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Abstract—As the feature size of advanced integrated circuits keeps
shrinking, resolution enhancement technique (RET) is utilized to improve
the printability in the lithography process. Optical proximity correction
(OPC) is one of the most widely used RETs aiming at compensating
the mask to generate a more precise wafer image. In this paper, we put
forward a level-set based OPC with high mask optimization quality and
fast convergence. In order to suppress the disturbance of the condition
fluctuation in lithography process, we propose a new process window-
aware cost function. Then, a novel momentum-based evolution technique is
adopted, which demonstrates substantial improvement. Moreover, graphics
processing unit (GPU) is leveraged for accelerating the proposed algorithm.
Experimental results on ICCAD 2013 benchmarks show that our algorithm
outperforms all previous OPC algorithms in terms of both solution quality
and runtime overhead.

I. INTRODUCTION

In the past decades, much progress has been made in optical lithography
technology. In lithography process, pixelated optical masks are shaped
in design patterns, and projected on the wafer images. However, the
resolution of lithography system is proportional to the wavelength of
the lithographic source light, and it’s inversely proportional to the size
of the mask due to the diffraction effect [1]. Thus, it becomes more and
more challenging to further downscale the transistor since the feature
size is already much smaller than the light source wavelength (193 nm).

To further extend the resolution limit, several resolution enhancement
techniques (RETs) are proposed for mask optimization. Optical prox-
imity correction (OPC) as a major RET, aims at compensating for the
distortion of the printed image by pre-distorting the shape of the mask
pattern. ILT as an important OPC method, treats the mask optimization
as an inverse imaging problem which can be solved numerically. It aims
at optimizing the carefully designed objective function and adjusting
the pixel-wise mask backwards. A variety of attempts have been made
in ILT to improve both the printed pattern fidelity and the process
robustness [2]–[6].

However, the mask optimized by the pixel-wise ILT still contains
unwanted tiny isolated stains and edge glitches, creating the obstacles to
the mass production. As an alternate ILT strategy, level set algorithm has
been widely explored [7]–[10]. Different from regarding every pixel on
the mask as an isolated unit, level set method tracks the evolution of the
mask boundary to reduce the geometric deviation in final printed image
[11]. This improves the mask continuity and suppresses the degree of
irregularity.

In this paper, we develop a comprehensive developed level set method
to acquire better fidelity printed pattern. The major contributions of our
work can be listed: (i) We propose a novel process variation based cost
function, which could suppress the process variation band meanwhile
reduce the edge placement error. (ii) We develop effective conjugate
gradient method to improve the convergence. (iii) We adopt GPU
acceleration scheme and reduce the time of the optimization notably.
(iv) We perform experiments on ICCAD 2013 contest benchmarks and
the results turn out to be prominent among the top winner on the contest
and some previous algorithms.

The rest of the paper is organized as follows. Section II gives an
introduction of the lithography process and a problem formulation.
Section III gives the detailed elaboration of the optimization algorithm.
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Fig. 1 Two considered metrices: (a) The measurement of edge place-
ment error; (b) The measurement of PV Band.

Section IV details experimental results, followed by conclusion in
Section V.

II. PRELIMINARIES

In this section we introduce the preliminaries on the lithography model
and the mask optimization problem.

A. Lithography Process
The lithography process is composed of a projection optical model
and a photo-resist model. The first model transfers the incident light
containing information of mask pattern M(x, y) into the aerial image
I(x, y) on the wafer plane. Due to the diffraction effect, the aerial image
can be expressed:

I(x, y) =

K∑
k=1

µk|hk(x, y)⊗M(x, y)|2. (1)

In above equation, hk(x, y) is optical kernel functions. We apply Kth
order approximation to simplify the simulation, K = 24 is the total
number of optical kernels in accordance to the contest [12].

The aerial image I is then transformed into the wafer image R in
the photo-resist process by comparing the aerial intensity to the photo-
resist intensity threshold. To simulate this process, we adopt the constant
threshold model here, the mathematical expression is given as:

R(x, y) =

{
1, if I(x, y) ≥ Ith,
0, if I(x, y) < Ith,

(2)

where Ith is the intensity threshold controls the binary image on the
wafer plane.

