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Introduction



Efficient Deployment of DNN is Important

¢ Deep Learning Models

graph neural network

Normal Cell

NasNet

4/34



DL Frameworks and Compilers Bridge the Gap

®* Modern Accelerators

NVIDIA GPU AMD GPU GOOgle TPU Graphcore IPU
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NVIDIA TensorRT

¢ Fuses kernels — Vertically (Conv, BN, ReLU) and Horizontally (Reuse Inputs)

concat
5x5 CBR 1x1 CBR
m

Vertical Fusion Horizontal Fusion

concat

Original Compute Graph
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Related Work and Background



Image Recognition

Semantic Object Instance

Classification Segmentation Detection Segmentation

Image Recognition in Computer Vision Tasks (CS231n)
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Image Classification

Vision Transformer (ViT)
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The architecture of Vision-Trasnformer (ViT, ICLR 2021)
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Object Detection
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The architecture of DEtection-TRansformer (DETR, ECCV 2020)
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Semanic Segmentation
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The architecture of SEgmentation-TRansformer (SETR, CVPR 2021)
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Transformer Model

Scaled Dot-Product Attention Multi-Head Attention

Linear

MatMul
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Query Key Value Query Key Value
Scaled Dot-Product and Multi-Head Attention (MHA).
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Hierarchy of 2080 Ti GPUs

Fetch Fetch Fetch Fetch
Decoder Decoder Decoder Decoder

CUDA CUDA CUDA CUDA
Core Core Core Core
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A streaming multiprocessor and the memory architecture of GeForce RTX 2080 Ti GPU.
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Problem Formulation



Our Definition

@ Computate Graph:
A transformer model is defined by a computation graph G = (V, E), where V is the
set of vertices and E is the edge set. Each vertex can represent an operator such as
GEMM and softmax operation in the computation graph. Each edge (u,v) € E is to
describe the dependencies between node u and v.

@ Operator Pattern
injective

reduction
complex-out-fusable
element-wise
opaque

® Fusion Strategy and Schedule:
We define a schedule S of a computation graph G as follow:

S={(V1,F1),(V2,F2), ..., (Vx. Fr) }, )

where V; represents a group of operators in the i-th phase and F; is a pair to describe
the fusion relationship between two nodes. Finally, computation graph can be
executed under the schedule S from the first phase (V1, F1) to the last phase (Vy, F)

consecutively. 16/34



Our Problem

- Given a computation graph G and fusion schedule S on GPU, our goal is to search for
a schedule 5*:
S§* = argmin Cost(G, S), ()
S
where Cost is the latency of executing G according to the schedule S.

- Multi-Head Attention Function:

. QKT
Attention(Q, K, V) = softmax(=—)V (3)

( ) ( \/d_k)
MultiHead(Q, K, V) = Concat(head;, ..., head;, ) W° 4)

- Transformers have lots of softmax operators in Multi-Head Attention and can be
fused with batch matrix multiplication operators
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Overview of our system



The Proposed System

Transformer Model

Encoder || Decoder
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The arrows show the flow of the optimized subgraphs from transformer model and tensor programs
generation on GPU platform.

>
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The Proposed System

Our tensor generation framework is composed of four important modules
@ Dynamic Programming-based Operator Fusion (DPOF)
@ Subgraph Scheduler
® CUDA Program sampler

@ Performance Tuner
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Dynamic Programming-based Operator Fusion (DPOF);

¢ Input: A transformer-based model without any operator fusion

¢ Output: Operators with new tags
¢ Function: A DPOF that finds an optimized operator fusion schedule for the
transformer model

V= (M2} Phase 1
v = {M1, s}
dp[{Ml, S, M2}]
action[{Ml, S, M2}]

Phase 2

Phase 3

v={

MatMul 1_SoftMax
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V'= (M2, SoftMax} v=u
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Phase 1
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The structure of DPOF

