
Eventor: An Efficient Event-Based Monocular
Multi-View Stereo Accelerator on FPGA

Platform
Mingjun Li1, Jianlei Yang1, Yingjie Qi1, Meng Dong2, Yuhao Yang1,

Runze Liu3, Weitao Pan2, Bei Yu4, Weisheng Zhao1

1 Beihang University, Beijing, China
2 Xidian University, Xi’an, Shaanxi, China

3 Beijing Real Imaging Medical Technology Co., Ltd.
4 The Chinese University of Hong Kong, Hong Kong

July 12, 2022

Outline
• Research Background and Motivation
• Eventor
•Algorithm Framework
• Software Optimizations
•Hardware Architecture

• Evaluation
• Conclusions

Outline
• Research Background and Motivation
• Eventor
•Algorithm Framework
• Software Optimizations
•Hardware Architecture

• Evaluation
• Conclusions

Multi View Stereo (MVS)

• Multi View Stereo(MVS)
• Input: a set of photographs of an object

or a scene
• Target: estimate the most likely 3D shape

that explains those photographs
• Assumption: known viewpoints

Event Camera
• Event Camera

• Bio-inspired vision sensor (DVS)
• Asynchronous output: event stream
• 𝐞 = < 𝒙, 𝒚, 𝒕, 𝒑 > pixel coordinates, timestamp,

polarity of brightness changes

• Advantages
• Low latency (~1 micro-second)
• High dynamic range (120 dB instead 60 dB)
• Low data rate, low storage capacity (KB vs. MB)
• Low power consumption (~20 mW)

[Scaramuzza D. Tutorial on Event-based Vision for High-Speed Robotics.
URL: http://rpg.ifi.uzh.ch, 2015.]

Event-based Multi View Stereo(EMVS)

Event StreamEvent CameraInput Scene Semi-Dense Depth
Information

Scene Structure
Reconstruction

• Monocular EMVS
• Estimate semi-dense 3D structure from an

event camera with known trajectory
• Critical task in the mapping part of monocular

event-based SLAM

[Rebecq H, Gallego G, Mueggler E, et al. EMVS: Event-based multi-view stereo
- 3D reconstruction with an event camera in real-time. IJCV’18.]

Drones Robots

Self-driving Cars AR/VR 3D Map Modeling

Event-based SLAM

EMVS Application Scenarios

Existing Works on Monocular EMVS
• [Kim et al., ECCV’16]

• Three filters running in parallel to jointly estimate the motion of the event camera and 3D map
• Only runs on GPUs for real-time performance and cannot process high event rate input (up to

1M events/s)

• [Gallego et al., CVPR’18]
• A unified event processing framework for motion estimation, depth estimation and optical flow

estimation
• Only evaluated on a desktop CPU and no quantitative results are provided

• [Rebecq et al., IJCV’18]
• Event-based space-sweep method
• Runs in real-time on a desktop CPU (1.2 M events/s with a single core)

Existing Monocular EMVS implementations only run on
desktop processors, with inadequate performance!

New Paradigm: EMVS vs MVS
ØQuestion: Can we directly use existing MVS accelerators on EMVS?

MVS EMVS
Input Data Frame-based images Asynchronous event stream

Algorithm Traditional multi-view stereo algorithm Novel event-based multi-view stereo algorithm

Output Dense/Sparse 3D reconstruction Semi-dense 3D reconstruction

Ø Different data structure and algorithm pipelines!

Previous accelerators for frame-based MVS can not be
directly applied to EMVS!

Challenges & Motivation

• New Computation Paradigm
• Current EMVS algorithms: lack hardware-oriented optimization
• Previous MVS accelerators: incompatible with EMVS

• Real-time Demand
• EMVS: computational intensive
• Utilize low-latency advantage: high computation speed required
• Expected event processing rate: over 1.8 Million events per second

• Limited Platform Resources
• Implement EMVS on embedded platforms: high energy efficiency

processors required
• Desktop processors (CPU or GPU): not practical for resources-limited

and power-limited platforms

Accelerate monocular EMVS via algorithm-hardware
co-optimization!