B. Inverse Lithography Technique
Due to the low-pass property of the band-limited lithography system, the
printed wafer image R is typically a blurred version of the input mask
M as is written in Equations (1) and (2). The objective is to synthesize
a pre-distorted binary mask so that the corresponding printed image
could be as close to the target image R∗ as possible. Mathematically,
this equals to minimizing the geometric distance between the nominal
printed image with the target image:

M∗ = argmin
M

‖R−R∗‖2. (3)

In above equation, ‖ · ‖ is the Euclidean norm (L2 norm). Once the
image is printed on the wafer plane, several metrics are measured to
evaluate the quality of the image. In following parts, introduction of
two metrics, called edge placement error and process variation band
will be given.
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Fig. 2 Evolution process: (a) initial mask; (b) mask pattern after t
iterations.

C. Edge Placement Error
Edge placement error (EPE) is evaluated as the geometric distortion
of the target image. As is shown in Fig. 1(a), probe points are set
equidistantly on every horizontal and vertical edge. If the distance
D from target to the printed image is larger than the EPE constraint
thEPE , we label it as an EPE violation.

EPE violation(x, y) =

{
1, if D(x, y) ≥ thEPE ,
0, if D(x, y) < thEPE .

(4)

D. Process Variation Band
In real applications, process variation could cause the deviation in
final printed image, leading to printed failure. It’s essential to maintain
the robustness of printed image. Process Variation Band (PV Band)
is utilized to evaluate such robustness, which is defined as the XOR
(exclusive or) region between the outermost and innermost contour
under different process conditions, as is shown in Fig. 1(b). In this
paper, the depth of the focus (focus/defocus) and intensity of incident
light (dose) are considered as the process variables.

III. ALGORITHMS

In level set framework, the mask optimization process is transformed
into a contour evolution problem. Different from many ILT methods
in which each pixel is taken as an optimized unit, level set method
considers the mask boundary as a continuum. Fig. 2 gives an example
of the boundary evolution process. The initial position for the mask
boundary is represented by red contour in Fig. 2(a), the contour divides
the mask plane into three parts which could be characterized by the level
set function ψ(x, y). The function values outside and inside the mask
contour are set to be positive and negative respectively, and the contour
itself is zero boundary. The mathematical representation is given as

ψ(x, y) =


− d(x, y), if (x, y) ∈ C−,
0, if (x, y) ∈ ∂C,
d(x, y), if (x, y) ∈ C+,

(5)

where d(x, y) is the Euclidean distance from (x, y) to the mask contour
C. ∂C is the boundary of the mask. C− and C+ are the inner and outer
region of the mask respectively. Once the initial mask contour is given
by ψ0, the wafer image could be simulated and evaluated. After that
error information could be sent back to update the level set function.
The new mask is adjusted based on the changed function value. This
is a iterative method and the mask could be updated to optimum, as is
shown in Fig. 2.

A. Level Set Based ILT
For level set based ILT, we adopt the binary mask. Whether the pixel is
transmitted or blocked is determined by the level set function ψ(x, y),
the relation can be described:

M(x, y) =

{
min, if ψ(x, y) 6 0,

mout, if ψ(x, y) > 0.
(6)

In above equation min = 1 and mout = 0 mean that the pixel
on (x, y) is determined to be inner and outer of the mask. In general,

this level set based ILT algorithm is developed to reduce the pattern
distortion which is described in Equation (3). The cost function can be
expressed as:

Lnom(M) = ‖R−R∗‖2F . (7)

To enable the back propagation, we use sigmoid function to approx-
imate the step function in Equation (2):

R = sig(I) =
1

1 + e−s(I−Ith)
, (8)

where s is the steepness. By combining Equations (1), (7) and (8), we
could get the detailed expression of the nominal cost function:

Lnom(M) =

∥∥∥∥∥sig

[
K∑
k=1

µk|hk(x, y)⊗M(x, y)|2
]
−R∗

∥∥∥∥∥
2

. (9)

Given the cost function, the velocity v(x, y) can be deduced based
on [13]:

v(x, y) = −∂Lnom(M)

∂M
|∇ψ(x, y)|, (10)

where |∇ψ(x, y)| is the gradient of level set function. We need to
calculate the Jacobian of the cost function Lnom(M) at M:

∂Lnom(M)

∂M
= G(M) =

∂‖R−R∗‖2

∂M
= 2(R−R∗)

