

Functionality Matters in Netlist Representation Learning

Ziyi Wang¹, Chen Bai¹, Zhuolun He¹, Guangliang Zhang², Qiang Xu¹, Tsung-Yi Ho¹, Bei Yu¹, Yu Huang²

¹The Chinese University of Hong Kong

²HiSilicon

Introduction

Background

- Recently, there is a surge in incorporating **graph learning** in electronic design automation (EDA).
- Most existing works follow a representation learning paradigm consisting of two steps: first, learn low-dimensional representations from the high-dimensional raw data and then conduct classification or regression based on the learned representations.
- The learned representations play a **dominant** role in improving model performance.

Problem Definition

focus on netlist: basic data structure used in several steps of the EDA flow.

Netlist Representation Learning

design a general learning methodology that automatically discovers gate/netlist representations capturing their basic underlying semantics.

• We hope the representation can facilitate multiple downstream netlist tasks

Defect of previous works

- Previous works only focus on the graph structural information, which varies greatly across netlists.
- We should extract general knowledge!

Previous Structural methods fail to capture the underlying semantic

Methodologies

Question:

- What is the **universal** and **transferable** knowledge that is shared across different netlists?
- Can we **extract** the shared prior knowledge to enhance the ability of graph learning models?

Gate Functionality and Boolean Equivalence

Logic functionality: keep the same for a specific gate type across different designs.

Can be transfered and generalized to unseen netlists, even with totally different topology!

Can we extract this information?

• Yes! -> Key: Boolean Equivalence

Contrastive Learning

Main Idea: capture statistical dependencies by separating positive samples from negative samples in the embedding space. **Goal**: learn an encoder $f: x \to e, e \in \mathbb{R}^n$ that for any sample x:

$$score(f(x), f(x^+)) >> score(f(x), f(x^-)).$$
 (1)

- Positive sample: augmentation of input sample
 - Augmentation method is critical!
 Key to the success of CL: generating augmented views that involves enough variance while avoiding any semantic changes.

Netlist Contrastive Learning Scheme

We design a netlist augmentation scheme to generate positive samples, which is based on Boolean Equivalence.

- Iterative random sub-netlist replacement.
- Positive sample pair share the same functionality, while having totally different topology.
- Maximizing agreement between positive samples: embedding of netlists with similar semantic (functionality) tend to be close

Customized Graph Neural Network: FGNN

- Heterogeneous: learn an individual aggregator for each gate type
 In practice, we learn 8 basic gate (cell) functions including AND, OR, INV,
 MAJ, MUX, NAND, NOR and XOR.
- Asynchronous message passing scheme: mimic the logic computation

Curriculum Learning

Mimic the learning procedure of human beings: from easy to hard.

- first train the model on a small number of easy cases, and then train on **successively more complex** cases with increased batch size.
- Two difficulty dims:
 - (1) netlist complexity (scale)
 - (2) topological similarity between positive samples (times of replacement)

Overall Flow

Experimental Results

Experimental Setting

We evaluate our proposed framework on two different downstream netlist tasks covering both **local** and **global** scenarios.

i Arithmetic Block Boundary Detection:

- identify the boundary wires of adders from a large-scale flatten netlist
- node-level **local** task

ii Circuit Classification:

- distinguish between circuits with different functionality, e.g., adder, multiplexer, etc.
- circuit-level **global** task

Application 1: local scenario

• Evaluated on open-source RISC-V CPU designs

Table: Statistics of the dataset for sub-netlist identification with 6 different types of adders.

Architecture	Rocke	t (test)	BOOM	Л (train)	
	#gates	#wires	#gates	#wires	
Brent-Kung	24340	58124	139526	366280	
Cond-sum	24737	57708	138358	360455	
Hybrid	25491	60287	141319	369622	
Kogge-Stone	24540	57726	139005	361962	
Ling	26179	62864	143903	378354	
Sklansky	25208	59567	141093	369774	

Application 1: result

- Previous works are subjected to sharp performance degradation when generalizing to unseen data.
- Our method shows superior generalization ability.

Table: Performance of different models on adder output boundary prediction in terms of recall and F1-score. Best results are emphasized with **boldface**. Our proposed FGNN + NCL framework outperforms other models in all the test cases.

