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Abstract
With continued scaling, transistor aging induced by Hot Carrier

Injection and Bias Temperature Instability causes a gradual failure of
nanometer-scale integrated circuits (ICs). In this paper, to character-
ize the multi-typed devices and connection ports, a heterogeneous
directed multigraph is adopted to efficiently represent analog IC post-
layout netlists. We investigate a heterogeneous graph convolutional
network (H-GCN) to fast and accurately estimate aging-induced
transistor degradation. In the proposed H-GCN, an embedding gen-
eration algorithm with a latent space mapping method is developed
to aggregate information from the node itself and its multi-typed
neighboring nodes through multi-typed edges. Since our proposed
H-GCN is independent of dynamic stress conditions, it can replace
static aging analysis. We conduct experiments on very advanced
5nm industrial designs. Compared to traditional machine learning
and graph learning methods, our proposed H-GCN can achieve more
accurate estimations of aging-induced transistor degradation. Com-
pared to an industrial reliability tool, our proposed H-GCN can
achieve 24.623× speedup on average.

1 Introduction
With continued scaling, the susceptibility of nanometer-scale

transistors to aging-related wear-out phenomena has increased sig-
nificantly in integrated circuits (ICs) [1]. As shown in Figures 1(a)
and 1(b), two major aging-related wear-out mechanisms of semi-
conductor-based micro-electronic devices are bias temperature in-
stability (BTI) and hot carrier injection (HCI) [2]. These aging effects
cause transistor parameters, e.g., threshold voltage, to shift from their
nominal values over time, resulting in a gradual circuit failure [3–5].
Compared with digital ICs, the analog ICs are more susceptible to
these transistor parameters.

In order to save development costs and provide the opportunity
for interactive feedback during the design process, estimating aging-
induced transistor degradation before committing the design to sili-
con is a key step in computer-aided design (CAD). Compared with
pre-layout netlists, the aging analysis on post-layout netlists has
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Figure 1: BTI and HCI mechanisms. (a) BTI: accumulated
holes in silicon/oxide interface result in breaking of Si-H
bonds; (b) HCI: due to high electric field in drain side, hot
carriers cause breaking of Si-H bond and traps oxide bulk.

more accurate judgment since post-layout netlists contain parasitic
capacitances and resistances.

Modeling aging-induced transistor degradation has been studied
in many works of literature. Tu et al. adopted a voltage-controlled
current source model to identify reliability problems such as the
HCI issue in the design stage [6]. A repetitive simulation scheme
was applied to ensure an accurate prediction of the BTI- and HCI-
induced circuit-level degradation process in Hot-Carrier Reliability
Simulation [4]. In [3], a Reaction-Diffusion model was proposed to
determine delay degradation caused by Negative BTI. Other ana-
lytical models were well surveyed and concluded in [7]. Moreover,
a ring-oscillator-based sensor was used to calibrate aging-induced
circuit performance degradation [1].

However, there are also several limitations and drawbacks of these
analytical models. Firstly, a correct judgment on the reliability of
the circuits heavily relies on the appropriate stress conditions for
aging analysis [8]. It is hard to find the appropriate stress conditions
that lead to the actual case on the aging-prone transistors. While
the static aging analysis causes inaccurate judgment on the aging-
prone transistors since the dynamic stress conditions are completely
ignored. Secondly, it is time-consuming to achieve accurate detec-
tions when these models are implemented within the simulators. It
is difficult to find a compromise between computational complexity
and model accuracy for the model implementation.

Convolutional neural networks (CNNs) have achieved great suc-
cess in CAD such as the design for manufacturability [9]. Intuitively,
an analog IC netlist can be well represented as a graph. However, the
graph is an irregular grid-based data, which is not as straightforward
as the convolution and pooling in traditional CNNs. Graph convolu-
tional networks (GCNs) were proposed to perform machine learning
tasks on these irregular grid-based data [10, 11]. Recently, GCNs
were adopted to predict observation point candidates on design for

https://doi.org/10.1145/3394885.3431546
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testability [12]. However, the analog IC netlists have heterogene-
ity since typical analog ICs contain multi-typed basic devices and
multi-typed connection ports. Therefore, traditional GCN cannot be
directly used on analog IC netlists.

