only contain small values that contribute little to
optimizing. Therefore, we only consider in-domain nega-
tive pairs. Then we have:

N
exp(v/ e
LPCL—in - - Z p 1)7 (7)
where F is given by:
c-1 B
E = exp(v;rei) + Z exp(v;ej )+ Z exp( e; e;). (8)
k=1 Jj=1,5#1

Both sample embedding z and proxy weight w go
through a project head and produce new sample embed-
ding e and new proxy weight v. All parts are equivalent to
the previous equation except the negative sample-to-sample
pairs which consider sample pairs in the same domain. For
the balance of negative pair generation, we also take a bal-
anced domain sampling strategy. In each training iteration,
we sample the same number of samples from each source
domain, which means for each mini-batch training iteration:

N =Y B,
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Figure 4. Structure of the proposed proxy-based contrastive loss:
(a) Training process; (b) Inference process.

Whole structure. The whole structure is illustrated in Fig-
ure 4. In the training stage, we align different projection
head for both sample embedding and proxy weight. Then
we only select negative pairs from the embedding matrix
to construct the proxy-based contrastive loss coupled with
proxy weight. The final loss is given by:

Lgnal = LcE + A - LPClLein, 9

where Lo is simply a softmax CE loss. In inference stage,
we only use the original sample embedding and proxy for
prediction without introducing extra parameters.

4. Experimental Results

In this section, We first demonstrate the details of the
positive alignment experiment that we introduce in the Sec-
tion 3. Then we evaluate the proposed Proxy-based con-
trastive loss on four standard DG datasets, PACS [27],
Office-Home [55], DomainNet [39] and Terralncognita [5].
In practice, we use the loss introduced in Equation (7) which
means we only use the negative pairs that generate in the
same domain. Our work is built on SWAD [8]. For a
fair comparison, we follow the same training and evalua-
tion protocol including data splits, hyperparameter search
and model selection. We report out-of-domain accuracy for
each domain. We also evaluate our method on standard DG
benchmarks in a non-pretrained model setting. More details
about the results analysis, ablation study, implementation
details will be discussed in the ensuing sections.

4.1. Details of the Positive Alignment experiments

We first show the details of the positive alignment exper-
iments that we introduce in the method section. We evaluate
the impact of positive alignment on different benchmarks to
validate whether it can improve the model generalization.



Table 2. Positive alignment on different benchmarks with Table 5. Comparison with state-of-the-art methods on Terralncog-