Case Ratio		EV-CNN [Fay+19]		GraphSage [Ham+17]		ABGNN [He+21]		FGNN		FGNN + NCL	
Case	Katio	Recall	F1-Score	Recall	F1-Score	Recall	F1-Score	Recall	F1-Score	Recall	F1-Score
1	1/6	0.602	0.575	0.643	0.656	0.657	0.682	0.684	0.715	0.734	0.753
2	2/6	0.612	0.605	0.758	0.757	0.734	0.74	0.784	0.788	0.857	0.839
3	3/6	0.633	0.615	0.854	0.865	0.877	0.881	0.916	0.914	0.940	0.937
4	4/6	0.662	0.637	0.883	0.889	0.921	0.917	0.931	0.933	0.954	0.947
5	5/6	0.738	0.648	0.905	0.898	0.927	0.922	0.952	0.944	0.966	0.951
6	6/6	0.768	0.655	0.919	0.917	0.945	0.941	0.963	0.952	0.969	0.957

Application 2: global scenario

Table: Statistics of the dataset for circuit classification, including adder, subtractor, multiplier, and divider. We try to avoid involving similar designs used for training in the test dataset.

Module	Train		Validate / Test		
Module	architectures #		architectures	#	
Adder	Brent-Kung,		Block Carry Look-head,		
	Cond-Sum,		Carry Look-head,		
	Hybrid,	450	Carry Select,	100 + 300	
	Koggle-Stone,	450	Carry-skip,	100 + 300	
	Ling,		Ripple-Carry		
	Sklansky				
Subtractor	Hybrid,		Brent-Kung,		
	Koggle-Stone,	250	Cond-Sum,	50 + 150	
	Ling		Sklansky		
Multiplier			Wallace,		
			Dadda,		
	Array,	550	Overturned-stairs,	150 + 500	
	Booth-Encoding		(4,2) compressor,	130 + 300	
	_		(7,3) counter,		
			Redundant binary addition		
Divider	Array	250	Array	50 + 200	
Total	/	1500	/	350 + 1150	

Application 2: result

 Our proposed framework shows substantial performance superiority over the baseline methods across all the cases.

Table: Summary of performance on netlist classification in terms of accuracy. The second column gives the ratio of the training data size to the testing data size. Our proposed FGNN + NCL framework achieves the **best** performance on all the cases and suffers from slighter degradation when the training data scale is reduced.

Case	Ratio	GIN [Xu+18]	EV-CNN [Fay+19]	DVAE [Zha+19]	Ours
1	1.3	0.762 ± 0.020	$0.904{\pm}0.011$	0.913±0.005	0.975 ± 0.008
2	1	$0.745{\pm}0.026$	0.896 ± 0.009	0.902 ± 0.007	$0.962{\pm}0.007$
3	0.7	0.737 ± 0.022	$0.884{\pm}0.003$	0.895 ± 0.009	0.960 ± 0.009
4	0.5	0.730 ± 0.015	0.877 ± 0.006	$0.885{\pm}0.010$	$0.951 {\pm} 0.005$
5	0.3	0.725 ± 0.028	$0.859 {\pm} 0.015$	0.871 ± 0.003	0.945 ± 0.007

Conclusion

- Learning feasible representations from raw gate-level netlists is critical for applying machine learning techniques to EDA.
- We need customization to fully utilize prior knowledge and achieve better performance, instead of simply applying the general GNN architectures.
- In this paper, we propose:
 - a contrastive learning based pre-training framework for extracting basic semantic of netlists.
 - a specialized GNN for netlist functionality learning.
- We conduct comprehensive experiments on several complex real-world designs to evaluate our methods.

Reference I

- [1] A. Fayyazi, S. Shababi, P. Nuzzo, S. Nazarian, and M. Pedram, "Deep learning-based circuit recognition using sparse mapping and level-dependent decaying sum circuit representations", in *Proc. DATE*, 2019, pp. 638–641.
- [2] W. Hamilton, Z. Ying, and J. Leskovec, "Inductive representation learning on large graphs", in *Proc. NIPS*, 2017, pp. 1024–1034.
- [3] Z. He, Z. Wang, C. Bai, H. Yang, and B. YU, "Graph learning-based arithmetic block identification", in *Proc. ICCAD*, 2021.
- [4] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, "How powerful are graph neural networks?", *Proc. ICLR*, 2018.
- [5] M. Zhang, S. Jiang, Z. Cui, R. Garnett, and Y. Chen, "D-vae: A variational autoencoder for directed acyclic graphs", *Proc. NIPS*, 2019.

THANK YOU!

