AutoGTCO: Graph and Tensor Co-Optimize for Image
Recognition with Transformers on GPU

Yang Bai!, Xufeng Yao?, Qi Sun!, Bei Yu!

!The Chinese University of Hong Kong
2SmartMore
{ybai,byu}l@cse.cuhk.edu.hk

Novw. 1, 2021

SmartMore

Outline

@ Introduction

@ Related Work and Background
® Problem Formulation

@ Overview of our system

® Evaluation Results

® Conclusions

2/34

Introduction

Efficient Deployment of DNN is Important

¢ Deep Learning Models

graph neural network

Normal Cell

NasNet

4/34

DL Frameworks and Compilers Bridge the Gap

®* Modern Accelerators

NVIDIA GPU AMD GPU GOOgle TPU Graphcore IPU

5/34

NVIDIA TensorRT

¢ Fuses kernels — Vertically (Conv, BN, ReLU) and Horizontally (Reuse Inputs)

concat
5x5 CBR 1x1 CBR
m

Vertical Fusion Horizontal Fusion

concat

Original Compute Graph

6/34

Frameworks ‘B~ O & e m @
\

\ Computational Graph \
v

Section 3 High Level Graph Rewriting
]

\ Optimized Computational Graph \
v

Operator-level Optimization and Code Generation

Section 4 Declarative Hardware-Aware
Tensor Expressi@i Optimization Primitives
Section 5 Machine Learning Based
Automateci Optimizer
| Optimized Low Level Loop Program |
| Accelerator Backend || LLVMIR || CUDAMetal/OpenCL |

v
| Deployable Module | 7/34

Related Work and Background

Image Recognition

Semantic Object Instance

Classification Segmentation Detection Segmentation

Image Recognition in Computer Vision Tasks (CS231n)

9/34

Image Classification

Vision Transformer (ViT)

MLP
Head

{ Transformer Encoder

X
P~ 09 @) € @5 “ @ﬂ i

Extra learnable
[class] embedding [Lmear Projection of Flattened Patches

1] I A |
mms—»li B+ T e A

Embedded
Patches

The architecture of Vision-Trasnformer (ViT, ICLR 2021)

10/34

Object Detection

backbone ! encoder

)
set of image features::
1

£

transformer
decoder

R

object queries

transformer
encoder

The architecture of DEtection-TRansformer (DETR, ECCV 2020)

11/34

Semanic Segmentation

EAE A Decoder]
E:B(_ ‘[Transformer Layer J
'(— Transformer Layer J
==) By
- /

Lmenr Projection

Fxy ﬁﬁ

The architecture of SEgmentation-TRansformer (SETR, CVPR 2021)

12/34

Transformer Model

Scaled Dot-Product Attention Multi-Head Attention

Linear

MatMul

[7
7
‘ Scaled Dot-Product Attention u
1 H

‘ Linear u‘ Linear u‘ Linear u

Query Key Value Query Key Value
Scaled Dot-Product and Multi-Head Attention (MHA).

13/34

Hierarchy of 2080 Ti GPUs

Fetch Fetch Fetch Fetch
Decoder Decoder Decoder Decoder

CUDA CUDA CUDA CUDA
Core Core Core Core
Tensor Tensor Tensor Tensor
Core Core Core Core

616 GB/S | Memory
] = > (uGB)
| L2 Cache (5632KB) |
DEVICE

A streaming multiprocessor and the memory architecture of GeForce RTX 2080 Ti GPU.
14/34

Problem Formulation

Our Definition

@ Computate Graph:
A transformer model is defined by a computation graph G = (V, E), where V is the
set of vertices and E is the edge set. Each vertex can represent an operator such as
GEMM and softmax operation in the computation graph. Each edge (u,v) € E is to
describe the dependencies between node u and v.

@ Operator Pattern
injective

reduction
complex-out-fusable
element-wise
opaque

® Fusion Strategy and Schedule:
We define a schedule S of a computation graph G as follow:

S={(V1,F1),(V2,F2), ..., (Vx. Fr) },)

where V; represents a group of operators in the i-th phase and F; is a pair to describe
the fusion relationship between two nodes. Finally, computation graph can be
executed under the schedule S from the first phase (V1, F1) to the last phase (Vy, F)

consecutively. 16/34

Our Problem

- Given a computation graph G and fusion schedule S on GPU, our goal is to search for
a schedule 5*:
S§* = argmin Cost(G, S), ()
S
where Cost is the latency of executing G according to the schedule S.

