

Functionality Matters in Netlist Representation Learning

Ziyi Wang1, Chen Bai1, Zhuolun He1, Guangliang Zhang2,
Qiang Xu1, Tsung-Yi Ho1, Bei Yu1, Yu Huang2

1The Chinese University of Hong Kong
2HiSilicon

2/23

Introduction

• Recently, there is a surge in incorporating graph learning in electronic design
automation (EDA).

• Most existing works follow a representation learning paradigm consisting of two
steps: first, learn low-dimensional representations from the high-dimensional raw
data and then conduct classification or regression based on the learned
representations.

• The learned representations play a dominant role in improving model performance.

Background

4/23

focus on netlist: basic data structure used in several steps of the EDA flow.

Netlist Representation Learning

design a general learning methodology that automatically discovers gate/netlist
representations capturing their basic underlying semantics.

• We hope the representation can facilitate multiple downstream netlist tasks

Problem Definition

5/23

• Previous works only focus on the graph structural information, which varies greatly
across netlists.

• We should extract general knowledge!

similar
semantic
Close

different
semantic

Distant

I1

I2

A
I1
I2

B

I1

I2

C A

B
C

A

C
B

Expected embeddings

Acquired embeddings

Previous Structural methods fail to capture the underlying semantic

Defect of previous works

6/23

Methodologies

Question:
• What is the universal and transferable knowledge that is shared across different

netlists?

• Can we extract the shared prior knowledge to enhance the ability of graph learning
models?

8/23

Logic functionality: keep the same for a specific gate type across different
designs.
• Can be transfered and generalized to unseen netlists, even with totally different

topology!

Can we extract this information?

• Yes! –> Key: Boolean Equivalence

a(b+b’+c’) + a’(b+c)

a + a’(b+c)

ab + (ab’+a’b) + (ac’+a’c)

ab + xor(a,b) + xor(a,c)

Equivalent

a

b
c

a
b

c

example of Boolean equivalence

Gate Functionality and Boolean Equivalence

9/23

Main Idea: capture statistical dependencies by separating positive samples from
negative samples in the embedding space. Goal: learn an encoder f : x→ e, e ∈ Rn

that for any sample x:

score(f (x), f (x+)) >> score(f (x), f (x−)). (1)

• Positive sample: augmentation of input sample

• Augmentation method is critical!
Key to the success of CL: generating augmented views that involves enough
variance while avoiding any semantic changes.

Contrastive Learning

10/23

PreprocessI1

I2

I3
I4

I1
I2
I3

I4

Preprocess

FGNN

NOROR

AND INVXOR

I1

I2

I3
I4

Replaced

Representations

Maximize
Agreement

XOR(x, y) = OR(AND(INV(x), y)), AND(x, INV(y)))

AND(x, y) = NOR(INV(x), INV(y))

equivalent
replacement

equivalent
replacement

DAG

DAG

We design a netlist augmentation scheme to generate positive samples, which is
based on Boolean Equivalence.
• Iterative random sub-netlist replacement.

• Positive sample pair share the same functionality, while having totally different
topology.

• Maximizing agreement between positive samples: embedding of netlists with
similar semantic (functionality) tend to be close

Netlist Contrastive Learning Scheme

11/23

• Heterogeneous: learn an individual aggregator for each gate type

In practice, we learn 8 basic gate (cell) functions including AND, OR, INV,
MAJ, MUX, NAND, NOR and XOR.

• Asynchronous message passing scheme: mimic the logic computation

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Iteration 1

5 6

7

8 9

10

v

5 6

7

8 9

10

v

5 6

7

8 9

10

v

5 6

7

8 9

10

v

h5 = INV(h1);
h6 = INV(h2);

h7 = AND(h3, h4);
Iteration 2 Iteration 3 Iteration 4

h8 = AND(h5, h2);
h9 = AND(h1, h6); h10 = OR(h8, h9) hv = OR(h10, h7)

Customized Graph Neural Network: FGNN

12/23

Mimic the learning procedure of human beings: from easy to hard.

• first train the model on a small number of easy cases, and then train on successively
more complex cases with increased batch size.

• Two difficulty dims:

(1) netlist complexity (scale)

(2) topological similarity between positive samples (times of replacement)

Curriculum Learning

13/23

Transform to DAG

Netlist Contrastive Learning

…..

…….

…….

Node-level tasks Graph-level tasks

Preprocess

Pre-train

Fine-tune

Netlists

DAGs

Pre-trained
FGNN

Overall Flow

14/23

Experimental Results

We evaluate our proposed framework on two different downstream netlist tasks
covering both local and global scenarios.

i Arithmetic Block Boundary Detection:

• identify the boundary wires of adders from a large-scale flatten netlist
• node-level local task

ii Circuit Classification:

• distinguish between circuits with different functionality, e.g., adder, multiplexer,
etc.

• circuit-level global task

Experimental Setting

16/23

• Evaluated on open-source RISC-V CPU designs

Table: Statistics of the dataset for sub-netlist identification with 6 different types of adders.

