

GTuner: Tuning DNN Computations on GPU via Graph Attention Network

Qi Sun¹, Xinyun Zhang¹, Hao Geng², Yuxuan Zhao¹, Yang Bai¹, Haisheng Zheng³, Bei Yu¹

¹The Chinese University of Hong Kong ²ShanghaiTech University

³SmartMore

[qsun, byu] @cse.cuhk.edu.hk

July 14, 2022

Background

Deep Learning Deployment Platform

TVM

Learning-based Learning System

- Computational graph
- Subgraph

- Computational graph
- Subgraph

- Graph Optimization
 - Operation fusion
 - Constant folding
 - Data layout transformation
 - ...

- Sketch: each subgraph has many sketches (templates)
- Annotation: each sketch has many annotations (groups of parameter values)

- Sketch: each subgraph has many sketches (templates)
- Annotation: each sketch has many annotations (groups of parameter values)

```
Generated Kernel Code Sketch:

[Placeholder: A, B
for i.0 in range (None):
    for j.0 in range (None):
    for jc.2 in range (None):
        for jc.2 in range (None):
        for k.0 in range (None):
        for k.1 in range (None):
        for k.2 in range (None):
        for j.3 in range (None):
```

```
Annotation 1:

[Placeholder: A, B
for i.0 in range(32):
for j.0 in range(64):
for jc.2 in range(16):
for jc.2 in range(4):
for k.0 in range(2):
for k.1 in range(16):
for k.2 in range(2):
for i.3 in range(2):
for j.3 in range(2):

C = ... ]
```

- Sketch: each subgraph has many sketches (templates)
- Annotation: each sketch has many annotations (groups of parameter values)

```
Generated Kernel Code Sketch:
                                         Annotation 1:
                                                                                    Annotation 2:
[Placeholder: A. B
                                         [Placeholder: A. B
                                                                                    [Placeholder: A. B
     for i.0 in range (None):
                                                for i.0 in range (32):
                                                                                           for i.0 in range(2):
         for j.0 in range(None):
                                                   for j.0 in range(64):
                                                                                              for j.0 in range (1024):
     for ic.2 in range (None):
                                                for ic.2 in range (16):
                                                                                           for ic.2 in range (32):
         for jc.2 in range (None):
                                                   for jc.2 in range(4):
                                                                                              for jc.2 in range(2):
            for k.0 in range (None):
                                                                                                 for k.0 in range(2):
                                                      for k.0 in range(2):
        for k.1 in range (None):
                                                  for k.1 in range (16):
                                                                                              for k.1 in range(8):
            for k.2 in range(None):
                                                      for k.2 in range(2):
                                                                                                  for k.2 in range(4):
            for i.3 in range (None):
                                                      for i.3 in range(2):
                                                                                                  for i.3 in range(4):
            for j.3 in range (None):
                                                      for i.3 in range(2):
                                                                                                  for j.3 in range(4):
                c = ... 1
                                                         c = ... 1
                                                                                                    c = ... 1
```

• Target: the optimization target is to find the optimal annotations for each subgraph in the deep learning model

Previous Arts

AutoTVM (Chen et al. 2018)

- AutoTVM (Chen et al. 2018)
- CHAMELEON: reinforcement learning + adaptive sampling (Ahn et al. 2020)

- AutoTVM (Chen et al. 2018)
- CHAMELEON: reinforcement learning + adaptive sampling (Ahn et al. 2020)
- GGA: guided genetic algorithm (Mu et al. 2020)

- AutoTVM (Chen et al. 2018)
- CHAMELEON: reinforcement learning + adaptive sampling (Ahn et al. 2020)
- GGA: guided genetic algorithm (Mu et al. 2020)
- DGP-TL: deep Gaussian process + transfer learning (Q. Sun et al. 2021)

- AutoTVM (Chen et al. 2018)
- CHAMELEON: reinforcement learning + adaptive sampling (Ahn et al. 2020)
- GGA: guided genetic algorithm (Mu et al. 2020)
- DGP-TL: deep Gaussian process + transfer learning (Q. Sun et al. 2021)
- Ansor: program sampler, sketch, annotation (Zheng et al. 2020)

Challenges

The *structural* information is not used

- Structural features: node types, node connectivities, graph topology
- Rely only on statistical features
- Unable to identify task information and distinguish different tasks

Challenges

The structural information is not used

- Structural features: node types, node connectivities, graph topology
- Rely only on *statistical* features
- Unable to identify task information and distinguish different tasks

The complicated relationships between the features are not considered

- Feature items in the statistical feature vectors are treated equally, despite their physical meanings and relationships
 - XGBoost
 - MLP
 - ...