- Multi-Head Attention Function:

. QKT
Attention(Q, K, V) = softmax(=—)V (3)

() (\/d_k)
MultiHead(Q, K, V) = Concat(head;, ..., head;,) W° 4)

- Transformers have lots of softmax operators in Multi-Head Attention and can be
fused with batch matrix multiplication operators

17/34

Overview of our system

The Proposed System

Transformer Model

Encoder || Decoder

'

DPOF Subgraph (CUDA Program A Performance A
Scheduler Sampler Tuner
ArOperator Subgraph 1 Sketch
rangement ..
Customization
Subgrap Cost Model
Operator b n Random
Fusion Subgraph 3 Annotation

- - J J

A * y

* t
——[NVIDIA GeForce RTX 2080 Ti GPU]4—

The arrows show the flow of the optimized subgraphs from transformer model and tensor programs
generation on GPU platform.

>

19/34

The Proposed System

Our tensor generation framework is composed of four important modules
@ Dynamic Programming-based Operator Fusion (DPOF)
@ Subgraph Scheduler
® CUDA Program sampler

@ Performance Tuner

20/34

Dynamic Programming-based Operator Fusion (DPOF);

¢ Input: A transformer-based model without any operator fusion

¢ Output: Operators with new tags
¢ Function: A DPOF that finds an optimized operator fusion schedule for the
transformer model

V= (M2} Phase 1
v = {M1, s}
dp[{Ml, S, M2}]
action[{Ml, S, M2}]

Phase 2

Phase 3

v={

MatMul 1_SoftMax

MatMul_2

V'= (M2, SoftMax} v=u

v = (M1} S gy R
SoftMax MatMul 2

MatMul 1

Phase 1
Phase 2

Phase 3

21/34

The structure of DPOF

(1] Operator Arragenement

topological sort to get operators

queue to store operators

compute-type, no placeholder-type operators
size of queue = maximum number of queue

@ Operator Fusion

———————dp[V] = min (dp [Vl — V'] +temp[V'])

A
l

~

L
Schedule of V'

/ﬂ

O Latency of V'

“Schedule of V — V'’

(sub-problem)

22/34

Subgraph Scheduler

¢ Input: A transformer-based model with operator fusion
¢ Output: Lots of subgraphs decomposed by compute-intensive operators

¢ Function: A subgraph scheduler that allocates time resources for optimizing multiple
subgraphs generated by the DPOF

23/34

CUDA Program sampler

¢ Input: Subgraph with fused operators
¢ Output: CUDA kernel code for these operators

¢ Function: A program sampler that delineates a large search space and randomly
samples various programs from it

24/34

CUDA Program sampler

@ Sketch Generation
@ Annotation

Generated Sketch 1:
[Placeholder: A, B
for i.0 in range (None) :
for 3.0 in range (None):
for ic.2 in range (None):
for jc.2 in range (None):
for k.0 in range (None):

The mathmetical expressions:

mli,j] =" Ali, k] Blk,]
k

Dl[i, j] = SoftMax(mli, j])

Generated Sketch 2:
[Placeholder: A, B
for i.0 in range (None):
for j.0 in range (None):
for ic.2 in range (None):
for jc.2 in range (None):
for k.0 in range (None):
for k.1 in range (None):

for k.
for

for i.3
for 3.
c

1

k.2 in range(None):

c

in range (None) :

.local = ...

in range (None) :

3

in range (None) :

Ansor|

for i.0 in range(0, 1050):
for k.0 in range(0, 33):
threadIdx.x k.1 [0,
T_softmax_maxelem = ...
for i.0 in range(0, 1050):
for k.0 in range(0, 1050):
T_softmax_expsum =
for i.0 in range(0, 1050)
for i.1 in range(0, 1050):
T_softmax_norm = ...]

for k.2 in range (None) :

- .- .Qlogal =_.. _ _
| for T.07in range (0, 1050): o
for k.0 in range(0, 33): .

threadIdx.x k.1 [0,
T_softmax_maxelem

for i.0 in range(0, 1050):
for k.0 in range (0,
T_softmax_expsum =

for i.0 in range(0, 1050): I
for i.1 in range(0, 1050): ,
T_softmax_norm

For i3 in range (None)
for j.3 in range (None):

321 1

Our Sketch Customization and Policy

25/34

Performance Tuner

¢ Input: Sampled CUDA kernel codes
¢ Output: The performance of the generated code

¢ Function: A performance tuner that trains a cost model to measure the performance
of sampled tensor programs

26/34

Evaluation Results

Experimental Setup

@ Image Recognition Models

- DETR for Object Detection
- SETR for Semantic Segmentation
- ViT for Image Classification

@ WorkFlow

- TensorRT: PyTorch — ONNX — ONNX-Simplifier —TensorRT Engine
- AutoGTCO: PyTorch — TorchScript — Relay — Code Generation