ResNet50 ImageNet pre-trained model nita benchmark with ResNet-50 ImageNet pre-trained model
Method PACS OfficeHome Terralncognita Algorithm Location100 Location38 Locationd3 Locationd6 Avg.
MMD [31] 419 34.8 57.0 352 422
softmax CE 88.1 70.6 50.0 GroupDRO [42] 412 38.6 56.7 36.4 432
softmax CE w. positive align ~ 86.7 70.1 485 Mixstyle [72] 543 34.1 55.9 317 44.0
ARM [67] 49.3 38.3 55.8 38.7 455
MTL [6] 493 39.6 55.6 37.8 45.6
CDANN [31] 47.0 41.3 54.9 39.8 458
Table 3. Comparison with state-of-the-art methods on PACS VE.‘iﬁi [[52‘2] 232 Z?; ;23 2;; 1‘2;1
1 — _ 1 RSC [21] 50.2 39.2 56.3 40.8 46.6
benchmark with ResNet-50 ImageNet pre-trained model DANN [14] o o P P i
IRM [1] 54.6 39.8 56.2 39.6 47.6
N CORAL [49] 51.6 422 57.0 39.8 47.7
Algorithm A C P S Avg MLDG [29] 542 443 55.6 369 478
I-Mixup [62,64,65] 59.6 422 55.9 339 479
IRM [1] 848 764 967 76.1 835 Sagchl 36] 53.0 430 579 404 486
MetaReg [4] 87.2 79.2 97.6 703 83.6 ERM [54] 54.3 42.5 55.6 38.8 47.8
DANN “4] 86.4 77.4 973 73.5 83.7 SWAD [8] 554 449 59.7 39.9 50.0
ERM [54] 85.7 77.1 974  76.6 84.2 Ours 58.7 46.3 60.0 43.6 52.1
GroupDRO [42] 83.5 79.1 96.7 783 844
MTL [6] 875 77.1 964 773 84.6 Table 6. Comparison with state-of-the-art methods on DomainNet
I-Mixup [62,64,65] 86.1 789 97.6 758 84.6 benchmark with ResNet-50 ImageNet pre-trained model
MMD [31] 86.1 794 96.6 76.5 84.7
VREXx [26] 86.0 79.1 969 77.7 849 N N : . N
Algorith 1 f t K I sketch A
MLDG [29] 855 80.1 974 766 849 gorfm @b 0 pal quieR rea TR e
ARM [67] 868 768 974 793 85.1 MMD [31] 321 110 268 87 327 289 234
GroupDRO [42] 472 17.5 338 93 516 40.1 333
MBSC1[217]2 854 ;9'7 97.6 ;8‘2 85'5 VREx [26] 473 160 358 109 496 420 336
ixstyle [72] 868 790 966 785 85 IRM [1] 485 150 383 109 482 423 339
ER [68] 875 793 983 763 853 Mixstyle [72] 519 133 370 123 461 434 340
pAdalN [38] 858 811 972 774 854 ARM [67] 497 163 409 94 534 435 355
ERM [54] 847 80.8 97.2 793 855 CDANN [31] 546 173 437 121 562 459 383
EISNet [59] 86.6 815 97.1 78.1 858 DANN [14] 531 183 442 118 555 468 383
CORAL [49] 883 80.0 975 788 862 RSC [21] 550 183 444 122 557 478 389
SagNet [36] 874 807 971 800 863 I—Mixup [62, 64, 65] 55.7 18.5 443 12.5 55.8 48.2 39.2
SagNet [36] 577 190 453 127 581 488 403
23&1\];[4; | g;'g 2(3).2 gg'g ggg zg'? MTL [6] 579 185 460 125 595 492 406
(8] : : : : : ERM [54] 581 188 467 122 596 498 409
Ours 90.2 839 98.1 826 887 MLDG [29] 59.1 191 458 134 596 502 412
CORAL [49] 592 197 466 134 598 501 415
MetaReg [4] 598 256 502 115 646 501 436
) ) DMG [9] 652 222 500 157 59.6 490 436
Table 4. Comparison with state-of-the-art methods on OfficeHome ERM [54] 63.0 212 501 139 637 520 440
benchmark with ResNet-50 ImageNet pre-trained model SWAD [8] 66.0 224 535 161 658 555 465
Ours 679 243 553 157 666 564 477
Algorithm A C P R Avg
Mixstyle [72] 511 532 682 692 604 Table 7. Comparison with the state-of-the-art methods on the
IRM [1] 589 522 72.1 740 643 Office-Home benchmark with the ResNet-18 backbone
ARM [67] 589 51.0 741 752 648
RSC [21] 60.7 514 748 751 655 Algorithm A C P R Avg
CDANN [31] 615 504 744 76.6 657
DANN [14] 599 530 73.6 769 659 Deep-All 52.06 46.12 7045 7245 60.27
GroupDRO [42] 604 527 750 760 66.0 D-SAM [13] 58.03 4437 69.22 7145 60.77
MMD [31] 604 533 743 774 664 Jigen [7] 53.04 47.51 7147 7279 61.20
MTL [6] 615 524 749 768 664 MMD-AAE [31] 56.50 47.30 72.10 74.80 62.70
VREXx [26] 607 53.0 753 76.6 664 DSON [45] 59.37 4570 71.84 74.68 62.90
ERM [54] 613 524 758 766 665 RSC[21] 5842 4790 71.63 7454 63.12
MLDG [29] 615 532 750 715 668 L2A-OT[70]  60.60 50.10 74.80 77.00 65.60
ERM [54] 63.1 519 772 8.1 67.6 DAEL [71] 59.40 55.10 74.00 75.70 66.10
I-Mixup [62,64,65] 624 548 769 783 68.1 SelfReg [23] ~ 63.60 53.10 76.90 78.10 67.90
SagNet [36] 634 548 758 783 68.1 Ours 62.10 58.22 77.38 7798 68.92
CORAL [49] 653 544 765 784 687
SWAD [8] 66.1 577 784 80.2 70.6 4.2. Datasets
Ours 67.3 599 78.7 80.7 71.6 ) ) .
1. PACS contains overall 9991 images and 4 domains:
photo, art-painting, cartoon and sketch. 2. DomainNet
From Table 2, we can observe that the positive alignment is recently proposed by [39], which consists of nearly 0.6
objective is not effective for the model generalization on million images of 345 classes distributed among 6 domains

different benchmarks. - painting, quickdraw, real, clipart, sketch and infograph.