In this paper, considering multi-typed connection ports and de-
vices with different design parameters, a heterogeneous directed
multigraph is adopted to efficiently represent a post-layout netlist.
Then we propose a heterogeneous GCN (H-GCN) to fast and ac-
curately estimate aging-induced transistor degradation. In our pro-
posed H-GCN, an embedding generation algorithm with a latent
space mapping method is developed to aggregate information from
the node itself and its multi-typed neighboring nodes through multi-
typed edges. Since our proposed H-GCN is independent of dynamic
stress conditions, it can replace static aging analysis. A neighborhood
sampling method is used to ease large scale circuit training and re-
duce GPU memory overhead. We conduct experiments on advanced
5nm industrial designs to show the proposed H-GCN can achieve
more accurate estimations of aging-induced transistor degradation.

2 Problem Formulation
Before committing the design to silicon, aging-induced transistor

degradation is required to accurately estimate in the post-layout
simulation to judge circuit reliability. However, the actual degree
of the aging-induced transistor degradation is hard to be estimated
by using the traditional aging analysis. The traditional static aging
analysis causes inaccurate judgment on the aging-prone transistors
since the dynamic stress conditions are completely ignored. While
the traditional dynamic aging analysis heavily relies on the dynamic
stress conditions such as clock speeds and waveform swings. As an
example in Figure 2, there are four combinations of stresses. However,
there is only one stress resulting in the device aging. Furthermore, if
there are massive combinations for stresses in circuits, it is expensive
and time-consuming to obtain the actual degree of the aging-induced
transistor degradation. dvtlin (HCI+BTI) is used to assess the
degree of aging-induced transistor degradation in the industry [5].
dvtlin (HCI+BTI) is defined as follows:

Definition 1 (dvtlin(HCI+BTI)). dvtlin(HCI+BTI) is de-
fined as the shifting value of threshold voltage of the transistor from
fresh to 10 years due to HCI and BTI.

The larger dvtlin (HCI+BTI) is, the worse aging-induced
transistor degradation is, vice versa. For convenience, in this paper,
we shorten dvtlin (HCI+BTI) as dvtlin.

NAND
1.8V

0.8V 0.8V
INV1 INV2

A

B

OUT

1.8V device

0.8V device

(a)

Vol. (v) A B OUT Aging
stress 1 1.8 1.8 0 No
stress 2 1.8 0 0 No
stress 3 0 1.8 0 No
stress 4 0 0 1.8 Yes

(b)

Figure 2: Aging effects and stress conditions in the circuit.

Based on the above description, we define our problem formula-
tion as follows.

Problem 1 (Estimating dvtlin in Analog ICs). Given some ana-
log IC post-layout netlists and a list containing all transistors with
dvtlin obtained by the dynamic aging analysis as the training
set, our task is training a model on the training set to fast and accu-
rately estimate the dvtlin of transistors on the testing set while
minimizing the estimation error.

3 Heterogeneous Graph Representation
To perform an embedding generation algorithm in a GCN-based

framework, we treat each device, direct current (DC) voltage source
or ground as a node and represent the analog IC post-layout netlists
as a graph. Note that the dynamic stresses are not considered so
that our model can be independent of them. A Naïve method is to
construct a homogeneous undirected multigraph to represent the
circuit netlist. In this homogeneous undirected multigraph, each
undirected edge represents one path from one device to another
device. It allows multiple edges between any two nodes since there
may be multiple paths between two devices.

The typical analog IC netlists have heterogeneity since they con-
tain multi-typed basic devices and multi-typed connection ports.
An inevitable problem of the homogeneous representation method
is that it fails to characterize the diversities among ports, devices,
connections, and relative sequential relationships. We set the type
of the edges as the type of the ports to which it connects. In order to
express these diversities, we will propose a heterogeneous directed
multigraph representation, which is defined as follows.

Definition 2 (Heterogeneous directed multigraph). A heteroge-
neous directedmultigraph is defined as a graphHMGd (Vhmд ,Ehmд ,

OVhmд ,REhmд ,φhmд), where Vhmд is the set of nodes, Ehmд is the
multiset of edges.OVhmд andREhmд represent the sets of node types
and edge types, respectively. φhmд is adopted to assign each node
in Vhmд to a node type, i.e., φhmд(υi ) ∈ OVhmд for ∀υi ∈ Vhmд . r
indicates the edge type, such that r ∈ REhmд . Each instance in Ehmд
is ((υi ,υj ), r ) and the ordered pair (υi ,υj ) satisfies υi ,υj ∈ Vhmд .

