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Background

¢ Recently, there is a surge in incorporating graph learning in electronic design
automation (EDA).

® Most existing works follow a representation learning paradigm consisting of two
steps: first, learn low-dimensional representations from the high-dimensional raw
data and then conduct classification or regression based on the learned
representations.

¢ The learned representations play a dominant role in improving model performance.
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Problem Definition

focus on netlist: basic data structure used in several steps of the EDA flow.

design a general learning methodology that automatically discovers gate/netlist
representations capturing their basic underlying semantics.

¢ We hope the representation can facilitate multiple downstream netlist tasks
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Defect of previous works

¢ Previous works only focus on the graph structural information, which varies greatly
across netlists.

¢ We should extract general knowledge!
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Previous Structural methods fail to capture the underlying sem@lc
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Methodologies
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Question:

What is the universal and transferable knowledge that is shared across different
netlists?

Can we extract the shared prior knowledge to enhance the ability of graph learning
models?
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Gate Functionality and Boolean Equivalence

Logic functionality: keep the same for a specific gate type across different
designs.

¢ Can be transfered and generalized to unseen netlists, even with totally different
topology!

Can we extract this information?

* Yes! —> Key: Boolean Equivalence

a ) 2 + a°(b+C)
b N
< a(b+b’+c’) + a’(b+c)

1t Equivalent
%: ab + (ab’+a’b) + (ac’+a’c)
<=ab + xor(a,b) + xor(a,c)
S—) (:
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Contrastive Learning

Main Idea: capture statistical dependencies by separating positive samples from
negative samples in the embedding space. Goal: learn an encoder f : x — e,e € R"
that for any sample x:

score(f(x), f(xT)) >> score(f(x),f(x7)). (1)

¢ Positive sample: augmentation of input sample

® Augmentation method is critical!
Key to the success of CL: generating augmented views that involves enough
variance while avoiding any semantic changes.
¢
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Netlist Contrastive Learning Scheme

!_ - : Replaced XOR(x, y) = OR( AND( INV(x), y) ), AND( x, INV(y) ) )
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We design a netlist augmentation scheme to generate positive samples, which is
based on Boolean Equivalence.
¢ Iterative random sub-netlist replacement.
¢ Positive sample pair share the same functionality, while having totally different
topology.
° Maximizing agreement between positive samples: embedding of élists with

similar semantic (functionality) tend to be close AUTOMAT'O'IUB



Customized Graph Neural Network: FGNN

* Heterogeneous: learn an individual aggregator for each gate type

In practice, we learn 8 basic gate (cell) functions including AND, OR, INV,
MAJ, MUX, NAND, NOR and XOR.

® Asynchronous message passing scheme: mimic the logic computation
h7 = AND(h3, h4);

Tteration 1 Tteration 2 Tteration 3 Tteration 4 AUTOMATION

] e
h5 =INV(h1); h& = AND(h5, h2);
[ h6 = INV(h2); } {m: AND( 1 6, hl() OR(hS, h9) hv =OR(h10, h7)
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Curriculum Learning

Mimic the learning procedure of human beings: from easy to hard.

e first train the model on a small number of easy cases, and then train on successively
more complex cases with increased batch size.

¢ Two difficulty dims:
(1) netlist complexity (scale)

(2) topological similarity between positive samples (times of replacement)

'
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Experimental Results

¢

AUTOMATION



Experimental Setting

We evaluate our proposed framework on two different downstream netlist tasks
covering both local and global scenarios.

i Arithmetic Block Boundary Detection:
¢ identify the boundary wires of adders from a large-scale flatten netlist

* node-level local task

ii Circuit Classification:

° distinguish between circuits with different functionality, e.g., adder, multiplexer,
etc.

¢ circuit-level global task

¢
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Application 1: local scenario

¢ Evaluated on open-source RISC-V CPU designs

Table: Statistics of the dataset for sub-netlist identification with 6 different types of adders.