3. Office-Home is a popular benchmark for DG evalua-
tion with four domains of distinct styles: Artistic, Clip-Att,
Product and Real-World, and each domain contains images
of 65 object categories with around 15,500 images in total.
4. Terralncognita contains 24788 images, 10 classes and
4 domains.

4.3. Implementation Details

We implement our approach in PyTorch, and fine-tune
on the models pre-trained on ImageNet which are all pro-
vided by PyTorch model zoo. In non-ImageNet pre-trained
setting, we do not use any pre-trained weights. The code
is mainly built upon the open-source code of SWAD [8]
including its training and evaluation protocol. Following
SWAD, we use Adam optimizer with a learning rate of Se-
5. We use the same training strategy and data augmentation
methods in SWAD. Note that data augmentation methods in
SWAD are very simple. Thus SWAD is a very strong base-
line compared with other domain generalization methods.

4.4. Results and Discussion

In this section, we evaluate and analyze the results of our
approach on four standard benchmarks.
Results on the Domain Generalization benchmarks. For
a fair comparison, all models use an identical backbone
i.e., ResNet50 and ResNet18 pre-trained on ImageNet. We
first compare PCL with the state-of-the-art method, i.e.,
SWAD. As shown in Tables 3 to 7, our method outper-
forms SWAD on four benchmarks: OfficeHome, PACS,
Terralncognita and DomainNet. First, our results outper-
forms some conventional DG methods such as ERM [54],
IRM [1] and MMD [31]. Second, our method also sur-
passes some classical data augmentation methods such as
variants of Mixup [64] and Jigen [7]. Third, our perfor-
mance also beats some ensemble learning approaches such
as DAEL [71] and DSON [45]. We also compare our
method with the state-of-the-art contrastive learning algo-
rithms such as EISNet [59] and SelfReg [23] which demon-
strates the effectiveness of our method. Note that we follow
the same data split strategy as in SWAD which splits the
data into training (60%), testing (20%) and validation parts
(20%). In Table 7, we follow the same data split strategy as
SelfReg did.
Comparison with state-of-the-art methods without Im-
ageNet pre-trained. We also want to verify the effective-
ness of our method on a non-ImageNet pre-trained setting.
First, most domain generalization benchmarks’ labels are
overlapped with ImageNet’s labels, which somehow influ-
ence the learning strategy of DG approaches. Second, in
some industry Al cases, ImageNet pre-trained models are
forbidden to use due to commercial and privacy problems.
Thus it’s necessary to design a general DG algorithm where
no ImageNet pre-trained models are provided. We first vali-
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Figure 5. t-SNE visualization on softmax CE loss and proposed
PCL Loss. We visualize our embedding on PACS benchmark
where the sources are art, photo and sketch, and the target domain
is cartoon. We observe our method better captures the domain-
invariant features and shows a better results.

Table 8. A Pilot experiment on Cifar100 w/o ImageNet pre-trained

Method batch-size topl-acc (%) topl-error (%)
CE 128 44.11 55.89
CE w. PCL 128 48.16 51.84
CE 256 46.28 53.72
CE w. PCL 256 49.12 50.88

Table 9. Comparison with state-of-the-art methods on OfficeHome
benchmarks w/o ImageNet pre-trained

Backbone Method  Art  Clipart Product Real-World avg

SWAD 1643 18.59 29.84 29.92 23.69
Ours 17.04 2194 31.81 33.39 26.05

SWAD 11.89 15.64 26.55 2791 20.50
Ours 15.50 21.08 30.46 32.04 24.77

ResNet50

ResNet18

Table 10. Comparison with state-of-the-art methods on PACS
benchmarks w/o ImageNet pre-trained

Backbone Method Art

ResNetso SWAD 3380 5490 6018 4246  47.84
ceshe Ours 4124 5442  60.63 49.75 51.51

ResNet 8 SWAD 29.04 50.05 5232 3053 4049
) Ours 3356 4723 51.65 44.85 44.32

Cartoon Photo Sketch  avg

Table 11. Comparison with state-of-the-art methods on Ter-
ralncognita benchmarks w/o ImageNet pre-trained

Method Locationl00 Location38 Location43 Location46  avg

ResNeiso SWAD 21.01 24.79 27.80 2341 2425
esie Ours 22.44 31.98 2242 23.66 2513
ResNetl SWAD 21.49 25.65 1921 2006 21.60
esie Ours 21.65 28.18 20.12 18.16  22.02

date our method on a small dataset cifar100, which contains
60000 32x32 images in 100 classes, with 600 images per
class. We use a simple AlexNet [25] with only one linear
layer. The initialized learning rate is set to 0.1 with a step
decay schedule. Following is the results:

As shown in Table 8, we use softmax CE loss as baseline.
We notice that our method can surpass the softmax CE loss
stably.