Details of GTuner

- Extract structural and statistical features for the annotations
- Graph attention network (GAT): graph neural network, and multi-head self-attention

10/28

- Graph optimization
 - represent subgraphs as Intermediate Representations (IRs)

- Directed Acyclic Graph (DAG) analyzer
 - analyze the IRs to construct the optimized subgraphs

• Generate and sample codes

- Extract structural and statistical features
- Performance learning via Graph Attention Network (GAT)

• Genetic-based iterative optimization

Graph Attention Network (GAT)

• Define a graph neural network to extract the structural features.

Graph Attention Network (GAT)

- Define a graph neural network to extract the structural features.
- Use structural features to enhance statistical features.
- The concatenated features are the inputs to the multi-head self-attention.

Graph Network Module

• Graph Neural Network (Morris et al. 2019)

• scaled dot-product attention:

$$\operatorname{Attn}(\boldsymbol{Q}, \boldsymbol{K}, \boldsymbol{V}) = \operatorname{softmax}\left(\boldsymbol{Q}\boldsymbol{K}^T/\sqrt{d_k}\right)\boldsymbol{V}$$

scaled dot-product attention:

$$\operatorname{Attn}(\boldsymbol{Q}, \boldsymbol{K}, \boldsymbol{V}) = \operatorname{softmax}\left(\boldsymbol{Q}\boldsymbol{K}^T/\sqrt{d_k}\right)\boldsymbol{V}$$

$$H_i = \operatorname{Attn}\left(QW_i^Q, KW_i^K, VW_i^V\right),$$

scaled dot-product attention:

$$\operatorname{Attn}(oldsymbol{Q}, oldsymbol{K}, oldsymbol{V}) = \operatorname{softmax}\left(oldsymbol{Q} oldsymbol{K}^T / \sqrt{d_k}
ight) oldsymbol{V}$$

$$H_i = \operatorname{Attn}\left(QW_i^Q, KW_i^K, VW_i^V\right),$$

$$\mathrm{MHA}(Q,K,V) = Concat(H_1,H_2,\cdots,H_h)W^O$$

Multi-head Self-attention Module

- Input vector x with length l
- Reshape: x^R with shape $h \times \frac{1}{h}$
- Number of heads: h
- x^R is used as Q, K, and V

Self-attention

SelfAttn
$$\left(x^R W_i^Q, x^R W_i^K, x^R W_i^V\right)$$

Experimental Results

Experimental Settings

- Platform
 - Nvidia GeForce RTX 3090 (Ampere architecture, SM86)
 - CUDA Driver 11.4, PyTorch 1.10, and TVM 0.8-dev

Experimental Settings

- Platform
 - Nvidia GeForce RTX 3090 (Ampere architecture, SM86)
 - CUDA Driver 11.4, PyTorch 1.10, and TVM 0.8-dev
- Training set: about 170000 annotations (collected from Inception-V3 and VGG-11)

Experimental Settings

- Platform
 - Nvidia GeForce RTX 3090 (Ampere architecture, SM86)
 - CUDA Driver 11.4, PyTorch 1.10, and TVM 0.8-dev
- Training set: about 170000 annotations (collected from Inception-V3 and VGG-11)
- Model structure:
 - two WL-GCN layers
 - a mean pooling layer
 - a concatenation layer
 - a fully-connected layer (512)
 - a four-head multi-head self-attention layer
 - an MLP module (output dimensions: 200-100-20-1)

- Spectral graph convolution (SpecGCN, Kipf and Welling 2017)
 - a first-order approximation of localized spectral filters on the graphs
 - learn filters to represent the nodes in the Fourier domain

- Spectral graph convolution (SpecGCN, Kipf and Welling 2017)
 - a first-order approximation of localized spectral filters on the graphs
 - learn filters to represent the nodes in the Fourier domain
- masked attention convolution (MaskGAT, Veličković et al. 2018)
 - introduces the attention-based architecture to compute the hidden representations of the nodes by using masks during information aggregation

- Spectral graph convolution (SpecGCN, Kipf and Welling 2017)
 - a first-order approximation of localized spectral filters on the graphs
 - learn filters to represent the nodes in the Fourier domain
- masked attention convolution (MaskGAT, Veličković et al. 2018)
 - introduces the attention-based architecture to compute the hidden representations of the nodes by using masks during information aggregation
- GraphSAGE (Hamilton, Ying, and Leskovec 2017)
 - generates embeddings by sampling and aggregating features from a node's local neighborhood to improve the generalization abilities to unseen nodes