We use an example to show this heterogeneous directed multi-
graph representation. As shown in Figure 3(a), if we stand at the gate
of the transistor M3 and lookout, we will see transistors M1, M3 and
M4. Thus there are three directed edges with gate connections from
M1, M3 and M4 to the transistor M3 as shown in Figure 3(b). This
method is inspired by circuit analysis, where the input impedance
is obtained in the same fashion. In the same manner, we can obtain
the directed multigraph corresponding to the gate connections as
shown in Figure 3(b). Furthermore, the circuit netlist in Figure 3(a)
is finally transformed into the multigraph in Figure 4.

In particular, considering that the electrical characteristics of
direct current voltage sources and grounds are not influenced by
other devices, we set them to be predecessors.

We use one adjacency matrix to represent one type of edges in
the heterogeneous multigraph. The adjacency matrix of the type r
connection is defined as Ar , where each element Ar (i, j) is the num-
ber of the instance ((υi ,υj ), r ) in the multiset Edmд . As an example,
the adjacency matrix of the gate connection in the heterogeneous
directed multigraph in Figure 3(b) is shown in Figure 3(c).
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Vdd

M3 M4

M1 M2

R

(b)

M1 M2 M3 M4 R Vdd GND

M1 0 1 0 0 0 0 0

M2 1 0 0 0 0 0 0

M3 1 0 1 1 0 0 0

M4 1 0 2 0 0 0 0

R 0 0 0 0 0 0 0

Vdd 0 0 0 0 0 0 0

GND 0 0 0 0 0 0 0

(c)

Figure 3: The heterogeneous directed multigraph representa-
tion. (a) The differential amplifier; (b) The gate connection;
(c) The adjacency matrix.

Vdd

M3 M4

GND

M1 M2

R

(a)

Vdd

M3 M4

GND

M1 M2

R

(b)

Vdd

M3 M4

GND

M1 M2

R

(c)

Vdd

M3 M4

GND

M1 M2

R

(d)

Figure 4: A heterogeneous directed multigraph with multi-
typed edges. (a) Drain; (b) Gate; (c) Source; (d) Others.

4 Heterogeneous GCN
4.1 Notations

As discussed in Section 3, given an analog IC netlist, we can trans-
form it to be a heterogeneous directed multigraph HMGd (Vhmд ,

Ehmд ,OVhmд ,REhmд ,φhmд). Then we can obtain |REhmд | adja-
cency matrices, i.e., Ar for ∀r ∈ REhmд . Besides, the device υi ∈
Vhmд has hφhmд (υi ) design parameters for φhmд(υi ) ∈ OVhmд .
Note that the number of design parameters relies on the type of
device. We use these design parameters as the node features, i.e.,
xυi ∈ R

1×hφhmд (υi ) and φhmд(υi ) ∈ OVhmд for ∀υi ∈ Vhmд .

4.2 Unified Latent Space Mapping
A typical analog IC netlist contains multiple types of devices,

which have different design parameters. We regard each device as
a node and use its design parameters as the node features vector.
To perform embedding generation algorithm and aggregate infor-
mation from the node itself and its multi-typed neighboring nodes,
a straightforward method is to concatenate all of these design pa-
rameters as a long feature vector with one-hot encoding. However,
it will miss some structural information among multi-typed nodes
as well as unstructured content associated with each node [13]. In
this paper, a latent space mapping method is used to transform the
features vectors of all multi-typed nodes into a unified latent space.

We propose to use node-type-related mapping matrices to map
the original feature vectors. For a node υi ∈ Vhmд whose node type
is t = φhmд(υi ) ∈ OVhmд and feature vector is xυi ∈ R1×ht , we
define a node-typed-related matrixUt ∈ R

ht×λ to map the feature
vector with length ht into a unified λ-dimension latent space, i.e.,
fυi = xυi ·Ut ∈ R

1×λ . In order to ease the model training on GPUs,

we extend it to be a matrix-matrix multiplication as follows:

F =
∑

t ∈OVhmд

Xt ·Ut ∈ R
|Vhmд |×λ , (1)

where Xt ∈ R
|Vhmд |×ht is a feature matrix stacking the feature

vectors of all type-t nodes. In particular, a node feature vector is
0 ∈ R1×ht if the type of the node is not t . F is the feature matrix,
where the feature vectors of all nodes are in a unified latent space.

