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Introduction
Power Modeling for Modern CPUs

¢ Power consumption has become the main constraint limiting the performance of
modern CPUs.

¢ Accurate power-performance tradeoff is necessary to ensure excellent CPU design.

* Large-scale design space (e.g., RISC-V BOOM: > 10°).

° High requirements: modeling speed, accuracy, and generality.
¢ Speed: the time required for the entire modeling flow.
¢ Accuracy: model complex microarchitectures and advanced technology nodes.

¢ Generality: model different CPU designs or different workload programs.
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Introduction

Existing Power Models

Table: Comparison of Existing Power Models

Model Level Speed Generality Accuracy

PrimeTime PX Gate Low High High
GRANNITE (DAC20) Gate Medium Medium High
PRIMAL (DAC'19) RTL Medium Medium High

TCAD’17 Runtime High Low High
MCcPAT (MICRO’09) Arch High High Low
McPAT-Calib Arch High High High

¢ Cannot balance modeling speed, accuracy, and generality.

¢ Difficult to use in the early design stage of modern CPUs.
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Introduction
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Hierarchical modeling methodology of McPAT !

¢ Ease-of-use & Readiness; High speed & High generality.

¢ Low accuracy; Lacks support for advanced technology nodes.
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Preliminaries
Problem Formulation

The total power can be expressed as:
N
P = demzmic + Pleukage = aCVIZDDf + VDDIleukage = Zn:l ﬂnfn (En) +g(D) (1)

TV
Transistor level

Microarchitecture level

A CPU design characterized by a set of microarchitecture design parameters, such as
FetchWidth, DecodeWidth, FetchBufferEntry, etc..

The workload program executed on the target CPU.

Given a set of CPU configurations C along with a set of benchmarks B. The objective is to

model the power P; of benchmark B; € B running on configuration C; € C. ,
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Preliminaries

RISC-V BOOM

Detailed BOOM Pipeline 2
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¢ Free & Open source; Easy to start.

¢ Has received great attention and support
from academia and industry.

¢ A family of out-of-order RISC-V designs.

¢ High performance & Parametric
microarchitecture design & Automatic
design flow.

2Zhao, Jerry, et al. "Sonicboom: The 3rd generation berkeley out-of-order machine." Fourth Workshop on
Computer Architecture Research with RISC-V. 2020. 7/27



MCcPAT-Calib

An Overview

McPAT-Calib
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McPAT-Calib
MCcPAT-7nm

Table: Key Parameters of 7nm FinFET PDK ASAP7 3

FinFET parameters Value
Supply voltage, Vpp (V) 0.7
Gate length, L (nm) 21
Fin height, Hrjy (nm) 32
Fin thickness, Ts; (nm) 6.5
Fin pitch, Fp (nm) 27

Contacted poly-pitch, CPP (nm) 54

Adjust empirical undifferetiated Core/FU coefficients to reduce modeling errors.

Modify McPAT to support accurate modeling of the RISCV BOOM (e.g., pipeline).
LT, Clark, et al., “ASAP7: A 7-nm finFET predictive process design kit,” in Microelectronics Journal, 2016. 9/27




McPAT-Calib
ML Calibration: Method and Feature Source

¢ Calibrate leakage and dynamic separately, and then take the sum.

¢ Method: model the leakage of one CPU configuration.
¢ Feature: McPAT Results (2: Core.Leakage and Core.Area).

¢ Method: model the dynamic of each sample.
¢ Feature: McPAT Results (38) & Event Statistics (90) & Design Parameters (18).
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MCcPAT-Calib

ML Calibration: Multicollinearity & Automatic Feature Selection

Correlation with Dynamic and VIF of Dynamic Modeling Features.

¢ Variance Inflation Factor (VIF):
1

T1-R
¢ High model complexity & Lack of stability & Overfitting.

VIF (2

¢ Fail to accurately predict unknown configurations or benchmarks. 11/27



ML Calibration: Automatic Feature Selection

Algorithm 1 Filter Sequential Feature Selection

Require: allFeatures, all modeling features; k, the number of features to select;

varThreshold, the variance threshold used to filter features;

Ensure: selectedList, the selected k optimal features;

1: for tmpFeature in allFeatures do

2: if var(tmpFeature) < varThreshold then;

3: Delete tmpFeature from allFeatures;

4: end if

5: end for

6: selectedList = ¢;

7: while selectedList.length < k do

8 bestR? = —inf;

9: for tmpFeature in allFeatures do
10: Cross-Validation(selectedList + tmpFeature);
11: if newR? > bestR? then;
12: bestR? = newR?; bestFeature = tmpFeature;
13: end if
14: end for
15: Add bestFeature to selectedList; Delete bestFeature from allFeatures;
16: end while
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McPAT-Calib

ML Calibration: Nonlinearit gression Model

¢ When complex workloads are executed on a CPU, the relationship between specific
modeling feature X; and resulting dynamic power Pgyuamic is nonlinear.

denumic Nf(Xl) (3)

¢ A scalable end-to-end tree ensemble model based on gradient boosting:
K
ji=oX) =) filx:), fieF (4)
k=1

¢ To learn the regression tree functions, minimize the following regularized objective:

L) = Gy + Y 0R), where 0(f) = AT + M|l ©
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Modleing Flow

McPAT-Calib
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AL Sampling

¢ A large number of labeled samples are needed to train the model.

