A

il

JULY 10 - 14, 2022

AUTOMATION
CONFERENCE

DESIGN

MOSCONE WEST CENTER
SAN FRANCISCO, CA, USA

DESIGN
AUTOMATION
CONFERENCE

GTuner: Tuning DNN Computations on GPU
via Graph Attention Network

Qi Sun', Xinyun Zhangl, Hao Gengz, Yuxuan Zhao!, Yang Bail,
Haisheng Zheng3, Bei Yu!

!The Chinese University of Hong Kong *ShanghaiTech University
3SmartMore-
{ gsun r;by

Background

¢

AUTOMATION

Deep Learning Deployment Platform

° TVM
Learning-based Learning System

Hardware aware Search Space of Optimized Tensor Programs

Machine Learning based Program Optimizer

I
N e e e e e e e e e e e e e e e e e e m T m - =

AUTOMATION
4/28

Some Concepts

¢ Computational graph
¢ Subgraph

T

Conv-3

v

Conv-3

v

Max-Pool

v
]

AUTOMATION
5/28

Some Concepts

¢ Computational graph
¢ Subgraph

Conv-3

v

Conv-3

v

Max-Pool

v
]

¢ Graph Optimization
¢ Operation fusion
¢ Constant folding

¢ Data layout transformation 6
° AUTOMATION
= 5/28

Some Concepts

¢ Sketch: each subgraph has many sketches (templates)

¢ Annotation: each sketch has many annotations (groups of parameter values)

'

AUTOMATION
6/28

Some Concepts

¢ Sketch: each subgraph has many sketches (templates)

¢ Annotation: each sketch has many annotations (groups of parameter values)

Generated Kernel Code Sketch: Annotation 1: Annotation 2:
[Placeholder: A, B [Placeholder: A, B [Placeholder: A, B
for i.0 in range (None): for i.0 in range(32): for i.0 in range(2):
for j.0 in range (None): for j.0 in range(64): for j.0 in range(1024):
for ic.2 in range (None) : for ic.2 in range(16): for ic.2 in range(32):
for jc.2 in range (None) : for jc.2 in range(4): for jc.2 in range(2):
for k.0 in range (None) : for k.0 in range(2): for k.0 in range(2):
for k.1 in range (None) : for k.1 in range(16): for k.1 in range(8):
for k.2 in range (None): for k.2 in range(2): for k.2 in range(4):
for i.3 in range (None): for i.3 in range(2): for i.3 in range(4):
for j.3 in range (None): for j.3 in range(2): for j.3 in range(4):
c=.1 c=.1 c=.1

'

AUTOMATION
6/28

Some Concepts

¢ Sketch: each subgraph has many sketches (templates)

¢ Annotation: each sketch has many annotations (groups of parameter values)

Generated Kernel Code Sketch: Annotation 1: Annotation 2:
[Placeholder: A, B [Placeholder: A, B [Placeholder: A, B
for i.0 in range (None) : for i.0 in range(32):

for i.0 in range(2):

for j.0 in range (None): for j.0 in range(64): for j.0 in range(1024):
for ic.2 in range (None) : for ic.2 in range(16): for ic.2 in range(32):
for jc.2 in range (None) : for jc.2 in range(4): for jc.2 in range(2):
for k.0 in range (None) :

for k.0 in range(2): for k.0 in range(2):

for k.1 in range (None) : for k.1 in range(16): for k.1 in range(8):
for k.2 in range (None): for k.2 in range(2): for k.2 in range(4):
for i.3 in range (None): for i.3 in range(2): for i.3 in range(4):
for j.3 in range (None): for j.3 in range(2): for j.3 in range(4):
c=.1 c=.1 c=.1

¢ Target: the optimization target is to find the optimal annotations for each subgraph in
the deep learning model

¢

AUTOMATION
6/28

Deep Learning Deployment Methods for GPU

history data f ()

update __---"~
e? $.
—> Code Generator — Hardware Environment

experiment feedback™~-- z=gles) - f(x)

€ Expression

Schedule

Se Space

AUTOMATION
7/28

Deep Learning Deployment Methods for GPU

history data f ()

update __---"~
e? $.
—> Code Generator — Hardware Environment

experiment feedback™~-- z=gles) - f(x)