As an example, there are three types of nodes (devices) in Fig-
ure 3(a), i.e., OVhmд = {vs, trans, res}. Thus there are three fea-
ture matrices: Xvs = [0⊤, 0⊤, 0⊤, 0⊤, 0⊤,x⊤Vdd ,x

⊤
GND ]

⊤, Xtrans =

[x⊤M1, x
⊤
M2,x

⊤
M3,x

⊤
M4, 0

⊤, 0⊤, 0⊤]⊤ and Xr es = [0⊤, 0⊤, 0⊤, 0⊤,x⊤R ,
0⊤, 0⊤]⊤.

It is noted that the concatenated features representation is a spe-
cial case of latent space representation. Compared with the con-
catenated features representation, our latent space representation is
general enough and can effectively exploit and encode features.

4.3 Embedding Generation
As mentioned above, the analog IC netlists are represented as

heterogeneous directed multigraphs. After applying the proposed
latent space mapping method, the features of nodes share the same
representation forms. An H-GCN model is proposed as the skeleton
of the estimation model, and the inputs are the unified latent feature
representations of all nodes and adjacency matrices corresponding
to the heterogeneous multigraph.

As discussed in Section 3, we use one adjacency matrix to rep-
resent one type of edges in the heterogeneous directed multigraph.
In order to distinguish among different connection ports, inspired
by [12], we assign a learnable model coefficient to each adjacency
matrix. Then the overall connection of the heterogeneous directed
multigraph can be expressed as the summation of the adjacency ma-
trices of all types of edges with these model coefficients. For example,
as shown in Figure 4, there are four adjacency matrices Aд , As , Ad
and Aotr in the heterogeneous directed multigraph. We assign four
model coefficientswд ,ws ,wd andwotr to distinguish them. There-
fore, the connections of the heterogeneous directed multigraph can
be expressed aswдAд +wsAs +wdAd +wotrAotr .

In our proposed H-GCN, we develop an novel embedding gen-
eration algorithm to aggregate information of the node itself and
its multi-typed neighboring nodes through multi-typed edges as
follows:

F (l−1)
N

=
©­­«

∑
r ∈REhmд

wrAr
ª®®¬ · F (l−1), (2)

F (l ) = σ
(
CONCAT

(
F (l−1)
N
, F (l−1)

)
·W (l )

)
, (3)

whereW (l ) is learnable model coefficients in the l-th layer. F (l )
N

is
the feature representation of neighboring nodes in the l-th layer.
F (l ) is the feature representation of all nodes in the l-th layer.wr is
a model coefficient for the type-r connection. CONCAT(·) denotes
the concatenation operation. Our proposed embedding generation
algorithm (i.e., forward propagation) is summarized in Algorithm 1.
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Algorithm 1 Embedding Generation of H-GCN
Input: |REhmд | adjacency matrices Ar and connection-type-

related model coefficientswr with ∀r ∈ REhmд ; feature matrices
of all nodes corresponding to each type of nodes Xt and node-
type-related latent spacemappingmatricesUt with∀t ∈ OVhmд ;
Search depth D; non-linear activation function σ (·); Model coef-
ficients matricesW (l ).

1: F (0) ←
∑
t ∈OVhmд

XtUt ;
2: for l = 0 to D − 1 do
3: F (l )

N
←

(∑
r ∈REhmд

wrAr

)
· F (l );

4: F (l+1) ← σ
(
CONCAT

(
F (l )
N
, F (l )

)
·W (l )

)
;

5: end for
6: return Embedding feature matrix F (D).

Algorithm 1 describes the embedding generation process, where
multiple adjacency matricesAr , connection-type-related model coef-
ficientswr , feature matrices of all nodes corresponding to each type
of nodes Xt , node-type-related latent space mapping matrices Ut
are provided as inputs. According to Equation (1), the latent space
mapping matricesUt are used to map features of all nodes Xt into
a unified feature representation F (0). Let l denotes the current step
in the loop (the depth of the search) and F (l ) denotes the feature
representation of all nodes at this step. Then each step in the loop of
Algorithm 1 proceeds as follows: Firstly, all nodes aggregate the fea-
ture representations of the nodes in their immediate neighborhood
into a matrix F (l )

N
. Then the aggregated neighboring feature matrix

F (l )
N

is concatenated with the node’s current representation F (l ). And
this concatenated feature matrix is fed through a fully connected
(FC) layer with nonlinear activation function σ (·) which makes the
model more robust. The outputs are used at the next step of the
algorithm.