(1] Operator Arragenement

topological sort to get operators

queue to store operators

compute-type, no placeholder-type operators
size of queue = maximum number of queue

@ Operator Fusion

———————dp[V] = min (dp [Vl — V'] +temp[V'])

A
l

~

L
Schedule of V'

/ﬂ

O Latency of V'

“Schedule of V — V'’

(sub-problem)

22/34



Subgraph Scheduler

¢ Input: A transformer-based model with operator fusion
¢ Output: Lots of subgraphs decomposed by compute-intensive operators

¢ Function: A subgraph scheduler that allocates time resources for optimizing multiple
subgraphs generated by the DPOF
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CUDA Program sampler

¢ Input: Subgraph with fused operators
¢ Output: CUDA kernel code for these operators

¢ Function: A program sampler that delineates a large search space and randomly
samples various programs from it
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CUDA Program sampler

@ Sketch Generation
@ Annotation

Generated Sketch 1:
[Placeholder: A, B
for i.0 in range (None) :
for 3.0 in range (None):
for ic.2 in range (None):
for jc.2 in range (None):
for k.0 in range (None):

The mathmetical expressions:

mli,j] =" Ali, k]  Blk, ]
k

Dl[i, j] = SoftMax(mli, j])

Generated Sketch 2:
[Placeholder: A, B
for i.0 in range (None):
for j.0 in range (None):
for ic.2 in range (None):
for jc.2 in range (None):
for k.0 in range (None):
for k.1 in range (None):

for k.
for

for i.3
for 3.
c

1

k.2 in range(None):

c

in range (None) :

.local = ...

in range (None) :

3

in range (None) :

Ansor|

for i.0 in range(0, 1050):
for k.0 in range(0, 33):
threadIdx.x k.1 [0,
T_softmax_maxelem = ...
for i.0 in range(0, 1050):
for k.0 in range(0, 1050):
T_softmax_expsum =
for i.0 in range(0, 1050)
for i.1 in range(0, 1050):
T_softmax_norm = ... ]

for k.2 in range (None) :

- .- .Qlogal =_.. _ _
| for T.07in range (0, 1050): o
for k.0 in range(0, 33): .

threadIdx.x k.1 [0,
T_softmax_maxelem

for i.0 in range(0, 1050):
for k.0 in range (0,
T_softmax_expsum =

for i.0 in range(0, 1050): I
for i.1 in range(0, 1050): ,
T_softmax_norm

For i3 in range (None)
for j.3 in range (None):

321 1

Our Sketch Customization and Policy
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Performance Tuner

¢ Input: Sampled CUDA kernel codes
¢ Output: The performance of the generated code

¢ Function: A performance tuner that trains a cost model to measure the performance
of sampled tensor programs
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Evaluation Results



Experimental Setup

@ Image Recognition Models

- DETR for Object Detection
- SETR for Semantic Segmentation
- ViT for Image Classification

@ WorkFlow

- TensorRT: PyTorch — ONNX — ONNX-Simplifier —TensorRT Engine
- AutoGTCO: PyTorch — TorchScript — Relay — Code Generation

© WorkLoads
- Batch Size=1
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Architecture of the Model and Configurations

model ‘ ec | dc | width ‘ g;lg- nh | input shape ‘ patch| mha input ‘ encoder input‘ decoder input | Params
query[1050,1,256] t5[100,1,256]
DETR-ResNet50-E3 | 3 | 6 | 256 2048 | 8 [1,3,800,1333] | N/A | key[1050,1,256] | src[1050,1,256] mem[1050,1,256] 37.40M
value[1050,1,256] r
query[1050,1,256] tgt[100,1,256]
DETR-ResNet50-E6 | 6 |6 | 256 2048 | 8 | [1,3,800,1333] | N/A | key[1050,1,256] | src[1050,1,256] 41.30M
mem[1050,1,256]
value[1050,1,256]
query[1050,1,256] £5[100,1,256]
DETR-ResNet50-E12 | 12 | 6 | 256 2048 | 8 [1,3,800,1333] | N/A | key[1050,1,256] | src[1050,1,256] 49.20M