€ Expression

Schedule

Se Space

¢ AutoTVM (Chen et al. 2018)

AUTOMATION
7/28

Deep Learning Deployment Methods for GPU

Previous Arts

history data f(w)
€ Expression @ ; Cost Model > Objective Function
fupdate, -~

Schedule

e,)
e Space Exploration Module —-» Code Generator — Hardware Environment

experiment feedback™~-- z=gles) - f(x)

¢ AutoTVM (Chen et al. 2018)
¢ CHAMELEON: reinforcement learning + adaptive sampling (Ahn et al. 2020)

'a

AUTOMATION
7/28

Deep Learning Deployment Methods for GPU

Previous Arts

history data f(w)
€ Expression @ ; Cost Model > Objective Function
fupdate, -~

Schedule

e,)
e Space Exploration Module —-» Code Generator — Hardware Environment

experiment feedback™~~- z=gles) - f(x)

¢ AutoTVM (Chen et al. 2018)
¢ CHAMELEON: reinforcement learning + adaptive sampling (Ahn et al. 2020)
* GGA: guided genetic algorithm (Mu et al. 2020)

'a

AUTOMATION
7/28

Deep Learning Deployment Methods for GPU

Previous Arts

history data f(w)
€ Expression ﬁj—' ; Cost Model > Objective Function
fupdate, -~
e,s
e Sgr;eai:Ie —» Exploration Module —-+ Code Generator —> Hardware Environment

experiment feedback™~-- z=gles) - f(x)

AutoTVM (Chen et al. 2018)
CHAMELEON: reinforcement learning + adaptive sampling (Ahn et al. 2020)
GGA: guided genetic algorithm (Mu et al. 2020)
DGP-TL: deep Gaussian process + transfer learning (Q. Sun et al. 2?1)
@

AUTOMATION
7/28

Deep Learning Deployment Methods for GPU

Previous Arts

history data f(w)
€ Expression @ ; Cost Model —> Objective Function
$ update -~~~
€,
e Sgr;eai:Ie —» Exploration Module —-+ Code Generator —> Hardware Environment

experiment feedback™~-- z=g(e,s) .- f(x)

AutoTVM (Chen et al. 2018)
CHAMELEON: reinforcement learning + adaptive sampling (Ahn et al. 2020)
GGA: guided genetic algorithm (Mu et al. 2020)
DGP-TL: deep Gaussian process + transfer learning (Q. Sun et al. 2?1)
@

¢ Ansor: program sampler, sketch, annotation (Zheng et al. 2020) R OLAATION

7/28

Challenges

e Structural features: node types, node connectivities, graph topology
¢ Rely only on statistical features

¢ Unable to identify task information and distinguish different tasks

AUTOMATION
8/28

Challenges

The structural information is not used

e Structural features: node types, node connectivities, graph topology
® Rely only on statistical features

¢ Unable to identify task information and distinguish different tasks

The complicated relationships between the features are not considered

¢ Feature items in the statistical feature vectors are treated equally, despite their
physical meanings and relationships

° XGBoost
e MLP

. é

AUTOMATION
8/28

Details of GTuner

¢

AUTOMATION

uner Flow

® Extract structural and statistical features for the annotations

¢ Graph attention network (GAT): graph neural network, and multi-head self-attention

77777777777777 L:,‘ :)k Graph Optimization]
JL
Intermediate
Representations (IR)
mM

Kernel Code
Sketches

Genetic Algo.
Optimizator

Sample Code
Annotations

Extract Code
| Ot J Statlsucal Features
2 K @ ptimize:
,,,,,,,,,,,,,,, | “ @ g 0 Computationa Extract Graph MHSA
Subgraphs Structural Features q
Q @] (GNN)

AUTOMATION
10/28

GTuner Flow

¢ Graph optimization

® represent subgraphs as Intermediate Representations (IRs)

