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Deep Learning Deployment Platform

° TVM
Learning-based Learning System

Hardware aware Search Space of Optimized Tensor Programs

Machine Learning based Program Optimizer
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Some Concepts

¢ Computational graph
¢ Subgraph
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¢ Graph Optimization
¢ Operation fusion
¢ Constant folding

¢ Data layout transformation 6
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Some Concepts

¢ Sketch: each subgraph has many sketches (templates)

¢ Annotation: each sketch has many annotations (groups of parameter values)
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Some Concepts

¢ Sketch: each subgraph has many sketches (templates)

¢ Annotation: each sketch has many annotations (groups of parameter values)

Generated Kernel Code Sketch: Annotation 1: Annotation 2:
[Placeholder: A, B [Placeholder: A, B [Placeholder: A, B
for i.0 in range (None): for i.0 in range(32): for i.0 in range(2):
for j.0 in range (None): for j.0 in range(64): for j.0 in range(1024):
for ic.2 in range (None) : for ic.2 in range(16): for ic.2 in range(32):
for jc.2 in range (None) : for jc.2 in range(4): for jc.2 in range(2):
for k.0 in range (None) : for k.0 in range(2): for k.0 in range(2):
for k.1 in range (None) : for k.1 in range(16): for k.1 in range(8):
for k.2 in range (None): for k.2 in range(2): for k.2 in range(4):
for i.3 in range (None): for i.3 in range(2): for i.3 in range(4):
for j.3 in range (None): for j.3 in range(2): for j.3 in range(4):
c=.1 c=.1 c=.1
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¢ Sketch: each subgraph has many sketches (templates)

¢ Annotation: each sketch has many annotations (groups of parameter values)

Generated Kernel Code Sketch: Annotation 1: Annotation 2:
[Placeholder: A, B [Placeholder: A, B [Placeholder: A, B
for i.0 in range (None) : for i.0 in range(32):

for i.0 in range(2):

for j.0 in range (None): for j.0 in range(64): for j.0 in range(1024):
for ic.2 in range (None) : for ic.2 in range(16): for ic.2 in range(32):
for jc.2 in range (None) : for jc.2 in range(4): for jc.2 in range(2):
for k.0 in range (None) :

for k.0 in range(2): for k.0 in range(2):

for k.1 in range (None) : for k.1 in range(16): for k.1 in range(8):
for k.2 in range (None): for k.2 in range(2): for k.2 in range(4):
for i.3 in range (None): for i.3 in range(2): for i.3 in range(4):
for j.3 in range (None): for j.3 in range(2): for j.3 in range(4):
c=.1 c=.1 c=.1

¢ Target: the optimization target is to find the optimal annotations for each subgraph in
the deep learning model
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Deep Learning Deployment Methods for GPU
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Deep Learning Deployment Methods for GPU
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¢ AutoTVM (Chen et al. 2018)
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Deep Learning Deployment Methods for GPU

Previous Arts

history data f(w)
€ Expression @ ; Cost Model > Objective Function
fupdate, -~

Schedule

e, )
e Space Exploration Module —-» Code Generator — Hardware Environment

experiment feedback™~-- z=gles) - f(x)

¢ AutoTVM (Chen et al. 2018)
¢ CHAMELEON: reinforcement learning + adaptive sampling (Ahn et al. 2020)
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Deep Learning Deployment Methods for GPU

Previous Arts

history data f(w)
€ Expression @ ; Cost Model > Objective Function
fupdate, -~

Schedule

e, )
e Space Exploration Module —-» Code Generator — Hardware Environment

experiment feedback™~~- z=gles) - f(x)

¢ AutoTVM (Chen et al. 2018)
¢ CHAMELEON: reinforcement learning + adaptive sampling (Ahn et al. 2020)
* GGA: guided genetic algorithm (Mu et al. 2020)
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Deep Learning Deployment Methods for GPU

Previous Arts

history data f(w)
€ Expression ﬁj—' ; Cost Model > Objective Function
fupdate, -~
e,s
e Sgr;eai:Ie —» Exploration Module —-+ Code Generator —> Hardware Environment

experiment feedback™~-- z=gles) - f(x)

AutoTVM (Chen et al. 2018)
CHAMELEON: reinforcement learning + adaptive sampling (Ahn et al. 2020)
GGA: guided genetic algorithm (Mu et al. 2020)
DGP-TL: deep Gaussian process + transfer learning (Q. Sun et al. 2?1)
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Deep Learning Deployment Methods for GPU

Previous Arts

history data f(w)
€ Expression @ ; Cost Model —>  Objective Function
$ update -~~~
€,
e Sgr;eai:Ie —» Exploration Module —-+ Code Generator —> Hardware Environment

experiment feedback™~-- z=g(e,s) .- f(x)