Outline
• Research Background and Motivation
• Eventor
•Algorithm Framework
• Software Optimizations
•Hardware Architecture

• Evaluation
• Conclusions

EMVS Algorithm Framework

Event Aggregation

Event Stream

Event Frame

New
Key Frame?

Event Back-Projection (𝓟)

Volumetric Ray-Counting (𝓡)

Scene Structure Detection (𝓓)

Map Updating

Semi-Dense 3D Map

True

False Reset DSI

Point Cloud Conversion

• Basic Framework
• Monocular EMVS using event-based

space-sweep method [Rebecq et al.,
IJCV’18]

• Relatively high parallelism
• Relatively low data dependency
• Relatively low computational redundancy
• Suitable for customized hardware (e.g.

FPGA) acceleration

EMVS Algorithm Framework

Event FramesEvent Stream

Event Aggregation

Event Stream

Event Frame

New
Key Frame?

Event Back-Projection (𝓟)

Volumetric Ray-Counting (𝓡)

Scene Structure Detection (𝓓)

Map Updating

Semi-Dense 3D Map

True

False Reset DSI

Point Cloud Conversion

• Event Aggregation
• Divide the event stream to event

frames (i.e. event packets) which
will be processed together

EMVS Algorithm Framework

Event Aggregation

Event Stream

Event Frame

New
Key Frame?

Event Back-Projection (𝓟)

Volumetric Ray-Counting (𝓡)

Scene Structure Detection (𝓓)

Map Updating

Semi-Dense 3D Map

True

False Reset DSI

Point Cloud Conversion

• Key Frame Selection
• Select key reference view and

construct local discretized space
volume (i.e. Disparity Space Image,
DSI)

EMVS Algorithm Framework

Event Aggregation

Event Stream

Event Frame

New
Key Frame?

Event Back-Projection (𝓟)

Volumetric Ray-Counting (𝓡)

Scene Structure Detection (𝓓)

Map Updating

Semi-Dense 3D Map

True

False Reset DSI

Point Cloud Conversion

• Event Back-Projection (𝓟)
• Back-project events from the input

event frame to the reference
viewing space

EMVS Algorithm Framework

Event Aggregation

Event Stream

Event Frame

New
Key Frame?

Event Back-Projection (𝓟)

Volumetric Ray-Counting (𝓡)

Scene Structure Detection (𝓓)

Map Updating

Semi-Dense 3D Map

True

False Reset DSI

Point Cloud Conversion

• Volumetric Ray-Counting (𝓡)
• Count the number of back-projection

rays that pass through each DSI voxel

EMVS Algorithm Framework

Event Aggregation

Event Stream

Event Frame

New
Key Frame?

Event Back-Projection (𝓟)

Volumetric Ray-Counting (𝓡)

Scene Structure Detection (𝓓)

Map Updating

Semi-Dense 3D Map

True

False Reset DSI

Point Cloud Conversion

• Scene Structure Detection (𝓓)
• Determine 3D points by finding local

maximum of the ray density

EMVS Workload Profiling

FPGA Acceleration Evaluated on the DAVIS event-camera
dataset and simulator

Event Aggregation

Event Stream

Event Frame

New
Key Frame?

Event Back-Projection (𝓟)

Volumetric Ray-Counting (𝓡) Map Updating

Semi-Dense 3D Map

True

False Reset DSI

Point Cloud Conversion
85.85%

7.23%

6.92%

EMVS Runtime Profiling %

𝒫 +ℛ

𝒟
Others

Bottleneck!