Intermediate
Representations (IR)

o
I

UTOMATION
11/28

GTuner Flow

¢ Directed Acyclic Graph (DAG) analyzer

® analyze the IRs to construct the optimized subgraphs

DAG Parser
& Analyzer
I
[
Optimized |
Computational |

Subgraphs [

UTOMATION
12/28

GTuner Flow

¢ Generate and sample codes

Kernel Code
Sketches

fffffff ¢

L
Generate Sample Code
Kernel Codes Annotations

AUTOMATION
13/28

GTuner Flow

e Extract structural and statistical features

¢ Performance learning via Graph Attention Network (GAT)

Extract Code
Statistical Features, q

Extract Graph
Structural Features
(GNN)

UTOMATION
14/28

GTuner Flow

* Genetic-based iterative optimization

Kernel Code
Sketches

Genetic Algo.
Optimizator

Sample Code
Annotations

Extract Code

Statistical Features '

Extract Graph MHSA
Structural Features q.
(GNN)

AUTOMATION
15/28

Graph Attention Network (GAT)

Comp. Graph

* Define a graph neural network to extract the structural features.

AUTOMATION
16/28

Graph Attention Network (GAT)

Comp. Graph Features Graph Attention Network

* Define a graph neural network to extract the structural features.
¢ Use structural features to enhance statistical features.
¢ The concatenated features are the inputs to the multi-head self-attention.

@
AUTOMATION
16/28

Graph Network Module

¢ Graph Neural Network (Morris et al. 2019)

...................

DAG
Analysis
Results

AUTOMATION
17/28

Multi-head Attention (Vaswani et al.)

i Multi-head Attention

Concat

heads

d

Scaled Dot-Product Attention

P Y 1

[Line;r [Line;r [Linéar
?
Q K 1%

'

AUTOMATION
18/28

Multi-head Attention (Vaswani et al.)

i Multi-head Attention

Concat ¢ scaled dot-product attention:
heads .
L 1 » _ N/
| [Scaled Dot-Product Attention /l_l/ Attn(Q’K’ V) = softmax (QK / dk) 14
P [1§
[Line;r [Line;r [Linéar
3
Q K 1%

'

AUTOMATION
18/28

Multi-head Attention (Vaswani et al.)

i Multi-head Attention

Concat ¢ scaled dot-product attention:
heads .
L 1 » _ N/
| [Scaled Dot-Product Attention /l_l/ Attn(Q’K’ V) = softmax (QK / dk) 14
P [1§
[Line;r [Line;r [Lim;ar
3
Q K 1%

H; = Attn (QWZ.Q,KW,-K, VW,-V> :

'

AUTOMATION
18/28

Multi-head Attention (Vaswani et al.)

i Multi-head Attention

Concat

¢ scaled dot-product attention:

[! lieads .
| [Scaled Dot-Product Attention /l_l/ Attn(Q’K’ V) = softmax (QK / \/d_k> |4
2 1 IR X P 1
- [Line;r [Line;r [Lim;ar
?
Q K 1%

H; = Attn (QWZ.Q,KW,-K, VW,-V> :

_ =a
MHA(Q, K, V) = Concat(Hy,Hp, - - - ,H,)W AUTOMATION

18/28

Multl head Self-attention Module

Multi-head Self-attention

Input vector x with length [

Reshape: xR with shape i x &

heads
t ! 2 e Number of heads: h
Scaled Dot-Product Attention
i o 51 * xRisused as Q,K,and V
[Lmear [Line;r [Linéar
}
i x i

Self-attention
SelfAttn (¥* W2, *WE, waZ.V>

'

AUTOMATION
19/28

Experimental Results

¢

AUTOMATION

Experimental Settings

¢ Platform
¢ Nvidia GeForce RTX 3090 (Ampere architecture, SM86)
¢ CUDA Driver 11.4, PyTorch 1.10, and TVM 0.8-dev

'

AUTOMATION
21/28

Experimental Settings

¢ Platform
¢ Nvidia GeForce RTX 3090 (Ampere architecture, SM86)
¢ CUDA Driver 11.4, PyTorch 1.10, and TVM 0.8-dev
¢ Training set: about 170000 annotations (collected from Inception-V3 and VGG-11)

'