∂R

∂M

=2(R−R∗)R(1−R)
∂

∂M

K∑
k=1

(µk|hk(x, y)⊗M(x, y)|2)

=2(R−R∗)R(1−R)

� ∂

∂M

K∑
k=1

µk(hk(x, y)⊗M(x, y))� (h†k(x, y)⊗M(x, y))

=2

K∑
k=1

µk · {hk ⊗ [(R∗ −R)�R� (1−R)� (h†k ⊗M)]

+ h†k ⊗ [(R∗ −R)�R� (1−R)� (hk ⊗M)]}.
(11)

B. Process Variation Based Cost Function

To keep the optimization algorithm robust to different process condi-
tions, a process variation band based cost function should be taken
into consideration. We propose a new cost function which could help
minimize the PV band area and meanwhile improve the quality of
printed image without aggravating increasing computational burden:

Lpvb(M) = ‖Rin(M)−R∗‖2 + ‖Rout(M)−R∗‖2. (12)

To achieve a low cost value in Equation (12), Rin(M) and Rout(M)
should be both close to the target image, which is stricter than
minimizing the distance between Rin(M) and Rout(M). This adjusted
cost function could guide the optimization process to find desired mask,
which could generated wafer image with tolerable PV band and less
EPE number.

The total cost function is a linear combination of Equation (7) and
Equation (12):

L = Lnom(M) + wpvbLpvb(M). (13)

The gradient of total cost function can also be expressed in a
separated way:

G(M) = Gnom(M) + wpvbGpvb(M), (14)

where wpvb is the weight of the PV band cost function. The calculation
of Gpvb(M) is similar to Equation (11).



C. Conjugate Gradient Method
Conjugate gradient (CG) methods are proved to be efficient when
solving optimization problems in large scale system. In our work, a
CG method is applied to help achieve a better convergence. Denoting
the velocity in ith iteration as vi:

vi =

{
−G(M)|∇ψ0|, if i = 0,

−G(M)|∇ψi|+ λivi−1, if i > 0,
(15)

where λi is the conjugate gradient coefficient characterized by specific
CG method. We adopt the Polak-Ribiere-Polyak (PRP) CG method
proposed in [14]. In PRP method, the expression of CG coefficient
is:

λPRPi =
‖Gi(M)|∇ψi|‖2 −Gi(M)|∇ψi| ·Gi−1(M)|∇ψi−1|

‖Gi−1(M)|∇ψi−1‖2
.

(16)
By utilizing the gradient information in the former iteration, PRP

algorithm could adjust the searching direction adaptively. The jamming
could thus be effectively prevented.

D. Level Set Based ILT Mask Update Algorithm
Based on the technics introduced above, we could build a complete
iterative algorithm to generate the optimal mask using level set function.
In initialization stage, the mask M0 is initialized in the same shape
with target R∗. Then level set function ψ0(x, y) for the initial mask
can be calculated with Equation (5) (line 1). The mask is sent into
forward lithography simulator and printed on wafer plane described by
Equations (1) and (8). Once the wafer image R0 is generated, gradient
of total cost function G0(M) is calculated by Equation (11) (line 2).
From Equation (15), the starting velocity v0 is set as the negative initial
gradient (line 3).

In every iteration, the optimization process starts from choosing a
proper time step ∆ti (line 5). In order to keeping the stability, we
supress the value of ∆ti with regarding to the maximum value of
evolution velocity: ∆ti = λt/max(|vi(x, y)|). Then the change of
level set function could be calculated (line 6). The level set function in
the next iteration could be updated (line 7), leading to the correction
of mask pattern (line 8). After that the wafer image is simulated and
evaluated (line 9), the gradeint for the next iteration could be computed
(line 10), followed by the calculation of new velocity (line 12). The
loop will continue until the pre-set iteration number N is achieved or
the maximum velocity is less than the tolerance ε, which means the
optimization process has found a stable result. The whole process is
described in Algorithm 1.

The updated mask in the last iteration loop is chosen as the optimized
mask M∗.