Scene Structure Detection (𝓓)

Outline
• Research Background and Motivation
• Eventor
•Algorithm Framework
• Software Optimizations
•Hardware Architecture

• Evaluation
• Conclusions

Critical Tasks Breakdown

Event Aggregation

Event Stream

Event Frame

New
Key Frame? Scene Structure Detection (𝓓)

Map Updating

Semi-Dense 3D Map

True

False Reset DSI

Point Cloud ConversionEvent Back-Projection (𝓟)

Volumetric Ray-Counting (𝓡)

FPGA Acceleration

• Two-step back-projection in 𝓟
• Canonical Event Back-Projection

(𝓒𝓟): current event frame →
canonical homography plane

• Proportional Event Back-
Projection (𝓟𝓟): canonical plane →
the whole viewing space (DSI)

Ø Most computational intensive
tasks: 𝓒𝓟, 𝓟𝓟, 𝓡

Canonical
Event Back-Projection

Compute Proportional
Back-Projection Coefficients

Proportional
Event Back-Projection

Compute Homography
Matrix

DSI

Event Distortion Correction

Event Aggregation

Event Stream

Event Frame

Generate DSI Votes

Vote DSI Voxels

𝓟

𝓡

Hardware-Friendly Reformulation

• Partially Reschedule
• Improve memory access efficiency
• Reduce data transfer between

FPGA and external memory
• Compact computational intensive

stages, efficiently accelerate them in
a fully pipelined manner

Canonical
Event Back-Projection

Compute Proportional
Back-Projection Parameters

Proportional
Event Back-Projection

Compute Homography
Matrix

DSI

Event Distortion Correction

Event Aggregation

Event Stream

Event Frame

Generate DSI Votes

Vote DSI Voxels

Reschedule

FPGA
Acceleration

Proportional
Event Back-Projection

Compute Homography
Matrix

Event Stream

Event Distortion Correction

Event Aggregation

Event Frame

Precompute Proportional
Back-Projection Parameters

Canonical
Event Back-Projection

DSI

Generate DSI Votes

Vote DSI Voxels

Approximate Computing
Depth estimation error (AbsRel) comparison

between different voting strategies

Bilinear Voting
1 projection

updates 4 voxels

Nearest Voting
1 projection

updates 1 voxel

• Nearest voting
• Lower computation complexity
• More hardware-friendly memory access pattern
• Slightly higher reconstruction error

@ DAVIS Dataset: simulation_3planes,
simulation_3walls, slider_close, slider_far

Adopt nearest voting strategy in volumetric
ray-counting (𝓡)

Hybrid Data Quantization

• 𝒙𝒆, 𝒚𝒆 : input event coordinates
• 𝒙𝒆(𝓒𝓟), 𝒚𝒆(𝓒𝓟) : back-projected event

coordinates after 𝓒𝓟
• 𝒙𝒆(𝓟𝓟), 𝒚𝒆(𝓟𝓟) : back-projected event

coordinates after 𝓟𝓟
• 𝓗: homography matrix used in 𝓒𝓟
• 𝝓: parameters used in 𝓟𝓟
• DSI Scores: the number of back-projected

viewing rays passing through each DSI
voxel

Table: data quantization strategies for 𝒫 and ℛ.

• Floating-point → Fixed-point (linear quantization)
• Save up to 50% memory requirement and data transfer bandwidth
• Simplify computational logic

Quantized Data Total #bit
#bit of
Integer

#bit of
Decimal

𝒙𝒆, 𝒚𝒆 16 9 7

𝒙𝒆(𝓒𝓟), 𝒚𝒆(𝓒𝓟) 16 9 7

𝒙𝒆(𝓟𝓟), 𝒚𝒆(𝓟𝓟) 8 8 0

𝓗 32 11 21

𝝓 32 11 21

DSI Scores 16 16 0

Hybrid Data Quantization

Depth estimation error (AbsRel) comparison
between original and quantized EMVS

Table: data quantization strategies for 𝒫 and ℛ.