Note that only transistors are prone to have aging degradations in
analog IC netlist while features of all devices need to be fed into our
proposed H-GCN to perform the embedding generation algorithm.
Thus a mask matrix with size #transistors × #devices is used to
extract the estimated dvtlin of transistors in the last embedding
layer. Then several traditional FC layers are adopted to construct the
relationships between embedding features and dvtlin. Finally, the
H-GCN generates an output that represents the estimated dvtlin
of transistors. Mean Square Error (MSE) function is used as the loss
function to compute the errors between the ground-truth and our
estimated dvtlin. All model coefficients, including wr , Ut and
W (l ) in Algorithm 1, are obtained by the back propagation and the
gradient-based method in end-to-end fashion in the training stage.

4.4 Large Scale Graph Training via
Neighborhood Sampling

With the fast development of semiconductors, massive devices
and connections are integrated into an analog IC, which leads to
great challenges in memory overhead to the model training because
of the iterative embedding generations among neighboring nodes
on large graphs.

To achieve enough scalability on large graphs, a probability-based
neighborhood sampling algorithm is proposed, inspired by [10, 14].

In each back-propagation process, whether one neighboring node is
computed in the gradients is determined by the probability propor-
tional to the degree of this neighboring node. Note that although the
original analog IC netlist has been represented as a heterogeneous di-
rectedmultigraphwith |REhmд | adjacencymatricesAr (r ∈ REhmд ),
the sampling probability is compuated according to the overall adja-
cency matrix A ≜

∑
r ∈REhmд

Ar . The sampling probability is given
by Equation (4).

P(υi ) =
|A(i, :)| + |A(:, i)| −A(i, i)

|A|
, (4)

where |A| is summation of all of the elements in matrix A, i.e., the
summation of degrees of all of the nodes, and |A(i, :)| (|A(:, i)|) is the
summation of the i-th row (column) in A. A(i, i) is the number of
self-loops of the node υi .

As shown in Algorithm 2, three are D aggregation layers in the
H-GCN model. A thresholdT determines whether the neighborhood
set should be sampled to reduce the training overhead. Starting from
the input node set Vs , we iteratively traverse the graph and add all
of the nodes we have visited in the k-hop neighborhood into V(k ).
k-hop neighborhood is the set of nodes at the distance less than or
equal to k from the node itself. All of the nodes we have visited in the
D-hop neighborhood are finally stored in a node set V(D). Except the
starting set Vs , all of the other nodes in V(D) are sampled according
to the probability defined in Equation (4) into the final node set Vb .
Vb is the sampled node set of Vs . While computing the gradients
of nodes in Vs , only the neighbor nodes in Vb are considered. Our
proposed neighborhood sampling algorithm can be naturally used
in the inference stage.

Algorithm 2 The Neighborhood Sampling Algorithm
Input: The input node set Vs , neighborhood threshold T .
1: V(0) ← Vs ;
2: for k = 1 to D do
3: V(k ) ← V(k−1);
4: for all µ ∈ V(k−1) do
5: V(k) ← V(k) ∪N(µ);
6: end for
7: end for
8: if |V(D) | > T then
9: for all υi ∈ V(D)\Vs do
10: Calculate P(υi ) according to Equation (4);
11: end for
12: Sample T − |V(D) | nodes according to the probability P to

the set Vb ;
13: else
14: Vb ← V(D);
15: end if
16: return The sampled node set Vb ;

Figure 5(a) is an example to illustrate the sampling algorithm.
There are three aggregation layers and the sampling threshold T
is set to 3. The initial input node set is Vs = {M3,M4}. The 3-hop
neighborhood node set V(3) is {M1,M2,M3,M4,Vdd,R,GND}. Ex-
cept for M3 and M4 in Vs , we only need to sampleT − |Vs | = 1 more
node from V(D)\Vs . According to Equation (4), M1 has the largest
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Figure 5: (a) Neighborhood expansions; (b) The sampled set
Vb .

probability to be sampled. If M1 is sampled, the output node set is
Vb = {M1,M3,M4} as shown in Figure 5(b). While computing the
gradients of M3 and M4, only Vb is computed.