© WorkLoads
- Batch Size=1

28/34

Architecture of the Model and Configurations

model ‘ ec | dc | width ‘ g;lg- nh | input shape ‘ patch| mha input ‘ encoder input‘ decoder input | Params
query[1050,1,256] t5[100,1,256]
DETR-ResNet50-E3 | 3 | 6 | 256 2048 | 8 [1,3,800,1333] | N/A | key[1050,1,256] | src[1050,1,256] mem[1050,1,256] 37.40M
value[1050,1,256] r
query[1050,1,256] tgt[100,1,256]
DETR-ResNet50-E6 | 6 |6 | 256 2048 | 8 | [1,3,800,1333] | N/A | key[1050,1,256] | src[1050,1,256] 41.30M
mem[1050,1,256]
value[1050,1,256]
query[1050,1,256] £5[100,1,256]
DETR-ResNet50-E12 | 12 | 6 | 256 2048 | 8 [1,3,800,1333] | N/A | key[1050,1,256] | src[1050,1,256] 49.20M

value[1050,1,256] mem([1050,1,256]
query[576,1,768]
SETR-Naive-Base 1201 768 4096 | 12 | [1,3,384,384] 16 key[576,1,768] s1c[576,1,768] | tgt[576,1,768] 87.69M
value[576,1,768]

query[576,1,1024]
SETR-Naive 24 |1 |1024 | 409 |16 | [1,3,384,384] | 16 key[576,1,1024] | src[576,1,1024]| tgt[576,1,1024] 305.67M
value[576,1,1024]

query[576,1,1024]
SETR-PUP 24 |1 | 1024 | 409 |16 | [1,3,384,384] | 16 key[576,1,1024] | src[576,1,1024]| tgt[576,1,1024] 310.57M
value[576,1,1024]

query[197,1,768]
ViT-Base-16 1210 | 768 3072 | 12 | [1,3,224,224] | 16 key[197,1,768] src[197,1,768] | N/A 86.00M
value[197,1,768]

query[197,1,1024]
ViT-Large-16 24 |0 | 1024 |409 |16 | [1,3224,224] |16 key[197,1,1024] | src[197,1,1024]| N/A 307.00M
value[197,1,1024]

query[257,1,1280]
ViT-Huge-14 3210 | 1280 5120 | 16 | [1,3,224,224] | 14 key[257,1,1280] | src[257,1,1280]| N/A 632.00M
value[257,1,1280]

29/34

Experimental Results on E2E Performance

- Baseline: PyTorch JIT, TVM-cuDNN, TensorRT, Ansor
- Pytorch 1.7.1, cuDNN V7.6.5, CUDA 10.0, TensorRT V7.0.0.11, TVM 0.8

Table: End-to-End Exeuction Performance on the Benchmark (ms)

PyTorch JIT | TVM-CUDA | TVM-cuDNN | TensorRT | Ansor | AutoGTCO

DETR-ResNet50-E3 | 18.62 54.73 54.43 6.97 5.85 5.32
DETR-ResNet50-E6 | 23.67 93.59 88.25 7.73 6.78 5.60
DETR-ResNet50-E12 | 33.01 171.96 157.97 15.79 1429 | 13.18
SETR-Naive 68.26 753.25 74221 33.71 3422 | 28.65
SETR-Naive-Base 31.06 186.13 187.39 16.97 1544 | 14.21
SETR-PUP 37.62 199.42 189.21 18.61 17.89 | 16.01
ViT-Base-16 2492 91.86 96.31 5.87 8.57 8.43
ViT-Large-16 52.96 329.74 334.38 18.45 18.99 | 1841
ViT-Huge-14 76.07 846.87 846.27 34.14 32.53 | 29.89

- Compared with TensorRT: 1.01-1.38 x speedup

- Compared with Ansor: 1.01-1.21 x speedup
30/34

Experimental Results on Subgraph Benchmark

- Baseline: MHA, Encoder, and Decoder of DETR-ResNet-50-E6

| =@ PyTorch JIT
| @ TensorRT
[Ansor
3 AutoGTCO

The y-axis is the throughput based log 10 and then plus 1.

Compared with:
- PyTorch JIT: 2.47 < on Encoder and 11.67 x on Decoder
- TensorRT: 2.47 x speedup on MHA, 1.08 < on Encoder, and 4.19 x on Decoder

- Ansor: 1.29x on MHA, 1.17x on Encoder, and 1.17x on Decoder 31/34

Conclusions

Conclusions

¢ Graph-Level optimizaiton designed by human experts miss the potential
performance.

¢ Graph and Tensor Co-Optimize (AutoGTCO):

¢ A novel dynamic programming algorithm to explore operator fusion strategies.
¢ new sketch generation rules and a search policy for CUDA kernel generation.

® Key Results: 1.01 - 1.38 x speedup on diverse Transformer-based vision models.

33/34

THANK YOU!

	Introduction
	Related Work and Background
	Problem Formulation
	Overview of our system
	Evaluation Results
	Conclusions