- Spectral graph convolution (SpecGCN, Kipf and Welling 2017)
 - a first-order approximation of localized spectral filters on the graphs
 - learn filters to represent the nodes in the Fourier domain
- masked attention convolution (MaskGAT, Veličković et al. 2018)
 - introduces the attention-based architecture to compute the hidden representations of the nodes by using masks during information aggregation
- GraphSAGE (Hamilton, Ying, and Leskovec 2017)
 - generates embeddings by sampling and aggregating features from a node's local neighborhood to improve the generalization abilities to unseen nodes

ResNet-18	Ansor	GTuner	SpecGCN	MaskGAT	GraphSAGE
Latency (ms)	1.073	0.923	1.016	1.105	1.168

Experiments – Ablation Studies on Model Structure

- GNN + MHSA
- MHSA
- GNN + MLP

Table: Performance without GNN or MHSA

ResNet-18	MHSA	GNN + MLP	GTuner (GNN + MHSA)
Latency (ms)	0.963	1.121	0.923

Ablation Studies – ResNet-18

Trials of the genetic-based optimization

Ablation Studies – ResNet-18

Trials of the genetic-based optimization

Performance of Subgraphs

End-to-end Performance

Table: End-to-end Model Inference Latency (ms)

Model	PyTorch	PyTorch-JIT	AutoTVM (Chen et al. 2018)	Ansor (Zheng et al. 2020)	MHSA	GTuner +
ResNet-18	27.180	4.119	1.056	1.073	0.963	0.923 (13.98%)
ResNet-34	48.988	5.929	1.180	0.968	0.907	0.872 (9.92%)
SqueezeNet	16.658	3.648	0.311	0.207	0.201	0.197 (4.83%)
MobileNet	30.324	6.972	0.513	0.242	0.252	0.227 (6.20%)

⁺ Ratios are performance improvements compared with Ansor.

End-to-end Performance

Table: End-to-end Model Inference Latency (ms)

Model	PyTorch	PyTorch-JIT	AutoTVM (Chen et al. 2018)	Ansor (Zheng et al. 2020)	MHSA	GTuner +
ResNet-18	27.180	4.119	1.056	1.073	0.963	0.923 (13.98%)
ResNet-34	48.988	5.929	1.180	0.968	0.907	0.872 (9.92%)
SqueezeNet	16.658	3.648	0.311	0.207	0.201	0.197 (4.83%)
MobileNet	30.324	6.972	0.513	0.242	0.252	0.227 (6.20%)

⁺ Ratios are performance improvements compared with Ansor.

Table: Time Costs (minutes) of the Optimization Processes

Model	AutoTVM	Ansor	MHSA	GTuner
ResNet-18	65.22	45.57	45.95	46.94
ResNet-34	54.86	46.66	48.89	50.71
SqueezeNet	63.90	43.53	44.40	45.91
MobileNet	61.60	42.88	43.80	44.20

Bibliography I

- Byung Hoon Ahn et al. (2020). "CHAMELEON: Adaptive Code Optimization for Expedited Deep Neural Network Compilation". In: *International Conference on Learning Representations (ICLR)*.
- Tianqi Chen et al. (2018). "Learning to optimize tensor programs". In: Conference on Neural Information Processing Systems (NeurIPS), pp. 3389–3400.
- Will Hamilton, Zhitao Ying, and Jure Leskovec (2017). "Inductive representation learning on large graphs". In: Conference on Neural Information Processing Systems (NeurIPS), pp. 1024–1034.
- Thomas N Kipf and Max Welling (2017). "Semi-supervised classification with graph convolutional networks". In: *International Conference on Learning Representations (ICLR)*.
- Christopher Morris et al. (2019). "Weisfeiler and Leman go neural: Higher-order graph neural networks". In: *AAAI Conference on Artificial Intelligence (AAAI)*. Vol. 33. 01, pp. 4602–4609.

Bibliography II

- Jiandong Mu et al. (2020). "A History-Based Auto-Tuning Framework for Fast and High-Performance DNN Design on GPU". In: *ACM/IEEE Design Automation Conference (DAC)*. IEEE, pp. 1–6.
- Qi Sun et al. (Oct. 2021). "Fast and Efficient DNN Deployment via Deep Gaussian Transfer Learning". In: *IEEE International Conference on Computer Vision (ICCV)*, pp. 5380–5390.
- Ashish Vaswani et al. (2017). "Attention is all you need". In: Conference on Neural Information Processing Systems (NeurIPS).
- Petar Veličković et al. (2018). "Graph Attention Networks". In: *International Conference on Learning Representations (ICLR)*.
- Lianmin Zheng et al. (2020). "Ansor: Generating high-performance tensor programs for deep learning". In: *USENIX Symposium on Operating Systems Design and Implementation (OSDI)*, pp. 863–879.

THANK YOU!