value[1050,1,256] mem([1050,1,256]
query[576,1,768]
SETR-Naive-Base 1201 768 4096 | 12 | [1,3,384,384] 16 key[576,1,768] s1c[576,1,768] | tgt[576,1,768] 87.69M
value[576,1,768]

query[576,1,1024]
SETR-Naive 24 |1 |1024 | 409 |16 | [1,3,384,384] | 16 key[576,1,1024] | src[576,1,1024]| tgt[576,1,1024] 305.67M
value[576,1,1024]

query[576,1,1024]
SETR-PUP 24 |1 | 1024 | 409 |16 | [1,3,384,384] | 16 key[576,1,1024] | src[576,1,1024]| tgt[576,1,1024] 310.57M
value[576,1,1024]

query[197,1,768]
ViT-Base-16 1210 | 768 3072 | 12 | [1,3,224,224] | 16 key[197,1,768] src[197,1,768] | N/A 86.00M
value[197,1,768]

query[197,1,1024]
ViT-Large-16 24 |0 | 1024 |409 |16 | [1,3224,224] |16 key[197,1,1024] | src[197,1,1024]| N/A 307.00M
value[197,1,1024]

query[257,1,1280]
ViT-Huge-14 3210 | 1280 5120 | 16 | [1,3,224,224] | 14 key[257,1,1280] | src[257,1,1280]| N/A 632.00M
value[257,1,1280]
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Experimental Results on E2E Performance

- Baseline: PyTorch JIT, TVM-cuDNN, TensorRT, Ansor
- Pytorch 1.7.1, cuDNN V7.6.5, CUDA 10.0, TensorRT V7.0.0.11, TVM 0.8

Table: End-to-End Exeuction Performance on the Benchmark (ms)

PyTorch JIT | TVM-CUDA | TVM-cuDNN | TensorRT | Ansor | AutoGTCO

DETR-ResNet50-E3 | 18.62 54.73 54.43 6.97 5.85 5.32
DETR-ResNet50-E6 | 23.67 93.59 88.25 7.73 6.78 5.60
DETR-ResNet50-E12 | 33.01 171.96 157.97 15.79 1429 | 13.18
SETR-Naive 68.26 753.25 74221 33.71 3422 | 28.65
SETR-Naive-Base 31.06 186.13 187.39 16.97 1544 | 14.21
SETR-PUP 37.62 199.42 189.21 18.61 17.89 | 16.01
ViT-Base-16 2492 91.86 96.31 5.87 8.57 8.43
ViT-Large-16 52.96 329.74 334.38 18.45 18.99 | 1841
ViT-Huge-14 76.07 846.87 846.27 34.14 32.53 | 29.89

- Compared with TensorRT: 1.01-1.38 x speedup

- Compared with Ansor: 1.01-1.21 x speedup
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Experimental Results on Subgraph Benchmark

- Baseline: MHA, Encoder, and Decoder of DETR-ResNet-50-E6

| =@ PyTorch JIT
| @ TensorRT
[ Ansor
3 AutoGTCO

The y-axis is the throughput based log 10 and then plus 1.

Compared with:
- PyTorch JIT: 2.47 < on Encoder and 11.67 x on Decoder
- TensorRT: 2.47 x speedup on MHA, 1.08 < on Encoder, and 4.19 x on Decoder

- Ansor: 1.29x on MHA, 1.17x on Encoder, and 1.17x on Decoder 31/34



Conclusions



Conclusions

¢ Graph-Level optimizaiton designed by human experts miss the potential
performance.

¢ Graph and Tensor Co-Optimize (AutoGTCO):

¢ A novel dynamic programming algorithm to explore operator fusion strategies.
¢ new sketch generation rules and a search policy for CUDA kernel generation.

® Key Results: 1.01 - 1.38 x speedup on diverse Transformer-based vision models.
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