Table 12. Ablation study on different contrastive-based loss on
Office-Home on ResNet18

loss function avg
softmax CE 66.78
Proxy-Anchor [24] 62.48
softmax CE w. supervised CL  65.98
Ours 68.92
60— 60— T T T

Acc(%)

55 |- /—‘“" 1oss| T T
S0 ¢ ! ! ! ! L 90 | ! L
16 32 64 128 256 512 32 64 128 256
Embedding Size Batch Size
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Figure 6. (a) Accuracy versus embedding-size on Office-Home
dataset; (b) Ablation study on different batch-size on Office-Home
benchmark.

We further consider the model generalization without
ImageNet pre-trained on standard DG benchmarks. We test
our performance with SWAD on three standard DG bench-
marks: OfficeHome, PACS and Terralncognita. We eval-
uate the performance on two backbone i.e., ResNet50 and
ResNet18. As shown in Tables 9 to 11, our method sur-
pass the SWAD on both ResNet18 and ResNet50 backbone,
which demonstrates the effectiveness of our method.
Ablation study on proxy-based and contrastive-based
methods. To demonstrate the effectiveness of the proposed
Proxy-based pair loss, we compare it with other classical
proxy-based losses such as softmax CE Loss and proxy-
anchor loss [24]. We also compare our proposed loss func-
tion with supervised contrastive loss (supervised CL) [22].

As shown in Table 12, we can find that our method
surpasses both proxy-based methods and contrastive-based
methods. In particular, we can find that supervised CL loss
does not even beat the baseline softmax CE loss in small
networks.

Ablation study on embedding size. We conduct an ab-
lation study on Office-Home benchmark where the source
domain is art, product and real-world and target domain is
clipart. As shown in Section 4.4, we can find that with the
increase of embedding size, the model gains more capacity,
thus it achieves better results. However, the performance
somehow degrades when embedding size is large enough
e.g., 128. On the other hand, we can find that our method is
still robust to the embedding size, even with a small embed-
ding size like 16. The model can still achieve a comparable
result.

Ablation study on batch-size. Batch size is an important
metric in contrastive-based loss because it controls the num-
ber of sample-to-sample pairs. As demonstrated in Sec-
tion 4.4, we can observe that the model is stable to batch-

4

g 8,000 E sample-to-sample
2 6,000 B proxy-to-sample
§n 4,000

= 2,000

o

I

= 0

50 100 150 200 250
number of iterations

Figure 7. Analysis on hard negative pairs selection.

size, which is beyond our expectations because large batch
size can generate more sample-to-sample pairs. On the
other hand, our model is robust to the batch-size even with
a small batch size such as 32.

Effectiveness of negative hard pair selection. Hard neg-
ative pair sampling plays a key role in our approach, so we
also conduct a statistical analysis on OfficeHome bench-
mark. We define the hard negative pair as the negative pair
whose similarity score is larger than the minimal positive
pair’s similarity score with a margin s, + m < min(s,),
and we set m to 0.35 in this work. As illustrated in Figure 7,
the sample-to-sample represents the number of hard neg-
ative pairs selected from the sample-to-sample pairs e.g.,
(z;,x_). The proxy-to-sample indicates the number of
hard negative pairs sampled from the proxy-to-sample pairs
e.g., (w_,x;). We can find that both sample-to-sample
pairs and proxy-to-sample pairs made a stable contribution
on hard negative pairs while the number of hard sample-
to-sample pairs are much larger than hard proxy-to-sample
pair. The total number of negative hard samples becomes
smaller during the training process, which means the net-
work has a better feature extraction ability.

5. Conclusion

Limitations. The proxy-based method makes a trade-off
between sample-to-sample relations and class-to-sample re-
lations. The model generalization is gained by sacrificing
some potential useful semantic relations.

In this paper, we explore the positive alignment problem
of contrastive learning in domain generalization. We em-
pirically reveal that the performance degradation in domain
generalization of some typical contrastive-based methods
stems from the positive pair alignment. Then we intro-
duce a simple yet effective approach, named proxy-based
contrastive learning, to address the problem. Our method
is easy to implement and performs stably. Without bells
and whistles, the proposed method surpasses state-of-the-
art methods on several standard DG datasets.
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