AutoTVM (Chen et al. 2018)
CHAMELEON: reinforcement learning + adaptive sampling (Ahn et al. 2020)
GGA: guided genetic algorithm (Mu et al. 2020)
DGP-TL: deep Gaussian process + transfer learning (Q. Sun et al. 2?1)
@

¢ Ansor: program sampler, sketch, annotation (Zheng et al. 2020) R OLAATION
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Challenges

e Structural features: node types, node connectivities, graph topology
¢ Rely only on statistical features

¢ Unable to identify task information and distinguish different tasks
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Challenges

The structural information is not used

e Structural features: node types, node connectivities, graph topology
® Rely only on statistical features

¢ Unable to identify task information and distinguish different tasks

The complicated relationships between the features are not considered

¢ Feature items in the statistical feature vectors are treated equally, despite their
physical meanings and relationships

° XGBoost
e MLP
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Details of GTuner
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uner Flow

® Extract structural and statistical features for the annotations

¢ Graph attention network (GAT): graph neural network, and multi-head self-attention
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GTuner Flow

¢ Graph optimization

® represent subgraphs as Intermediate Representations (IRs)

Intermediate
Representations (IR)

o
I
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GTuner Flow

¢ Directed Acyclic Graph (DAG) analyzer

® analyze the IRs to construct the optimized subgraphs

DAG Parser
& Analyzer
I
[
Optimized |
Computational |

Subgraphs [
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GTuner Flow

¢ Generate and sample codes

Kernel Code
Sketches

fffffff ¢

L
Generate Sample Code
Kernel Codes Annotations
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GTuner Flow

e Extract structural and statistical features

¢ Performance learning via Graph Attention Network (GAT)

Extract Code
Statistical Features, q

Extract Graph
Structural Features
(GNN)
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GTuner Flow

* Genetic-based iterative optimization

Kernel Code
Sketches

Genetic Algo.
Optimizator

Sample Code
Annotations

Extract Code

Statistical Features '

Extract Graph MHSA
Structural Features q.
(GNN)

AUTOMATION
15/28



Graph Attention Network (GAT)

Comp. Graph

* Define a graph neural network to extract the structural features.
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Graph Attention Network (GAT)

Comp. Graph Features Graph Attention Network

* Define a graph neural network to extract the structural features.
¢ Use structural features to enhance statistical features.
¢ The concatenated features are the inputs to the multi-head self-attention.
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Graph Network Module

¢ Graph Neural Network (Morris et al. 2019)

...................

DAG
Analysis
Results
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Multi-head Attention (Vaswani et al. )

i Multi-head Attention
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Multi-head Attention (Vaswani et al. )

i Multi-head Attention

Concat ¢ scaled dot-product attention:
heads .
L 1 » _ N/
| [ Scaled Dot-Product Attention /l_l/ Attn(Q’K’ V) = softmax (QK / dk) 14
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Multi-head Attention (Vaswani et al. )

i Multi-head Attention

Concat ¢ scaled dot-product attention:
heads .
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Multi-head Attention (Vaswani et al. )

i Multi-head Attention

Concat

¢ scaled dot-product attention:

[ ! lieads .
| [ Scaled Dot-Product Attention /l_l/ Attn(Q’K’ V) = softmax (QK / \/d_k> |4
2 1 IR X P 1
- [ Line;r [ Line;r [ Lim;ar
?
Q K 1%

H; = Attn (QWZ.Q,KW,-K, VW,-V> :
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Multl head Self-attention Module

Multi-head Self-attention

Input vector x with length [

Reshape: xR with shape i x &

heads
t ! 2 e Number of heads: h
Scaled Dot-Product Attention
i o 51 * xRisused as Q,K,and V
[ Lmear [ Line;r [ Linéar
}
i x i

Self-attention
SelfAttn (¥* W2, *WE, waZ.V>
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Experimental Results
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Experimental Settings

¢ Platform
¢ Nvidia GeForce RTX 3090 (Ampere architecture, SM86)
¢ CUDA Driver 11.4, PyTorch 1.10, and TVM 0.8-dev
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Experimental Settings

¢ Platform
¢ Nvidia GeForce RTX 3090 (Ampere architecture, SM86)
¢ CUDA Driver 11.4, PyTorch 1.10, and TVM 0.8-dev
¢ Training set: about 170000 annotations (collected from Inception-V3 and VGG-11)
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Experimental Settings

¢ Platform

Nvidia GeForce RTX 3090 (Ampere architecture, SM86)
CUDA Driver 11.4, PyTorch 1.10, and TVM 0.8-dev

¢ Training set: about 170000 annotations (collected from Inception-V3 and VGG-11)