E. GPU-enabled Acceleration
A GPU is formed by multiple units named streaming multiprocessors
(SM). Each SM can execute many threads concurrently. Compute
unified device architecture (CUDA) is a parallel computing platform
and programming model developed by NVIDIA for its GPU. As
is expressed in Equation (1), the level set method requires massive
calls of forward lithography simulation which brings a large amount
of computational efforts from convolution operations. Based on the
properties of convolution, we can transform the calculation of aerial
image intensity into the following expression:

M⊗H =

K∑
k=1

µk ·(M⊗ hk) =

K∑
k=1

M⊗(µk · hk) = M⊗
K∑
k=1

µk ·hk,

(17)
where H is the general kernel function defined as the weighted sum
of the optical kernel functions. With this transformation, the general

Algorithm 1 Level-set based ILT method flow

Require: : Target image R∗, optical kernals h1, . . . ,hk, resistant
model steepness s, intensity threshold Ith, max iteration number
N , velocity tolerance ε.

Ensure: Optimized mask M∗.
1: Initialize: ψ0 ←M0;
2: G0(M)← ∂L0(M)

∂M
;

3: v0 = −G0(M)|∇ψ(x, y)|;
4: repeat
5: Time step: ∆ti ← λt

max(|vi(x,y)|)
;

6: Level-set function: ψi+1 ← ψi + vi(x, y)∆ti;

7: Mask pattern: Mi+1(x, y) =

{
min, if ψ(x, y) 6 0,

mout, if ψ(x, y) > 0,
;

8: Evaluate the printed image with Score function:
Ri+1, (Ri+1)in, (Ri+1)out;

9: Gradient of cost function: Gi+1(M)← ∂Li+1(M)

∂M
;

10: λPRPi+1 ←
‖Gi(M)|∇ψi|‖2−Gi(M)|∇ψi|·Gi−1(M)|∇ψi−1|

‖Gi−1(M)|∇ψi−1‖2
;

11: vi+1 = −Gi+1(M)|∇ψ(x, y)|+ λPRPi+1 · vi;
12: until i ≥ N or |v|max ≤ ε

kernal function could be precomputed in a multi-processing way. This
could reduce convolution operations by K times and greatly improves
the efficiency of our approach.

We apply fast Fourier transform (FFT) algorithm to accelerate
convolution operations. By efficiently converting convolution opera-
tions between point-value representation and coefficient representation,
FFT algorithm reduces the convolution computations from O

(
N2
)

to
O(N log(N)). We implement FFT algorithm using CUDA toolkit for
GPU-acceleration. Our GPU-based FFT algorithm provides a simple
interface to compute FFTs by leveraging parallelism of the GPU, which
reduces the total runtime to a large extend. Moreover, Equation (17) can
be computed with GPUs in parallel to further reduce the total runtime.

IV. EXPERIMENTAL RESULTS

Our level set ILT algorithm is implemented in C/C++ on an Intel
Xeon E5-2690 V4 CPU with 2.6 GHz and 32 GB RAM. The GPU
acceleration experiments are tested on a single Nvidia Tesla P100 GPU
accelerator (16GB card). We adopt the 193nm wavelength lithography
system with a defocus range of ±25 nm and a dose range of ±2%,
which is provided in the ICCAD 2013 contest [12]. We adopt 24 optical
kernel functions in optical model, the threshold intensity in photo-
resist model is 0.225. The PV band metric system and EPE checker
modules are also provided in the contest. Ten benchmarks composed
of rectangles and polygons in different sizes released by IBM [12] are
tested. Each benchmark layout is a 32nm 1x Metal layer. The size of
the image is 2048nm×2048nm with the resolution of 1nm2 per pixel.
The outermost final printed pattern is generated at nominal focus and
+2% dose while the innermost printed pattern is generated at defocus
and −2% dose. The EPE violation threshold thEPE is set to 15nm.
EPE is measured on the sample points locate on the pattern edges every
40nm.

To evaluate the effectiveness of our method quantitively, we adopt
four metrics described in [12], which are number of edge placement
error (#EPE), process variation band area (PVB), runtime(RT) and
number of shape violations. The score function is the linear combination
of those metrics:

Score = RT+4×PVBand+5000×#EPE+10000×ShapeViol. (18)

In above score function, ShapeViol is the number of shape violations
visually checked from the final printed image.