Architecture Rocket (test) BOOM (train)

#gates #wires #gates #wires

Brent-Kung 24340 58124 139526 366280
Cond-sum 24737 57708 138358 360455

Hybrid 25491 60287 141319 369622
Kogge-Stone 24540 57726 139005 361962

Ling 26179 62864 143903 378354
Sklansky 25208 59567 141093 369774

Application 1: local scenario

17/23

• Previous works are subjected to sharp performance degradation when generalizing
to unseen data.

• Our method shows superior generalization ability.

Table: Performance of different models on adder output boundary prediction in terms of
recall and F1-score. Best results are emphasized with boldface. Our proposed FGNN +
NCL framework outperforms other models in all the test cases.

Case Ratio
EV-CNN [Fay+19] GraphSage [Ham+17] ABGNN [He+21] FGNN FGNN + NCL
Recall F1-Score Recall F1-Score Recall F1-Score Recall F1-Score Recall F1-Score

1 1/6 0.602 0.575 0.643 0.656 0.657 0.682 0.684 0.715 0.734 0.753
2 2/6 0.612 0.605 0.758 0.757 0.734 0.74 0.784 0.788 0.857 0.839
3 3/6 0.633 0.615 0.854 0.865 0.877 0.881 0.916 0.914 0.940 0.937
4 4/6 0.662 0.637 0.883 0.889 0.921 0.917 0.931 0.933 0.954 0.947
5 5/6 0.738 0.648 0.905 0.898 0.927 0.922 0.952 0.944 0.966 0.951
6 6/6 0.768 0.655 0.919 0.917 0.945 0.941 0.963 0.952 0.969 0.957

Application 1: result

18/23

Table: Statistics of the dataset for circuit classification, including adder, subtractor,
multiplier, and divider. We try to avoid involving similar designs used for training in the
test dataset.

Module Train Validate / Test
architectures # architectures #

Adder

Brent-Kung,

450

Block Carry Look-head,

100 + 300

Cond-Sum, Carry Look-head,
Hybrid, Carry Select,

Koggle-Stone, Carry-skip,
Ling, Ripple-Carry

Sklansky

Subtractor
Hybrid,

250
Brent-Kung,

50 + 150Koggle-Stone, Cond-Sum,
Ling Sklansky

Multiplier 550

Wallace,

150 + 500

Dadda,
Array, Overturned-stairs,

Booth-Encoding (4,2) compressor,
(7,3) counter,

Redundant binary addition
Divider Array 250 Array 50 + 200

Total / 1500 / 350 + 1150

Application 2: global scenario

19/23

• Our proposed framework shows substantial performance superiority over the
baseline methods across all the cases.

Table: Summary of performance on netlist classification in terms of accuracy. The second
column gives the ratio of the training data size to the testing data size. Our proposed
FGNN + NCL framework achieves the best performance on all the cases and suffers from
slighter degradation when the training data scale is reduced.

Case Ratio GIN [Xu+18] EV-CNN [Fay+19] DVAE [Zha+19] Ours

1 1.3 0.762±0.020 0.904±0.011 0.913±0.005 0.975±0.008
2 1 0.745±0.026 0.896±0.009 0.902±0.007 0.962±0.007
3 0.7 0.737±0.022 0.884±0.003 0.895±0.009 0.960±0.009
4 0.5 0.730±0.015 0.877±0.006 0.885±0.010 0.951±0.005
5 0.3 0.725±0.028 0.859±0.015 0.871±0.003 0.945±0.007

Application 2: result

20/23

• Learning feasible representations from raw gate-level netlists is critical for applying
machine learning techniques to EDA.

• We need customization to fully utilize prior knowledge and achieve better
performance, instead of simply applying the general GNN architectures.

• In this paper, we propose:

• a contrastive learning based pre-training framework for extracting basic
semantic of netlists.

• a specialized GNN for netlist functionality learning.

• We conduct comprehensive experiments on several complex real-world designs to
evaluate our methods.

Conclusion

21/23

[1] A. Fayyazi, S. Shababi, P. Nuzzo, S. Nazarian, and M. Pedram, “Deep
learning-based circuit recognition using sparse mapping and level-dependent
decaying sum circuit representations”, in Proc. DATE, 2019, pp. 638–641.

[2] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on
large graphs”, in Proc. NIPS, 2017, pp. 1024–1034.

[3] Z. He, Z. Wang, C. Bai, H. Yang, and B. YU, “Graph learning-based arithmetic
block identification”, in Proc. ICCAD, 2021.

[4] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural
networks?”, Proc. ICLR, 2018.

[5] M. Zhang, S. Jiang, Z. Cui, R. Garnett, and Y. Chen, “D-vae: A variational
autoencoder for directed acyclic graphs”, Proc. NIPS, 2019.

Reference I

22/23

THANK YOU!

	Introduction
	Methodologies
	Experimental Results