Quantized Data Total #bit
#bit of
Integer

#bit of
Decimal

𝒙𝒆, 𝒚𝒆 16 9 7

𝒙𝒆(𝓒𝓟), 𝒚𝒆(𝓒𝓟) 16 9 7

𝒙𝒆(𝓟𝓟), 𝒚𝒆(𝓟𝓟) 8 8 0

𝓗 32 11 21

𝝓 32 11 21

DSI Scores 16 16 0

• Maximum depth estimation error difference: 1.01%

Accuracy of the quantized framework is acceptable

Outline
• Research Background and Motivation
• Eventor
•Algorithm Framework
• Software Optimizations
•Hardware Architecture

• Evaluation
• Conclusions

Computation Parallelism Analysis

Operator-Level
Parallelism

• Multiple arithmetic
logic units (ALUs)
can be deployed for
fine-grained parallelism

…

DSI-Level
Parallelism

Event-Level
Parallelism

• Different events can be
processed in parallel and
the computation stages
can be fully pipelined

• Event back-projections and
voting for different DSI
voxels can be executed in
parallel

Data Control

Eventor Overall Architecture
• ARM-FPGA

Heterogeneous
Acceleration

• ARM configures DMA to
transfer input data

• ARM fires up the FPGA
acceleration modules

• FPGA Acceleration
modules receive input
event frames and update
DSI data stored in DRAM

Data Control

Eventor Overall Architecture

• Canonical Projection
Module: executes 𝑪𝓟

• Proportional Projection
Module: executes 𝓟𝓟,𝓡

Buf_E

Buf_P

Buf_I

Canonical Projection Module

Buf_H

A
XI

 In
te

rf
ac

e MV
MAC
Units

Normalization
Function

PE_Z0

Canonical Projection Controller

Data Control

Canonical Projection Module

Pr
op

or
tio

na
l P

ro
je

ct
io

n
M

od
ul

e

DMA ARM

• Buffer: double-buffering structure
• Buf_H, Buf_E, Buf_P: input buffers
• Buf_I: intermediate buffer

• PE_Z0: executes 𝑪𝓟, fully pipelined
• MV MAC Units (matrix-vector

multiply-accumulate units)
• Normalization Function Unit

• Canonical Projection Controller
• finite-state machine (FSM)

Buf_E

Buf_P

Buf_I

Canonical Projection Module

Buf_H

A
XI

 In
te

rf
ac

e MV
MAC
Units

Normalization
Function

PE_Z0

Canonical Projection Controller

Data Control

Canonical Projection Module

Pr
op

or
tio

na
l P

ro
je

ct
io

n
M

od
ul

e

DMA ARM

• Multiple ALUs are deployed in PE_Z0
to accelerate matrix and vector
calculation

• Input events are processed in a fully-
pipelined scheme without data
dependency

Ø Exploit parallelism
ü Operator-Level
ü Event-Level

Buf_V

Proportional Projection Module

Vo
te

 E
xe

cu
te

 U
ni

t

MAC
Units

Normalization
Function

Vote
Address

Generator
Scalar
MAC
Units

Nearest
Voxel
Finder

PE_Zi

Vote
Address

Generator

D
at

a
A

llo
ca

to
r

Buf_V

Proportional Projection Controller

Data Control

Proportional Projection Module
C

an
on

ic
al

 P
ro

je
ct

io
n

M
od

ul
e

ARM

D
R

A
M

 C
on

tr
ol

le
r

• Data Allocator: fetches and allocates
input data

• PE_Zi: execute 𝓟𝓟 and part of 𝓡
• Scalar MAC Units
• Nearest Voxel Finder
• Vote Address Generator

• Buf_V: double-buffering structure,
output buffer

• Vote Execute Unit: votes DSI voxels
(updates DSI scores), completes𝓡

• Proportional Projection Controller

Buf_V

Proportional Projection Module

Vo
te

 E
xe

cu
te

 U
ni

t

MAC
Units

Normalization
Function

Vote
Address

Generator
Scalar
MAC
Units

Nearest
Voxel
Finder

PE_Zi

Vote
Address

Generator

D
at

a
A

llo
ca

to
r

Buf_V

Proportional Projection Controller

Data Control

Proportional Projection Module
C

an
on

ic
al

 P
ro

je
ct

io
n

M
od

ul
e

ARM

D
R

A
M

 C
on

tr
ol

le
r

• Multiple ALUs are deployed in PE_Zi
to accelerate matrix and vector
calculation

• Input events are processed in a fully-
pipelined scheme without data
dependency