* Model structure:

two WL-GCN layers

a mean pooling layer

a concatenation layer

a fully-connected layer (512)

a four-head multi-head self-attention layer

an MLP module (output dimensions: 200-100-20-1) 6
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Experiments — Ablation Studies on Graph Neural Network

¢ Spectral graph convolution (SpecGCN, Kipf and Welling 2017)

® a first-order approximation of localized spectral filters on the graphs
¢ learn filters to represent the nodes in the Fourier domain
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Experiments — Ablation Studies on Graph Neural Network

¢ Spectral graph convolution (SpecGCN, Kipf and Welling 2017)

® a first-order approximation of localized spectral filters on the graphs
¢ learn filters to represent the nodes in the Fourier domain

¢ masked attention convolution (MaskGAT, Veli¢kovié et al. 2018)

¢ introduces the attention-based architecture to compute the hidden
representations of the nodes by using masks during information aggregation
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¢ Spectral graph convolution (SpecGCN, Kipf and Welling 2017)

¢ a first-order approximation of localized spectral filters on the graphs
¢ learn filters to represent the nodes in the Fourier domain

¢ masked attention convolution (MaskGAT, Veli¢kovié et al. 2018)

¢ introduces the attention-based architecture to compute the hidden
representations of the nodes by using masks during information aggregation

¢ GraphSAGE (Hamilton, Ying, and Leskovec 2017)

¢ generates embeddings by sampling and aggregating features from a node’s local
neighborhood to improve the generalization abilities to unseen nodes
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Experiments — Ablation Studies on Graph Neural Network

¢ Spectral graph convolution (SpecGCN, Kipf and Welling 2017)

¢ a first-order approximation of localized spectral filters on the graphs
¢ learn filters to represent the nodes in the Fourier domain

¢ masked attention convolution (MaskGAT, Veli¢kovié et al. 2018)

¢ introduces the attention-based architecture to compute the hidden
representations of the nodes by using masks during information aggregation

¢ GraphSAGE (Hamilton, Ying, and Leskovec 2017)

¢ generates embeddings by sampling and aggregating features from a node’s local
neighborhood to improve the generalization abilities to unseen nodes

ResNet-18  Ansor GTuner SpecGCN MaskGAT GraphSAGE
Latency (ms) 1.073  0.923 1.016 1.105 1.168
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Experiments — Ablation Studies on Model Structure

¢ GNN + MHSA
° MHSA
¢ GNN + MLP

Table: Performance without GNN or MHSA

ResNet-18 MHSA GNN +MLP  GTuner (GNN + MHSA)
Latency (ms)  0.963 1.121 0.923
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Ablation Studies — ResNet-18
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Ablation Studies — ResNet-18

Trials of the genetic-based optimization

—— Ansor GTuner
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End-to-end Performance

Table: End-to-end Model Inference Latency (ms)

AutoTVM Ansor .
Model ‘ PyTorch ‘ PyTorch-JIT ‘ (Chen et al. 2018) | (Zheng et al. 2020) ‘ MHSA ‘ GTuner
ResNet-18 27.180 4.119 1.056 1.073 0.963 | 0.923 (13.98%)
ResNet-34 | 48.988 5.929 1.180 0.968 0.907 | 0.872(9.92%)
SqueezeNet | 16.658 3.648 0.311 0.207 0.201 | 0.197 (4.83%)
MobileNet | 30.324 6.972 0.513 0.242 0.252 | 0.227 (6.20%)

* Ratios are performance improvements compared with Ansor.
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End-to-end Performance

Table: End-to-end Model Inference Latency (ms)

AutoTVM Ansor .
Model ‘ PyTorch ‘ PyTorch-JIT ‘ (Chen et al. 2018) | (Zheng et al. 2020) ‘ MHSA ‘ GTuner
ResNet-18 27.180 4.119 1.056 1.073 0.963 | 0.923 (13.98%)
ResNet-34 | 48.988 5.929 1.180 0.968 0.907 | 0.872(9.92%)
SqueezeNet | 16.658 3.648 0.311 0.207 0.201 | 0.197 (4.83%)
MobileNet | 30.324 6.972 0.513 0.242 0.252 | 0.227 (6.20%)

* Ratios are performance improvements compared with Ansor.

Table: Time Costs (minutes) of the Optimization Processes

Model ‘ AutoTVM ‘ Ansor ‘ MHSA ‘ GTuner

ResNet-18 65.22 4557 | 45.95 46.94

ResNet-34 54.86 46.66 | 48.89 50.71

SqueezeNet 63.90 4353 | 44.40 4591 6

MobileNet 61.60 42.88 | 43.80 44.20 AUTOMATION
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