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Background s
High-level synthesis (HLS)

» Translate high-level programming languages (e.g., C/C++) to low-level hardware
description languages (HDLs).

» Under the guidance of the HLS directives (pragmas).

P> Same high-level descriptions, different HLS directives — different hardware
implementations.

» For each application, a group of HLS directives is represented as a configuration
vector x.

comp (int in[10], int out[10]):

1n[1] = out[i];

Pseudo-codes and HLS directives. The directives are in red. Each directive has some factors, e.g., 2, 5, and 10.
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High Level Logic Synthesis - Implementation
Synthesis Stage Stage Stage
v v v
Post-HLS Post-Synth Post-Impl
Reports Reports Reports

Longer running times, more accurate reports

Multiple conflicting design objectives (three fidelities)

» delay, power consumption, and resource consumption
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Pareto optimality — find some Pareto-optimal points

» 3 objective functions. f,, : X — R, for
m=1,2,3.
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» 3 objective functions. f,, : X — R, for
m=1,2,3.

> Avalue pointy = [ fi(x),/2(x),f3(x) ], in
the value space ).

» Fory;,y; € ), y; dominates y; when
Yim > Yjm> forVm € {15 27 3},
represented as y; = y;.

» The non-dominated points are called
Pareto-Optimal Set, P(Y) € ).

» Blank cells are dominated

> Pareto hyper-volume PV, . (P(})).
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Target

» Find the Pareto-optimal points in HLS design problem

Challenges

> Hard to predict the performance values according to the directives
> Hard to characterize the complicated relationships between the multiple objectives
» Hard to balance the consumption of running time and accuracy of results

Requirements

» Develop a flexible and general method
> Strike a balance between optimization workloads and accuracy of results
> Able to characterize the complicated relationships between the HLS directives and

multiple objectives
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Our Solution

Optimization strategy
P> Bayesian optimization

» Acquisition function: expected improvement

Multi-fidelity model

» Non-linear Gaussian process model

Multi-objective model
» Pareto learning

» Correlated Gaussian prorcess model
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Multi-Fidelity Model pare”

Traditional linear correlation model

() = o X fu ) + £ ().

» o' ascaling factor. £¢(x): error term.

Our non-linear correlation model

The reports of the low fidelity are concatenated as part of the inputs to the next high fidelity.

In®) = 2, (i (),30) + £ ().

» 7/ (-): correlation term, modelled by a GP model.
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Multi-Objective Model — Pareto Learning

Acquisition function: expected improvement of Pareto hyper-volume

> Atstep r + 1 of Bayesian optimization, we already have data set D = {x;,y,}._,, with
P(Y) = {ys}._,. Sample a new point x,,1, the predicted value is y(x/41).

EIPV(x,11|D) = Ey(y(x,, ) D) [PVry (P(Y UY(x11))) — PV, (P(V))] -
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Acquisition function: expected improvement of Pareto hyper-volume
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> Atstep 7 + 1 of Bayesian optimization, we already have data set D = {x,,y;}'_,, with
P(Y) = {ys}._,. Sample a new point x,,1, the predicted value is y(x/41).

EIPV (x11|D) = Ep(y(x, D) [PV, (P(Y Uy (xi11))) = PVy, (P(V))] -

b3

bt
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Combined Model DATE™"

» Two dimensions: one for the multi-objective functions, one for the multi-fidelities.
» Augment acquisition function:
Timpl

PEIPV;(x;.1|D) = EIPV;(x.11|D) - 2,

i € {hls, syn,impl},

max PEIPV,, i € {hls, syn,impl}
12

P Select the largest one, and run the compilation flow to that fidelity.

Input Features

HLS Syn

o
hik
00,

(pEPv,. | [PEEPV,. ] [ PEPV,,. |
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Experiments and Results

Experimental settings

» 5 traditional benchmarks, 1 DNN benchmark

» All HLS code are compiled via Vivado HLS to get the reports (for validation of results of
various algorithms).

Quality metric — average distance to reference set (ADRS)

» I reference set (real Pareto set).
> () learned Pareto set.

ADRS(T", Q) |F| Zmlnf v, w)
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Results

All algorithms use the same input features.

» Bayesian methods: 8 initial samples, at most 40 optimization steps.
» Other methods, each training set has 48 points.

Table: Normalized Experimental Results

Model Normalized ADRS Normalized Standard Deviation of ADRS Normalized Overall Running Time
Ours FPL18 ANN BT DAC19 | Ours FPL18 ANN BT DAC19 | Ours FPL18 ANN BT DAC19
GEMM 0.27 050 1.00 0.65 1.08 |0.12 046 1.00 0.37 0.90 0.68 0.83 1.00 1.00 7.00

iSmart2 0.65 0.68 1.00 1.28 149 | 020 0.75 1.00 1.10 1.24 0.42 088 1.00 1.00 7.00
SORT_RADIX 0.64 072 1.00 1.09 094 |048 057 100 172 2.28 0.3 047 1.00 1.00 7.00
SPMV_ELLPACK | 0.19 047 1.00 0.22 1.21 0.09 024 1.00 0.06 0.99 065 0.42 1.00 1.00 7.00
SPMV_CRS 0.22 029 1.00 209 1.15 |0.03 026 1.00 2.09 1.52 0.72 090 1.00 1.00 7.00
STENCIL3D 0.39 041 1.00 040 041 0.03 057 1.00 0.00 0.05 044 041 1.00 1.00 7.00

Average 0.39 051 1.00 09 105 | 0.16 047 1.00 0.89 1.16 0.54 0.65 1.00 1.00 7.00
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Example — GEMM

Directives

1
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> INLINE, PIPELINE, UNROLL, Mul_LUT, DSP48, ARRAY_PARTITION, BRAM.

GEMM (LUT, Delay)

1.0 . Data
0.8 Real Pareto
+.+I X  Ours
%0.6 > + FPL18
§9) ANN
00471 ,x DAC19
0.2 '+><I 4 . XGBoost
% 2
0.0 X
0.0 0.1 0.2
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Thank you!
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