A

il

JULY 10 - 14, 2022

AUTOMATION
CONFERENCE

DESIGN

MOSCONE WEST CENTER
SAN FRANCISCO, CA, USA



DESIGN
AUTOMATION
CONFERENCE

Functionality Matters in Netlist Representation Learning

Ziyi Wang!, Chen Bai!, Zhuolun He!, Guangliang Zhang?,
Qiang Xul, Tsung-Yi Ho!, Bei Yu!, Yu Huang2

'The Chinese University of Hong Kong
*HiSilicon —

s = _ ==



Introduction

¢

AUTOMATION



Background

¢ Recently, there is a surge in incorporating graph learning in electronic design
automation (EDA).

® Most existing works follow a representation learning paradigm consisting of two
steps: first, learn low-dimensional representations from the high-dimensional raw
data and then conduct classification or regression based on the learned
representations.

¢ The learned representations play a dominant role in improving model performance.

¢

AUTOMATION
4/23



Problem Definition

focus on netlist: basic data structure used in several steps of the EDA flow.

design a general learning methodology that automatically discovers gate/netlist
representations capturing their basic underlying semantics.

¢ We hope the representation can facilitate multiple downstream netlist tasks

'a

AUTOMATION
5/23



Defect of previous works

¢ Previous works only focus on the graph structural information, which varies greatly
across netlists.

¢ We should extract general knowledge!

0\
o B 8
similar 1 B
semantic 12 C
L >
1 A |~ Close \ ) Expected embeddings
—>
. A
12 Distant C 'e‘
e LL S
different C B
semantic L 5
12 Acquired embeddings
~—r

Previous Structural methods fail to capture the underlying sem@lc

AUTOMATION
6/23



Methodologies

¢

AUTOMATION



Question:

What is the universal and transferable knowledge that is shared across different
netlists?

Can we extract the shared prior knowledge to enhance the ability of graph learning
models?

8/23



Gate Functionality and Boolean Equivalence

Logic functionality: keep the same for a specific gate type across different
designs.

¢ Can be transfered and generalized to unseen netlists, even with totally different
topology!

Can we extract this information?

* Yes! —> Key: Boolean Equivalence

a ) 2 + a°(b+C)
b N
< a(b+b’+c’) + a’(b+c)

1t Equivalent
%: ab + (ab’+a’b) + (ac’+a’c)
<=ab + xor(a,b) + xor(a,c)
S—) (:

AUTOMATION
example of Boolean equivalence 9/23



Contrastive Learning

Main Idea: capture statistical dependencies by separating positive samples from
negative samples in the embedding space. Goal: learn an encoder f : x — e,e € R"
that for any sample x:

score(f(x), f(xT)) >> score(f(x),f(x7)). (1)

¢ Positive sample: augmentation of input sample

® Augmentation method is critical!
Key to the success of CL: generating augmented views that involves enough
variance while avoiding any semantic changes.
¢

AUTOMATION
10/23



Netlist Contrastive Learning Scheme

!_ - : Replaced XOR(x, y) = OR( AND( INV(x), y) ), AND( x, INV(y) ) )

FGNN

'ZZ ' Representations
: equivalent DAG >
T replacement|s —
I -
I Maximize
Agreement

DAG
— () —~4

I .
equivalent |+

replacement
> or IDenNor

IO-ax JD-xor eIV AND(x, y) = NOR(INV(x), INV(y) )

We design a netlist augmentation scheme to generate positive samples, which is
based on Boolean Equivalence.
¢ Iterative random sub-netlist replacement.
¢ Positive sample pair share the same functionality, while having totally different
topology.
° Maximizing agreement between positive samples: embedding of élists with

similar semantic (functionality) tend to be close AUTOMAT'O'IUB



Customized Graph Neural Network: FGNN

* Heterogeneous: learn an individual aggregator for each gate type

In practice, we learn 8 basic gate (cell) functions including AND, OR, INV,
MAJ, MUX, NAND, NOR and XOR.

® Asynchronous message passing scheme: mimic the logic computation
h7 = AND(h3, h4);

Tteration 1 Tteration 2 Tteration 3 Tteration 4 AUTOMATION

] e
h5 =INV(h1); h& = AND(h5, h2);
[ h6 = INV(h2); } {m: AND( 1 6, hl() OR(hS, h9) hv =OR(h10, h7)
12/23




Curriculum Learning

Mimic the learning procedure of human beings: from easy to hard.

e first train the model on a small number of easy cases, and then train on successively
more complex cases with increased batch size.

¢ Two difficulty dims:
(1) netlist complexity (scale)

(2) topological similarity between positive samples (times of replacement)

'

AUTOMATION
13/23



Overall Flow
@3’ ....... % Netlists

U

Transform to DAG ) Preprocess

% ....... 2 e \

Pre-train

( Netlist Contrastlve Learning )

Pre-trained
FGNN
(.

N
(Node—level tasks) (Graph-level tasks) Fine-tune

AUTOMATION
14/23



Experimental Results

¢

AUTOMATION



Experimental Setting

We evaluate our proposed framework on two different downstream netlist tasks
covering both local and global scenarios.

i Arithmetic Block Boundary Detection:
¢ identify the boundary wires of adders from a large-scale flatten netlist

* node-level local task

ii Circuit Classification:

° distinguish between circuits with different functionality, e.g., adder, multiplexer,
etc.