• Multiple PE_Zi simultaneously back-
project an event to multiple DSI
voxels

Ø Exploit parallelism
ü Operator-Level
ü Event-Level
ü DSI-Level

Pipelined Workflow

Canonical
Projection

Module

Pipeline

Proportional
Projection

Module

𝑪𝓟

𝓟𝓟+𝓡

𝑪𝓟

𝓟𝓟+𝓡

(𝑵 + 𝟏)𝒕𝒉 Frame
(Normal Frame)

𝑪𝓟 : Canonical Event Back-Projection
𝓟𝓟 : Proportional Event Back-Projection
𝓡 : Volumetric Ray-Counting

𝑵𝒕𝒉 Frame
(Key Frame)

Pipelined Workflow

Canonical
Projection

Module

Proportional
Projection

Module

𝑪𝓟

𝓟𝓟+𝓡

𝑪𝓟

𝓟𝓟+𝓡

(𝑵 + 𝟏)𝒕𝒉 Frame
(Normal Frame)
Actual Runtime

𝑪𝓟 : Canonical Event Back-Projection
𝓟𝓟 : Proportional Event Back-Projection
𝓡 : Volumetric Ray-Counting

• For normal event frames, two modules work simultaneously in a pipelined manner
• The execution time of 𝑪𝓟 is overlapped

𝑵𝒕𝒉 Frame
(Key Frame)

Pipeline

ü Exploit parallelism: Event-Level

Outline
• Research Background and Motivation
• Eventor
•Algorithm Framework
• Software Optimizations
•Hardware Architecture

• Evaluation
• Conclusions

Experimental Setup
• Hardware Implementation

• Xilinx Zynq XC7Z020 SoC
• Eventor clock 130 MHz, DDR clock 533 MHz

Utilization
LUT 17538(32.97%)
FF 22830(21.46%)

BRAM 64KB(11.43%)

Table: The resources
utilization of Eventor

• Dataset
• DAVIS Dataset: [Mueggler et al., The event-camera dataset and

simulator: Event-based data for pose estimation, visual
odometry, and SLAM. IJRR’17.]

• Camera resolution: 240!180
• Simulated sequences: simulation_3planes, simulation_3walls

• Real scene sequences : slider_close, slider_far

• Baseline
• Original EMVS implementation on Intel i5-7300HQ CPU

Accuracy Analysis

Confidence MapIntensity Image

Semidense Mask Depth Image

A sample demonstration of simulation_3planes

The depth estimation error (AbsREL) of
our reformulated hardware-friendly EMVS

compared with original EMVS.
@ DAVIS Dataset

The accuracy of our reformulated framework is comparable
to original EMVS!

Accelerator Performance Evaluation
Table: Performance comparison between Eventor and original EMVS runs on Intel i5 CPU

*Each event frame consists of 1024 events

Intel i5 CPU Eventor

Runtime per Event Frame
(𝝁𝒔 / task)

𝓒𝓟 22.40 8.24

𝓟𝓟&𝓡 559.55 551.58

Runtime per Event Frame
(𝝁𝒔 / frame)

Normal Frame 581.95 551.58

Key Frame 581.95 559.82

Event Processing Rate
(𝟏𝟎𝟔events / second)

Normal Frame 1.76 1.86

Key Frame 1.76 1.83
Power (W) 45 1.86

Eventor can achieve 24! improvement in energy efficiency
compared with Intel i5 CPU!

Outline
• Research Background and Motivation
• Eventor
•Algorithm Framework
• Software Optimizations
•Hardware Architecture

• Evaluation
• Conclusions

• An efficient EMVS accelerator, Eventor, is
proposed for real-time applications and
evaluated on Zynq FPGA platform.

• Algorithm-hardware co-optimization
strategies are utilized to improve the system
performance.

• Eventor could achieve 24! improvement in
energy efficiency compared with Intel i5 CPU.

• The overall performance could satisfy the
requirements of real-time reconstruction on
power-limited embedded platforms.

Conclusions

Thank You!
Q & A

