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Deep Learning Enables Intelligent DFM i

Lithography Hotspot Detection [Yang+,TCAD*19] [Jiang+,DAC’19]

[Geng+,ICCAD’20]
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Deep Neural Networks Are Fragile [RACEm

Deep Neural Networks Are Vulnerable to Adversarial Examples [Goodfellow+,ICLR’15]
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“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

+*Goodfellow, lan J., Jonathon Shlens, and Christian Szegedy. “Explaining and harnessing adversarial
examples”, in ICLR, 2015
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Rethinking Deep Learning-based Hotspot Detection ﬂﬁﬂm

Are DLHSDs Apparently Secure?
» Layouts are consistent with design rules and schematic designs.
» Adversarial examples are generated by pixel-wise manipulation on original image.
» DLHSDs are invulnerable to adversarial examples (generated by SOTA).
The Answer Is No. [Liu+, TODAES’20] }
» Neural networks see limited training data.
» DRC-clean and functionality-preserving manipulation on layouts are feasible.
Why Look for Adversarial Layouts?
» Designs of Interest
» Robust ML Design

tLiu, Kang, et al. "Adversarial Perturbation Attacks on ML-based CAD: A Case Study on CNN-based
Lithographic Hotspot Detection." ACM Transactions on Design Automation of Electronic Systems (TODAES)
25.5 (2020): 1-31.
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Preliminaries UHEM

Terminologies

P> X: Input layout image

» f(-; W): Trained neural networks parameterized by W

> y* € {0,1}: Label of X

» y = f(X): Predicted logit of X

» X’ = X + R: Adversarial layout image by including perturbations R on X
Objective

> Given X satisfying y* = 1 and f(X) > 0, we want to find R such that X’ is DRC-clean
and as close to X as possible and in the mean time, f(X’) < 0.
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Generating Adversarial Layouts (L Topaesz2o DACe:
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Generating Adversarial Layouts (L Topaesz2o |]H[:

Iterative Run Till the Label Flipped.
1. Feedforward to acquire the gradient of loss w.r.t. input.
2. Locate regions with largest gradient response.
3. Place perturbation.

The Procedure

min [|R|[Z, R— _Waf(X)
st. f(X+R;W) <0, ox ’ { = argmax > aXxy '
F(X; W) > 0. X=X+R (o) €Ry

Pixel-based Gradient Method Is Not Optimal
» Some perturbed pixels in the selected grid do not contribute to flip the label.
P> Not designed to remove geometry as candidate perturbations.
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Group Gradient Method Is Our Proposal |]H[: =

- £le) = | S ekl
s.t. fX—i—Zoz,'Xi;W)<

o + a; <1,Vi,jecC,
a; € {0,1},Vi.

> X = {X;}: A group of perturbation candidates that do not violate design rules with
existing geometry and affect design functionality.

> «; € {0, 1}: Coefficients indicate whether X; is selected.
» L: The change of the layout by inserting perturbations.
> (C: Conflict set indicates whether two perturbations can be selected simultaneously.
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The Group Gradient Method DACE
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Perturbed Layout Adversarial Candidates

» lllustration of the proposed attack scheme, with a solution of ap = 1,4 = 1 and
app = 1.
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Perturbation Candidate Enumeration

Positive Candidate Negative Candidate
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Xi(i,7) = { 0, if(i,j) €S. Xiig) = { 0,
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Perturbation Candidate Enumeration ﬂﬂﬂﬁ
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> (a) Massive perturbation candidates, (b) Legal perturbation candidates.

> Visualization of perturbation candidate generation
X = {X1,X2,X3,X7,Xs,X11,X12,X13}. Due to design rule violation with existing
shapes {X4, Xs, Xs, Xo, X10} will not be included in the perturbation candidate set X'
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Numerical Optimization

min L(o —IIZaXIIF,
s.t. fX—i—Za,-Xl-;W)<O,

a; +a; < 1,Vi,j eC,
€ {0,1},Vi.

» Nonlinear Integer Programming.
» Non-Convex.
» No closed form solution.
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Numerical Optimization DACE

H}in Econt(a) = H ZaiXiH%’
i

st f(X+ ) aX; W) <0,
i

OS (67 S I,Vl

» The constraint regarding to the conflict set is processed in perturbation candidate
enumeration.

» Problem relaxed to continuous.
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Numerical Optimization

min Lon (@) = |3,

st f(X+ ) X W) <0,

1

0<a;<1,Vi.

» Objective approximation.
» Reduce computation significantly.
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Numerical Optimization ﬂﬁﬂ@

Theorem

Let a},,; and o, be the optimal solution of Lcont and Lsim, respectively, then we have,
Leont(Atgont) < Leont(tgim)
and,

Leont(Qtgim) — Leont(Qgont)

< Nleginllg - 11Xs117 = llozonl I3 - [1Xell7,

where § = argmax; [eTX;e| and £ = argmin, [eTX;e|.
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Numerical Optimization

min Liag(er, ) = [ler][3 + M (X + Zain-; W),

st. A>0,0<a; <1,V

» Problem simplification with Lagrangian relaxation.

1

o = e _ﬁ,ﬁleRW

> Auxiliary variables introduced to keep « fall into [0, 1] during optimization.
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Numerical Optimization
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Numerical Optimization
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Overall Flow ﬂﬂﬂﬁ
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Candidate Optimization p

» Candidate perturbations are generated by scanning over the entire clip ensuring a
comprehensive solution space.

» GGM optimizes toward DRC-clean perturbation circumventing post-processing and
potential deviation from optimality.

» Gradient back-propagation and perturbation candidate determination steps make the
framework robust when more changes are used to create adversarial layout examples.
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Comparison with State-of-the-Art
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Comparison with State-of-the-Art

mm GGM = PGM
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Adversarial Attack Visualization

(a) Origin (f = 0.6005) (b) Step-1 (f = 0.4984)

(c) Step-2 (f = 0.0835)  (d) Step-3 (f = —1.043)
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On the Importance of Hyper Parameters
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Conclusion ﬂﬂﬂﬁ

> We examine the risks of deep learning-based lithography hotspot detectors assuming
a practical adversarial attack scenario, and hence motivate us the generation of
adversarial layouts.

> We explain that adversarial example generation employing a conventional pixel-based
gradient method deviates from the optimal when making legal perturbations.

> We recommend the group gradient method that makes DRC clean perturbations by
solving an unconstrained optimization problem with an objective function that is
differentiable.

> We expect this study will spur research in defenses against adversarial layout
examples culminating in robust machine learning solutions in VLSI design and sign-off
flow.
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