Architecture| Rocket (test) | BOOM (train)
| #gates #wires | #gates #wires

Brent-Kung | 24340 58124 | 139526 366280
Cond-sum | 24737 57708 | 138358 360455
Hybrid 25491 60287 | 141319 369622
Kogge-Stone | 24540 57726 | 139005 361962

Ling 26179 62864 | 143903 378354
Sklansky 25208 59567 | 141093 369774 .
4o
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Application 1: result

¢ Previous works are subjected to sharp performance degradation when generalizing
to unseen data.

¢ Our method shows superior generalization ability.

Table: Performance of different models on adder output boundary prediction in terms of
recall and F1-score. Best results are emphasized with boldface. Our proposed FGNN +
NCL framework outperforms other models in all the test cases.

Case | Ratio EV-CNN [Fay+19] | GraphSage [Ham+17] | ABGNN [IHe+21] FGNN FGNN + NCL
Recall F1-Score | Recall F1-Score Recall FI1-Score | Recall FI1-Score | Recall F1-Score
1 1/6 | 0.602 0.575 0.643 0.656 0.657 0.682 0.684 0.715 0.734 0.753
2 2/6 | 0.612 0.605 0.758 0.757 0.734 0.74 0.784 0.788 0.857  0.839
3 3/6 | 0.633 0.615 0.854 0.865 0.877 0.881 0916 0914 0.940 0.937
4 4/6 | 0.662 0.637 0.883 0.889 0.921 0.917 0.931 0.933 0.954 0.947
5 5/6 | 0.738 0.648 0.905 0.898 0.927 0.922 0.952 0.944 0.966 0.951
6 6/6 | 0.768 0.655 0.919 0917 0.945 0.941 0.963 0.952 0% 0.957
AUTOMATION

18/23



Application 2: global scenario

Table: Statistics of the dataset for circuit classification, including adder, subtractor,
multiplier, and divider. We try to avoid involving similar designs used for training in the

test dataset.
Module Train Validate / Test
architectures # architectures #
Brent-Kung, Block Carry Look-head,
Cond-Sum, Carry Look-head,
Hybrid, Carry Select,
Adder Kogg}{e—Stone, 450 Cmyy_skip, 100 + 300
Ling, Ripple-Carry
Sklansky
Hybrid, Brent-Kung,
Subtractor | Koggle-Stone, | 250 Cond-Sum, 50 + 150
Ling Sklansky
Wallace,
Dadda,
- Array, Overturned-stairs,
Multiplier Booth—Encyoding 550 (4,2) compressor, 150 + 500
(7,3) counter,
Redundant binary addition
Divider Array 250 Array 50 + 200
Total / 1500 T 350 + 1150

A
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Application 2: result

¢ Our proposed framework shows substantial performance superiority over the
baseline methods across all the cases.

Table: Summary of performance on netlist classification in terms of accuracy. The second
column gives the ratio of the training data size to the testing data size. Our proposed
FGNN + NCL framework achieves the best performance on all the cases and suffers from
slighter degradation when the training data scale is reduced.

Case | Ratio | GIN [Xu+18] | EV-CNN [Fay+19] | DVAE [Zha+19] | Ours

1 1.3 | 0.76240.020 0.904+0.011 0.913+0.005 | 0.975-0.008
2 1 | 0.745+0.026 0.896-:0.009 0.902+0.007 | 0.962+0.007
3 07 | 0.737+0.022 0.884:0.003 0.895+0.009 | 0.960-0.009
4 05 | 0.730+0.015 0.877+0.006 0.885+0.010 | 0.951-0.005
5 03 | 0.725+0.028 0.859-£0.015 0.87120.003 | 0.945:0.007
 C
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Conclusion

¢ Learning feasible representations from raw gate-level netlists is critical for applying
machine learning techniques to EDA.

® We need customization to fully utilize prior knowledge and achieve better
performance, instead of simply applying the general GNN architectures.
¢ In this paper, we propose:

® a contrastive learning based pre-training framework for extracting basic
semantic of netlists.
¢ aspecialized GNN for netlist functionality learning.

¢ We conduct comprehensive experiments on several complex real-world designs to
evaluate our methods.
(.
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