5 Experimental Results
The experiments are illustrated on five different industrial phase-

locked loop designs implemented in very advanced 5nm technology
node. These designs are represented with post-layout netlists. Be-
cause post-layout netlists have parasitic capacitances and resistances
information, compared to pre-layout netlists, the aging analysis on
post-layout netlists can achieve more accurate judgements. The post-
layout netlist files consist of Spectre and SPICE formats, as inputs
in our models. We run an industrial dynamic aging design for re-
liability (DFR) tool to obtain the dvtlin value of each transistor.
Note that in each design, the stress conditions are given by very
sophisticated designers to obtain dvtlin as golden-truth value.
Compared the traditional static aging analysis, our model has more
accurate estimations since it is trained with degradation obtained
from the industrial aging DFR tool with the appropriate stress. To
evaluate the estimation performance, each time, we use one of five
designs for testing and all others four designs for training.

The statistics of the five industrial phase-locked loop designs
are shown in Table 1. Each design is parsed and flattened. Then all
alternating current (AC) voltage sources (dynamic conditions), such
as behavioral signal (Verilog-A description), sine wave, pulse and
piecewise linear (pwl), are ignored while all DC voltage sources are
considered so that our model can be independent of the dynamic
stress conditions. Except for AC voltage sources, there are 32 types
of basic devices in all designs. All of these devices are divided into 6
categories as listed in Table 2. Their feature vectors have different
lengths, i.e., the #Feature. Correspondingly, 6 matrices are adopted
to map feature vectors into a unified latent space.

According to the domain knowledge, the four ports of transistors
and two ports of diodes play an important role in circuit analysis.
Consequently, in the heterogeneous graph representation, all of the
edges connecting to these six types of ports are emphasized by cate-
gorizing them into six types of edges. All of the edges connecting
to other ports are uniformly treated as an individual type of edges.
In total, seven adjacency matrices are used to specify various con-
nection ports, i.e., corresponding to gate, drain, source, substrate,
anode, cathode and others. One-hot representation method is used
to encode the type vector.

Four baselines are implemented in the experiments, as shown in
Table 3. All of these four baseline models use concatenated features.

Two are traditional machine learning methods: Gaussian Process
Regression (GPR), and MLP. The traditional GCN [10] which treats
the analog IC netlist as homogeneous undirected multigraphs men-
tioned in Section 3 is compared with our proposed H-GCN to prove
the effectiveness of our heterogeneous directed multigraph repre-
sentation and heterogeneous embedding generation. As an ablation
study, our H-GCN-concat uses the proposed heterogeneous directed
multigraph representation and concatenation feature representa-
tion to verify the effectiveness of our unified latent space mapping
algorithm. In other words, the difference between H-GCN and H-
GCN-concat is that H-GCN uses the proposed unified latent space
mapping algorithm while H-GCN-concat adopts concatenation fea-
ture representation.

In our H-GCNmodel, ReLU function is used as the activation func-
tion. To improve numerical stability, we normalize all feature vectors
and adjacency matrices. We use MSE between the ground-truth and
our estimated dvtlin as loss function with weight decay hyperpa-
rameter 10−7 and stochastic gradient descent for optimization. To
make a trade-off between GPU memory efficiency and accuracy, we
use the proposed embedding generation with depth D = 2 shown in
Algorithm 1 and 3 FC layers in our proposed H-GCN. Thanks to our
proposed neighborhood sampling, GCN, H-GCN-concat and H-GCN
have enough scalability on the large graph, whose node number is
up to 185K in Table 1. And we set the node sampling size T = 1000
in Algorithm 2. Each output feature size is 512. Batch size is 32 and
the number of the training epoch is 500. These configurations and
parameters are determined by grid search. MLP has five FC layers.
The traditional GCN and H-GCN-concat are both composed of two
embedding layers and 3 FC layers. In conclusion, MLP, GCN and our
H-GCN-concat have the same configurations with H-GCN.

The proposed graph representation is implemented with Python
and Networkx library. GCN models are implemented with Tensor-
Flow, and are trained and tested on a Linuxmachinewith 18 cores and
NVIDIA Tesla V100 GPU with 32GB memory. The baseline machine
learning methods are implemented with Python and scikit-learn.

Mean absolute error (MAE) defined in Equation (5) is used as a
metric to evaluate the absolute accuracy on the testing set.