¢ Labeling samples requires gate-level simulation and power analysis, which is
time-consuming (about 5-20 hours) and an unacceptable cost.

¢ Itis easy to obtain modeling features and only takes a few seconds.

¢ How to select the most beneficial samples to label under a limited budget?

* Obtain the features of all samples to form a sample pool {x, }I\_,.

¢ Each time the most useful sample is selected to label and added to the training set.
15/27



AL Sampling

Pre-clustering Sequential AL Sampling

¢ Pre-clustering: to ensure the representativeness and diversity.

¢ To increase the diversity in both feature and label spaces.

¢ In each iteration, select the sample x,, with the maximum d! to label:

di = min||ty — xn|||[f () = ymll, m=1,...kn=k+1,. N (6)

where f(x) is built by labeled samples {x,,, ¥ }%,_,; and unlabeled samples {x,}\, ;.

¢ The number of labeled samples reaches the budget M. =



AL Sampling

Pre-clustering Sequential AL Sampling

Algorithm 2 Pre-clustering Sequential AL Sampling

Require: S, a set of unlabeled samples {xn}l,;]:y where x, € R%; M, the maximum
number of samples to label;
Ensure: K, the training set of labeled samples {(x,, yx) }}L,; f(x), the power model;
1. K=¢;
Perform k-means clustering on S to obtain d clusters, C;,i =1, ..., d;
fori=1:ddo
Select the sample x closet to the center of C; to label;
Add (x,y) to K, delete x from S;
end for
fori=d+1:Mdo
Use the sample query strategy to select the most beneficial sample x in S to
label;
9: Add (x,y) to K, delete x from S;
10: end for
11: Use the training set K to build the power model f(x).

PN DA RN
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Evaluation

¢ 15 typical RISC-V BOOM configurations; 80 commonly used benchmarks.
¢ Total 15 x 80 = 1200 samples.

Table: Design Parameters and Power Statistics of Our 15 BOOM Configurations

Parameters | SmallBoomConfig MediumBoomConfig LargeBoomConfig MegaBoomConfig GigaBoomConfig
| SE  Default Pro | SE Default Pro | SE Default Pro | SE Default Pro | SE Default Pro
FetchWidth 4 4 4 4 4 8 8 8 8 8 8 8 8 8 8
DecodeWidth 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5
FetchBufferEntry 5 8 16 8 16 24 18 24 30 24 32 40 30 35 40
RobEntry 16 32 48 64 64 80 81 96 114 112 128 136 125 130 140
IntPhysRegister 36 52 68 64 80 88 88 100 112 | 108 128 136 | 108 128 140
FpPhysRegister 36 48 56 56 64 72 88 96 112 | 108 128 136 | 108 128 140
LDQ/STQEntriy 4 8 16 12 16 20 16 24 32 24 32 36 24 32 36
BranchCount 6 8 10 10 12 14 14 16 16 18 20 20 18 20 20
Memlssue/FplssueWidth 1 1 1 1 1 1 1 1 2 1 2 2 2 2 2
IntIssueWidth 1 1 2 1 2 2 2 3 3 4 4 4 5 5 5
DCache/ICacheWay 2 4 8 4 4 8 8 8 8 8 8 8 8 8 8
DCache/ICacheTLBEntry 8 8 16 8 8 16 16 16 32 32 32 32 32 32 32
DCacheMSHR 2 2 4 2 2 4 4 4 4 4 4 8 8 8 8
ICacheFetchBytes 2 2 2 2 2 4 4 4 4 4 4 4 4 4 4
Min.Power(mW) 954 1022 1211 | 11.89 1310 19.07 | 21.36 2281 28.03 | 26.39  34.10 3457 | 37.15 3412 36.70
Max.Power(mW) 1413 16.69 1994 | 22.64 27.74 3279 | 3807 4256 50.52 | 51.36 6272 64.22 | 61.80 59.75  63.82
Avg.Power(mW) 11.76 1353 15.64 | 1642 1794 24.60 | 28.02 30.02 3597 | 36.55 44.06 4552 | 45.62 43.26 46.38
Std.Power(mW) 1.22 1.70 1.73 | 2.81 3.95 376 | 4.62 5.00 5.56 | 6.06 727 7.84 | 6.00 6.64 7.10
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Evaluation

Metrics
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Evaluation
McPAT-7nm Results

Total 1200 samples: MAPE = 13.02% and R* = 0.817.