AUTOMATION
21/28

Experimental Settings

¢ Platform

Nvidia GeForce RTX 3090 (Ampere architecture, SM86)
CUDA Driver 11.4, PyTorch 1.10, and TVM 0.8-dev

¢ Training set: about 170000 annotations (collected from Inception-V3 and VGG-11)

* Model structure:

two WL-GCN layers

a mean pooling layer

a concatenation layer

a fully-connected layer (512)

a four-head multi-head self-attention layer

an MLP module (output dimensions: 200-100-20-1) 6

AUTOMATION
21/28

Experiments — Ablation Studies on Graph Neural Network

¢ Spectral graph convolution (SpecGCN, Kipf and Welling 2017)

® a first-order approximation of localized spectral filters on the graphs
¢ learn filters to represent the nodes in the Fourier domain

'a

AUTOMATION
22/28

Experiments — Ablation Studies on Graph Neural Network

¢ Spectral graph convolution (SpecGCN, Kipf and Welling 2017)

® a first-order approximation of localized spectral filters on the graphs
¢ learn filters to represent the nodes in the Fourier domain

¢ masked attention convolution (MaskGAT, Veli¢kovié et al. 2018)

¢ introduces the attention-based architecture to compute the hidden
representations of the nodes by using masks during information aggregation

'a

AUTOMATION
22/28

Experiments — Ablation Studies on Graph Neural Network

¢ Spectral graph convolution (SpecGCN, Kipf and Welling 2017)

¢ a first-order approximation of localized spectral filters on the graphs
¢ learn filters to represent the nodes in the Fourier domain

¢ masked attention convolution (MaskGAT, Veli¢kovié et al. 2018)

¢ introduces the attention-based architecture to compute the hidden
representations of the nodes by using masks during information aggregation

¢ GraphSAGE (Hamilton, Ying, and Leskovec 2017)

¢ generates embeddings by sampling and aggregating features from a node’s local
neighborhood to improve the generalization abilities to unseen nodes

'a

AUTOMATION
22/28

Experiments — Ablation Studies on Graph Neural Network

¢ Spectral graph convolution (SpecGCN, Kipf and Welling 2017)

¢ a first-order approximation of localized spectral filters on the graphs
¢ learn filters to represent the nodes in the Fourier domain

¢ masked attention convolution (MaskGAT, Veli¢kovié et al. 2018)

¢ introduces the attention-based architecture to compute the hidden
representations of the nodes by using masks during information aggregation

¢ GraphSAGE (Hamilton, Ying, and Leskovec 2017)

¢ generates embeddings by sampling and aggregating features from a node’s local
neighborhood to improve the generalization abilities to unseen nodes

ResNet-18 Ansor GTuner SpecGCN MaskGAT GraphSAGE
Latency (ms) 1.073 0.923 1.016 1.105 1.168

¢

AUTOMATION
22/28

Experiments — Ablation Studies on Model Structure

¢ GNN + MHSA
° MHSA
¢ GNN + MLP

Table: Performance without GNN or MHSA

ResNet-18 MHSA GNN +MLP GTuner (GNN + MHSA)
Latency (ms) 0.963 1.121 0.923

'

AUTOMATION
23/28

Ablation Studies — ResNet-18

—— Ansor GTuner
FT T =

m Ansor 1 GTuner ‘

o
o

—_
f=3
(=]

HHHHHHHHHH“

1
5 30 60
Trials Per Subgraph

jos
f=}

[=23
f=1

5 30 60
Trials Per Subgraph

£
o

Latency (ms)
[V
ot
T
Ratios of Latency (%)

AUTOMATION
24/28

Ablation Studies — ResNet-18

Trials of the genetic-based optimization

—— Ansor GTuner

S B Ansor] GTuner
5.0 T 9 L :
é 5 100 R
g25 1 Ssof
2 5
3 0.0 I I é 60 |- H H H H H
o5 30 0 Z 5 30 60
Trials Per Subgraph Trials Per Subgraph
Performance of Subgraphs
I Ansor 1 GTuner
05 L L - AZSO L L
\E/O 10 - B =~
b UL 5
= 0.0 I‘-‘ﬂl-‘mﬂ I“r‘\l.‘ ﬂ il ! I il © 0
1 8 16 24 1 8 16 24
Subgraphs Subgraphs AUTOMATION