MAE = 1
n

n∑
i=1
|yi − ŷi |, (5)

where i indicates the i-th transistor. yi is dvtlin, as the golden-
truth value, obtained by the industrial dynamic aging DFR tool with
the appropriate stress given by very sophisticated designers. ŷi is the
estimated dvtlin by machine learning or graph learning methods.
n is the number of transistors on the testing set. In addition, we use
r2 score defined in Equation (6) as a metric to evaluate the relative
accuracy on the testing set.

r2score = 1 −
∑n
i=1(yi − ŷi )

2∑n
i=1(yi − ȳ)

2 , (6)

where ȳ denotes the mean of the golden-truth valuesyi on the testing
set. r2 score indicates how the regression prediction perfectly fits
the data. The higher r2 means the better relative accuracy.

The MAE results are shown in Figure 6(a). Our proposed H-GCN
estimates dvtlin with the lowest 1.701mV error on average and
outperforms all of these four baselines by a lot. Compared with
traditional GCN, our H-GCN-concat is much better which shows that
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Table 1: Statistics of Designs

Design #trans. #device #net
1 4348 99009 18155
2 4382 99696 18299
3 3999 179758 31303
4 3998 185480 33819
5 523 31279 6002

Table 2: Types of Devices

Type #Design parameters
MOS 51

MOS spice 75
DIO/ESD 8

Cap 12
R 6

VSource 1

Table 3: Baseline Algorithms

Method Feature Graph representation
Concat. Latent Homo. Heter.

GPR ! / /
MLP ! / /
GCN ! !

Our H-GCN-concat ! !

Our H-GCN ! !

Design GPR MLP GCN [10] Our H-GCN-concat Our H-GCN
MAE r2 Score MAE r2 Score MAE r2 Score MAE r2 Score MAE r2 Score

1 3.394 0.366 3.037 0.370 1.416 0.618 1.307 0.775 1.060 0.807
2 3.481 0.448 3.283 0.540 1.395 0.601 1.355 0.763 1.070 0.784
3 5.041 0.257 4.736 0.415 4.404 0.558 2.771 0.760 2.462 0.791
4 4.985 0.245 4.850 0.401 4.408 0.548 2.811 0.749 2.487 0.753
5 4.641 0.393 4.230 0.595 2.344 0.792 1.861 0.818 1.427 0.851

Ave. 4.308 0.342 4.027 0.464 2.793 0.627 2.021 0.773 1.701 0.797

(a)

D1 D2 D3 D4 D5 Ave.
102

103

104

Ru
nt
im

e
(s)

Industrial DFR tool H-GCN

24
.623
×

(b)

Figure 6: (a) MAE (mV) and r2 Score Comparisons; (b) Runtime comparison with the industrial DFR tool.

our heterogeneous directed multigraph representation algorithm
improves the performance significantly. Our H-GCN is also better
than our H-GCN-concat, which further verify the effectiveness of
our unified latent space mapping algorithm.

As shown in Figure 6(a), compared with other methods, our H-
GCN achieves the highest r2 scores on all of these five designs.
Therefore, according to Figure 6(a), our proposed H-GCN can achieve
the best accuracy.

We also compare the runtime of our proposed H-GCN with the
industrial dynamic aging DFR tool with an appropriate stress as
shown in Figure 6(b). For fairness, the runtime of our proposed H-
GCN is composed of the graph representation and H-GCN inference
shown in Algorithm 1. As shown in Figure 6(b), compared with the
industrial dynamic aging DFR tool, our H-GCN achieves the faster
runtime on all of these five designs. On average, our proposedH-GCN
can achieve 24.623× speedup. In practice, as mentioned in Section 2,
the worst case is hard to find by the traditional dynamic aging
simulator since all cases of stress need be considered. So compared
with the industrial dynamic aging DFR tool, our proposed H-GCN
can achieve further speedup.

6 Conclusion
In this paper, a heterogeneous directed multigraph is adopted to

efficiently represent analog IC post-layout netlists. Then we propose
an H-GCN to fast and accurately estimate aging-induced transis-
tor degradation. We develop an embedding generation algorithm
with a latent space mapping to aggregate information from the node
itself and its multi-typed neighboring nodes through multi-typed
edges. A neighborhood sampling method is used to ease the model
training on large scale graphs and reduce GPU memory overhead.
Since our proposed H-GCN is independent of dynamic stress condi-
tions, it can replace static aging analysis. We conduct experiments
on very advanced 5nm industrial designs. Compared to traditional
machine learning and graph learning methods, the proposed H-GCN
can achieve more accurate estimations of aging-induced transistor

degradation. Compared to an industrial dynamic aging DFR tool,
our proposed H-GCN can achieve 24.623× speedup on average.
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