GigaBoom
GigaBoomPro
GigaBoomSE
LargeBoom
LargeBoomPro
LargeBoomSE
MediumBoom
MediumBoomPro
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MegaBoom
MegaBoomPro
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SmallBoom
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SmallBoomSE
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MCcPAT-7nm Modeling Results
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Evaluation
ML Calibration Results

¢ Due to multicollinearity, most models cannot obtain good results using all features.

¢ Feature selection can effectively improve accuracy, especially for linear models.

Table: Leakage and Dynamic Modeling Results

‘ Leakage Dynamic-Total Features Dynamic-Selected Features

Regressors
| MAPE | MAPE R? | K MAPE R?
LR 7.34% | 20.85% 0.816 48 7.40% 0.954
Lasso 8.08% | 17.97% 0.869 48  7.55% 0.951
Ridge 7.10% | 21.88% 0.790 48 7.31% 0.954
ElasticNet | 6.77% | 16.36% 0.889 22 9.20% 0.929
BRR 7.74% | 18.50% 0.867 48 7.30% 0.954
GPR 7.72% | 16.29% 0.895 15 9.32% 0.924
KNNR 821% | 20.64% 0.783 13 13.21% 0.903
Poly_SVR | 4.47% | 35.04% 0.462 18 9.34% 0.923
RBF_SVR | 6.09% | 31.41% 0.504 21 899% 0.940
DTR 7.76% | 14.70% 0.877 22 11.61% 0.914
RFR 7.46% | 10.56% 0.943 6  8.09% 0.958
ABR 7.64% | 14.24% 0.907 11 13.26% 0.893
GBR 8.88% | 10.98% 0.936 28 9.25% 0.943
BAGR 7.59% | 11.41% 0.931 6 9.92% 0.933
XGBR 7.81% | 7.40% 0.961 17 6.23% 0.969

21/27
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Evaluation

ML Calibration Results

¢ Leakage Power: 2-degree Ploy_SVR.

¢ Dynamic Power: XGBoost Regressor.

¢ Total Power: Pyt = P dynamic P leakage-

* 15-fold Shuffle-Split CV: MAPE = 3.38%, R* = 0.989.

Treat all samples as equal and perform random split validation.
* 15-fold Config-Split CV: MAPE = 5.22%, R* = 0.978.

Split according to configuration to simulate modeling unknown configurations.
* 20-fold Bench-Split CV: MAPE = 5.96%, R* = 0.958.

Split according to benchmark to simulate modeling unknown benchmarks.
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Evaluation
Comparison with Previous Work

¢ Design parameter-based: HPCA’07 [BC Lee, DM Brooks. HPCA, 2007.]

¢ Event statistics-based: TCAD’17 [M] Walker, S Diestelhorst, A Hansson, et al. TCAD,
2017.], TCAD’20 [M Sagi, NAV Doan, M Rapp, et al. TCAD, 2020.]

¢ MCcPAT result-based: PowerTrain [W Lee, Y Kim, JH Ryoo, et al. ISLPED, 2015.]

Table: Comparison with previous work

| Shuffle-Split  Unknown Config. Unknown Bench.
| MAPE  R* | MAPE R* | MAPE R?

HPCA'07 15.31% 0.807 | 18.37%  0.752 15.34%  0.807
TCAD’17 11.71% 0.899 | 14.31%  0.875 13.56%  0.842
TCAD’20 22.51% 0.746 | 24.58%  0.711 23.92%  0.690
PowerTrain | 9.33% 0.926 | 11.36%  0.906 9.60% 0.921

McPAT-7nm | 13.02% 0.817 | 13.02%  0.817 13.02%  0.817
McPAT-Calib | 3.38% 0.989 | 5.22% 0.978 5.96% 0.958

Methods

24/27



Evaluation
AL sampling Results

¢ 15-fold Config-Split CV: 1120 training samples, 80 testing samples.
¢ Our AL sampling algorithm can effectively reduce the demand for labeled samples.
¢ Reduce the demand for labeled samples by 50% with only a 0.44% loss of accuracy.

Table: MAPE under several typical sampling ratios

Ratio | 10% (112) 20% (224) 30% (336) 40% (448)  50% (560)

MAPE |  8.68% 6.91% 6.41% 5.92% 5.66%
Ratio | 60% (672) 70% (784) 80% (896) 90% (1008) 100% (1120)
MAPE | 5.65% 5.77% 5.47% 5.56% 5.22%
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Conclusion

¢ McPAT-7nm: Supports analytical power modeling by introducing 7nm FinFET
technology and microarchitecture modifications. It can also be used alone.

¢ ML Calibration: Separate calibration of leakage/dynamic & A wide range of feature
sources & Automatic feature selection & Advanced nonlinear regression.

¢ AL Sampling: The pursuit of sample diversity greatly reduces the demand for
labeled samples.

¢ Performance/Area/Timing Modeling?

¢ The DSE of modern CPUs, i.e., modeling a larger design space.
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