¢ circuit-level global task

¢

AUTOMATION
16/23



Application 1: local scenario

¢ Evaluated on open-source RISC-V CPU designs

Table: Statistics of the dataset for sub-netlist identification with 6 different types of adders.

Architecture| Rocket (test) | BOOM (train)
| #gates #wires | #gates #wires

Brent-Kung | 24340 58124 | 139526 366280
Cond-sum | 24737 57708 | 138358 360455
Hybrid 25491 60287 | 141319 369622
Kogge-Stone | 24540 57726 | 139005 361962

Ling 26179 62864 | 143903 378354
Sklansky 25208 59567 | 141093 369774 .
4o

AUTOMATION
17/23



Application 1: result

¢ Previous works are subjected to sharp performance degradation when generalizing
to unseen data.

¢ Our method shows superior generalization ability.

Table: Performance of different models on adder output boundary prediction in terms of
recall and F1-score. Best results are emphasized with boldface. Our proposed FGNN +
NCL framework outperforms other models in all the test cases.

Case | Ratio EV-CNN [Fay+19] | GraphSage [Ham+17] | ABGNN [IHe+21] FGNN FGNN + NCL
Recall F1-Score | Recall F1-Score Recall FI1-Score | Recall FI1-Score | Recall F1-Score
1 1/6 | 0.602 0.575 0.643 0.656 0.657 0.682 0.684 0.715 0.734 0.753
2 2/6 | 0.612 0.605 0.758 0.757 0.734 0.74 0.784 0.788 0.857  0.839
3 3/6 | 0.633 0.615 0.854 0.865 0.877 0.881 0916 0914 0.940 0.937
4 4/6 | 0.662 0.637 0.883 0.889 0.921 0.917 0.931 0.933 0.954 0.947
5 5/6 | 0.738 0.648 0.905 0.898 0.927 0.922 0.952 0.944 0.966 0.951
6 6/6 | 0.768 0.655 0.919 0917 0.945 0.941 0.963 0.952 0% 0.957
AUTOMATION

18/23



Application 2: global scenario

Table: Statistics of the dataset for circuit classification, including adder, subtractor,
multiplier, and divider. We try to avoid involving similar designs used for training in the

test dataset.
Module Train Validate / Test
architectures # architectures #
Brent-Kung, Block Carry Look-head,
Cond-Sum, Carry Look-head,
Hybrid, Carry Select,
Adder Kogg}{e—Stone, 450 Cmyy_skip, 100 + 300
Ling, Ripple-Carry
Sklansky
Hybrid, Brent-Kung,
Subtractor | Koggle-Stone, | 250 Cond-Sum, 50 + 150
Ling Sklansky
Wallace,
Dadda,
- Array, Overturned-stairs,
Multiplier Booth—Encyoding 550 (4,2) compressor, 150 + 500
(7,3) counter,
Redundant binary addition
Divider Array 250 Array 50 + 200
Total / 1500 T 350 + 1150

A
Co

AUTOMATION
19/23



Application 2: result

¢ Our proposed framework shows substantial performance superiority over the
baseline methods across all the cases.

Table: Summary of performance on netlist classification in terms of accuracy. The second
column gives the ratio of the training data size to the testing data size. Our proposed
FGNN + NCL framework achieves the best performance on all the cases and suffers from
slighter degradation when the training data scale is reduced.

Case | Ratio | GIN [Xu+18] | EV-CNN [Fay+19] | DVAE [Zha+19] | Ours

1 1.3 | 0.76240.020 0.904+0.011 0.913+0.005 | 0.975-0.008
2 1 | 0.745+0.026 0.896-:0.009 0.902+0.007 | 0.962+0.007
3 07 | 0.737+0.022 0.884:0.003 0.895+0.009 | 0.960-0.009
4 05 | 0.730+0.015 0.877+0.006 0.885+0.010 | 0.951-0.005
5 03 | 0.725+0.028 0.859-£0.015 0.87120.003 | 0.945:0.007
 C
AUTOMATION

20/23



Conclusion

¢ Learning feasible representations from raw gate-level netlists is critical for applying
machine learning techniques to EDA.

® We need customization to fully utilize prior knowledge and achieve better
performance, instead of simply applying the general GNN architectures.
¢ In this paper, we propose:

® a contrastive learning based pre-training framework for extracting basic
semantic of netlists.
¢ aspecialized GNN for netlist functionality learning.

¢ We conduct comprehensive experiments on several complex real-world designs to
evaluate our methods.
(.

AUTOMATION
21/23



[1] A.Fayyazi, S. Shababi, P. Nuzzo, S. Nazarian, and M. Pedram, “Deep
learning-based circuit recognition using sparse mapping and level-dependent
decaying sum circuit representations”, in Proc. DATE, 2019, pp. 638-641.

[2]  W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on
large graphs”, in Proc. NIPS, 2017, pp. 1024-1034.

[3] Z.He, Z. Wang, C. Bai, H. Yang, and B. YU, “Graph learning-based arithmetic
block identification”, in Proc. ICCAD, 2021.

[4] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How powerful are graph neural
networks?”, Proc. ICLR, 2018.

[5] M. Zhang, S. Jiang, Z. Cui, R. Garnett, and Y. Chen, “D-vae: A variational
autoencoder for directed acyclic graphs”, Proc. NIPS, 2019. (
°

AUTOMATION
22/23



THANK YOU!

¢

AUTOMATION



	Introduction
	Methodologies
	Experimental Results