We compare our results introduced before with the four recent



TABLE I Comparison with top winners of ICCAD 2013 contest and previous algorithms
Test case MOSAIC fast [6] MOSAIC exact [6] robust OPC [15] PVOPC [16] Ours

ID Pattern area #EPE PVB Score #EPE PVB Score #EPE PVB Score #EPE PVB Score #EPE PVB Score

B1 215344 6 58232 263246 9 56890 274267 0 66218 265150 2 58269 243240 4 62693 270895
B2 169280 10 47139 238812 4 48312 214493 0 53434 213878 0 52674 210826 1 50724 207977
B3 213504 59 82195 624101 52 84608 600955 18 146776 677256 47 81541 561367 29 100945 598994
B4 82560 1 28244 118298 3 24723 115161 0 33266 133371 0 26960 108030 0 29831 119508
B5 281958 6 56253 255327 2 56299 237363 1 65631 267713 4 61820 267342 1 56510 231116
B6 286234 1 50981 209238 1 49285 204224 0 62068 248625 0 55090 220414 1 51204 209881
B7 229149 0 46309 185475 0 46280 186761 0 51069 204495 0 51977 207982 0 45056 180288
B8 128544 2 22482 100186 2 22342 100031 0 25898 103691 0 22869 91541 1 22757 96095
B9 317581 6 65331 291646 3 62529 268138 1 75387 306667 0 70713 282907 0 64597 258466
B10 102400 0 18868 75703 0 18141 73276 0 18536 74205 0 17846 71425 0 18769 75140

Avg. 236203 227467 249505 226507 224836

Pattern area / PVB unit: nm2

TABLE II Runtime comparison

Case MOSAIC [6] robust OPC PVOPC Ours
Fast Exact [15] [16] CPU GPU

B1 318 1707 278 164 365 123
B2 256 1245 142 130 303 81
B3 321 2523 152 203 902 214
B4 322 1269 307 190 591 184
B5 315 2167 189 62 218 76
B6 314 2084 353 54 223 65
B7 239 1641 219 74 220 64
B8 258 663 99 65 200 67
B9 322 3022 119 55 219 63
B10 231 712 61 41 206 64

Avg. 289.6 1703.3 191.9 103.8 344.7 100.1

Runtime unit: second

process window-aware pixel based OPC methods: MOSAIC fast, MO-
SAIC exact in [6], robust OPC in [15] and PVOPC in [16]. The
results and score comparisons (ratio) are recorded in Table I. It’s worth
mentioning the authors of [15] offered their detailed data to us, based
on which we are able to compute the score values using Equation (18).
Althougn the tradeoff between EPE counts and PV band area is still
challenging to handle, our method successfully attains the best general
performance with lowest score among all the compared methods. The
results show our method could generate robust and high fidelity patterm
images on these benchmarks, and it reveals potentional for achieving
high quality masks for other desired patterns.

We display our runtime results tested on CPU and GPU respectively
and compare them with the methods listed in TABLE I. The runtime
is measured from the input of target pattern to the production of
optimized mask. Results are shown in TABLE II. MOSAIC fast adopts
an alternate gradient method to reduce computational time, the runtime
is 16% better than our CPU results. Considering this algorithm is tested
on a different machine with higher CPU frequency (3.4 GHz) and
32 GB memory, this difference is tolerable. MOSAIC exact sacrifices
the computational efficiency to pursue high quality mask, we achieve
4.94× speedup on this. The robust OPC consumes 44% less time than
ours. However, the simulations consume most time in the optimizaton
process. As is explained in [15], they only run the simulators in two
process conditions for each iteration and estimate the results in third
process condition using the experiment data. For PVOPC, our run time
on CPU is almost 70% longer.

By adopting GPU-acceleration we greatly reduce the computational
time in all cases without degenerating the fidelity or robustness of
the masks. It has 71% runtime reduction compared with our CPU
result. We could achieve the fastest among all the listed methods.
This runtime superiority could be essential to develop the industrial
production effeciency.

V. CONCLUSION

In this paper, we develop a level set inverse lithography mask optimiza-
tion method with CUDA speedup to generate mask pattern with high
fidelity and robustness in very short time. We formulate the new process
variation based cost function to minimize the PV band and pattern
displacement effecitively. Conjugate gradient algorithm is adopted to
help improve the convergence. We also use GPU to accelerate the
optimization process. Numerical experimental results show that our
method could produce better masks in short time, and it is robust to
different process variations.
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