24/28

End-to-end Performance

Table: End-to-end Model Inference Latency (ms)

AutoTVM Ansor .
Model ‘ PyTorch ‘ PyTorch-JIT ‘ (Chen et al. 2018) | (Zheng et al. 2020) ‘ MHSA ‘ GTuner
ResNet-18 27.180 4.119 1.056 1.073 0.963 | 0.923 (13.98%)
ResNet-34 | 48.988 5.929 1.180 0.968 0.907 | 0.872(9.92%)
SqueezeNet | 16.658 3.648 0.311 0.207 0.201 | 0.197 (4.83%)
MobileNet | 30.324 6.972 0.513 0.242 0.252 | 0.227 (6.20%)

* Ratios are performance improvements compared with Ansor.

AUTOMATION
25/28

End-to-end Performance

Table: End-to-end Model Inference Latency (ms)

AutoTVM Ansor .
Model ‘ PyTorch ‘ PyTorch-JIT ‘ (Chen et al. 2018) | (Zheng et al. 2020) ‘ MHSA ‘ GTuner
ResNet-18 27.180 4.119 1.056 1.073 0.963 | 0.923 (13.98%)
ResNet-34 | 48.988 5.929 1.180 0.968 0.907 | 0.872(9.92%)
SqueezeNet | 16.658 3.648 0.311 0.207 0.201 | 0.197 (4.83%)
MobileNet | 30.324 6.972 0.513 0.242 0.252 | 0.227 (6.20%)

* Ratios are performance improvements compared with Ansor.

Table: Time Costs (minutes) of the Optimization Processes

Model ‘ AutoTVM ‘ Ansor ‘ MHSA ‘ GTuner

ResNet-18 65.22 4557 | 45.95 46.94

ResNet-34 54.86 46.66 | 48.89 50.71

SqueezeNet 63.90 4353 | 44.40 4591 6

MobileNet 61.60 42.88 | 43.80 44.20 AUTOMATION

25/28

Bibliography I

Byung Hoon Ahn et al. (2020). “"CHAMELEON: Adaptive Code Optimization for
Expedited Deep Neural Network Compilation”. In: International Conference on
Learning Representations (ICLR).

Tiangi Chen et al. (2018). “Learning to optimize tensor programs”. In: Conference
on Neural Information Processing Systems (NeurIPS), pp. 3389-3400.

Will Hamilton, Zhitao Ying, and Jure Leskovec (2017). “Inductive representation
learning on large graphs”. In: Conference on Newral Information Processing Systems
(NeurIPS), pp. 1024-1034.

Thomas N Kipf and Max Welling (2017). “Semi-supervised classification with
graph convolutional networks”. In: International Conference on Learning
Representations (ICLR).

Christopher Morris et al. (2019). “Weisfeiler and Leman go neural: Higher-order
graph neural networks”. In: AAAI Conference on Artificial Intellig?ce (AAAI).

Vol. 33. 01, pp. 4602-4609. °
AUTOMATION
26/28

Bibliography II

Jiandong Mu et al. (2020). “A History-Based Auto-Tuning Framework for Fast and
High-Performance DNN Design on GPU”. In: ACM/IEEE Design Automation
Conference (DAC). IEEE, pp. 1-6.

Qi Sun et al. (Oct. 2021). “Fast and Efficient DNN Deployment via Deep Gaussian
Transfer Learning”. In: [EEE International Conference on Computer Vision (ICCV),
pp- 5380-5390.

Ashish Vaswani et al. (2017). “Attention is all you need”. In: Conference on Neural
Information Processing Systems (NeurIPS).

Petar Velickovi¢ et al. (2018). “Graph Attention Networks”. In: International
Conference on Learning Representations (ICLR).

Lianmin Zheng et al. (2020). “Ansor: Generating high-performance tensor
programs for deep learning”. In: LISENIX Symposium on Operating Systemns
Design and Implementation (OSDI), pp. 863-879. (

0

AUTOMATION
27/28

THANK YOU!

¢

AUTOMATION

	References

