
Counteracting Adversarial Attacks in
Autonomous Driving

Qi Sun1, Arjun Ashok Rao1, Xufeng Yao1, Bei Yu1, Shiyan Hu2

1The Chinese University of Hong Kong
2University of Southampton

1 / 21

Vision-Based Object Detection
Classification
I output: class label

Localization
I output: bounding box in image

Object Detection:

I class label l
I bounding box in image, represented as vector (x, y,w, h)

2 / 21

Vision-Based Object Detection
Region Proposal Network (RPN)7IKMSR�5VSTSWEP�3IX[SVO�
753�

��

2EMHFWQHVV�VFRUHV

%RXQGLQJ�%R[�5HJUHVVLRQ

,Q�SUDFWLFH��N� ������GLIIHUHQW�VFDOHV�DQG���DVSHFW�UDWLRV�

Objectness scores Bounding box regression

I Generate k boxes, regress label scores and coordinates for the k boxes.
I Use some metrics (e.g., IoU) to measure the qualities of boxes.

3 / 21

Vision-Based Object Detection
Faster R-CNN
Vision-based object detection model.

3

image

conv layers

feature maps
Region Proposal Network

proposals

classifier

RoI pooling

Figure 2: Faster R-CNN is a single, unified network
for object detection. The RPN module serves as the
‘attention’ of this unified network.

into a convolutional layer for detecting multiple class-
specific objects. The MultiBox methods [26], [27] gen-
erate region proposals from a network whose last
fully-connected layer simultaneously predicts mul-
tiple class-agnostic boxes, generalizing the “single-
box” fashion of OverFeat. These class-agnostic boxes
are used as proposals for R-CNN [5]. The MultiBox
proposal network is applied on a single image crop or
multiple large image crops (e.g., 224⇥224), in contrast
to our fully convolutional scheme. MultiBox does not
share features between the proposal and detection
networks. We discuss OverFeat and MultiBox in more
depth later in context with our method. Concurrent
with our work, the DeepMask method [28] is devel-
oped for learning segmentation proposals.

Shared computation of convolutions [9], [1], [29],
[7], [2] has been attracting increasing attention for ef-
ficient, yet accurate, visual recognition. The OverFeat
paper [9] computes convolutional features from an
image pyramid for classification, localization, and de-
tection. Adaptively-sized pooling (SPP) [1] on shared
convolutional feature maps is developed for efficient
region-based object detection [1], [30] and semantic
segmentation [29]. Fast R-CNN [2] enables end-to-end
detector training on shared convolutional features and
shows compelling accuracy and speed.

3 FASTER R-CNN
Our object detection system, called Faster R-CNN, is
composed of two modules. The first module is a deep
fully convolutional network that proposes regions,
and the second module is the Fast R-CNN detector [2]
that uses the proposed regions. The entire system is a

single, unified network for object detection (Figure 2).
Using the recently popular terminology of neural
networks with ‘attention’ [31] mechanisms, the RPN
module tells the Fast R-CNN module where to look.
In Section 3.1 we introduce the designs and properties
of the network for region proposal. In Section 3.2 we
develop algorithms for training both modules with
features shared.

3.1 Region Proposal Networks
A Region Proposal Network (RPN) takes an image
(of any size) as input and outputs a set of rectangular
object proposals, each with an objectness score.3 We
model this process with a fully convolutional network
[7], which we describe in this section. Because our ulti-
mate goal is to share computation with a Fast R-CNN
object detection network [2], we assume that both nets
share a common set of convolutional layers. In our ex-
periments, we investigate the Zeiler and Fergus model
[32] (ZF), which has 5 shareable convolutional layers
and the Simonyan and Zisserman model [3] (VGG-16),
which has 13 shareable convolutional layers.

To generate region proposals, we slide a small
network over the convolutional feature map output
by the last shared convolutional layer. This small
network takes as input an n ⇥ n spatial window of
the input convolutional feature map. Each sliding
window is mapped to a lower-dimensional feature
(256-d for ZF and 512-d for VGG, with ReLU [33]
following). This feature is fed into two sibling fully-
connected layers—a box-regression layer (reg) and a
box-classification layer (cls). We use n = 3 in this
paper, noting that the effective receptive field on the
input image is large (171 and 228 pixels for ZF and
VGG, respectively). This mini-network is illustrated
at a single position in Figure 3 (left). Note that be-
cause the mini-network operates in a sliding-window
fashion, the fully-connected layers are shared across
all spatial locations. This architecture is naturally im-
plemented with an n⇥n convolutional layer followed
by two sibling 1⇥ 1 convolutional layers (for reg and
cls, respectively).

3.1.1 Anchors
At each sliding-window location, we simultaneously
predict multiple region proposals, where the number
of maximum possible proposals for each location is
denoted as k. So the reg layer has 4k outputs encoding
the coordinates of k boxes, and the cls layer outputs
2k scores that estimate probability of object or not
object for each proposal4. The k proposals are param-
eterized relative to k reference boxes, which we call

3. “Region” is a generic term and in this paper we only consider
rectangular regions, as is common for many methods (e.g., [27], [4],
[6]). “Objectness” measures membership to a set of object classes
vs. background.

4. For simplicity we implement the cls layer as a two-class
softmax layer. Alternatively, one may use logistic regression to
produce k scores.

4 / 21

Stereo-Based Vision System
A typical stereo-based multi-task object detection model

I Two sibling branches (e.g., RPN modules) which use left and right images as inputs.
I A single branch conducts a regression task, e.g. predict viewpoint. Sometimes there

are several independent single branches.

5 / 21

Stereo-Based Vision System

I Take advantage of left and right images to detect cars.
I Conduct multiple 3D regression tasks based on the joint detection results.

xy
z

/HIW�,PDJH

("#, %&)

"#(")(
")

("*, %+) 5LJKW�,PDJH

�'��'�3URMHFWLRQ

�'�%RXQGLQJ�%R[

,
-

ℎ

Figure 5. Sparse constraints for the 3D box estimation (Sect. 4).

tal seven equations corresponding to seven measurements,
where the sign of {w

2 , l
2} should be changed appropriately

based on the corresponding 3D box corner. Truncated edges
are dropped on above seven equations. These multivariate
equations are solved via Gauss-Newton method. Different
from [17] using single 2D box and size prior to solve the
3D position and orientation, we recover the 3D depth infor-
mation more robustly by jointly utilizing the stereo boxes
and regressed dimensions. In some cases where less than
two side-surfaces can be completely observed and no per-
spective keypoint up (e.g., truncation, orthographic projec-
tion), the orientation and dimensions are unobservable from
pure geometry constraints. We use the viewpoint angle ↵
to compensate the unobservable states (See Fig. 3 for the
illustration):

↵ = ✓ + arctan(�x
z). (2)

Solved from 2D boxes and the perspective keypoint, the
coarse 3D box has accurate projection and is well aligned
with the image, which enables our further dense alignment.

5. Dense 3D Box Alignment
The left and right bounding boxes provide object-level

disparity information such that we can solve the 3D bound-
ing box roughly. However, the stereo boxes are regressed
by aggregating the high-level information in a 7 ⇥ 7 RoI
feature maps. The pixel-level information (e.g., corners,
edges) contained in original image is lost due to multiple
convolution filters. To achieve sub-pixel matching accu-
racy, we retrieve the raw image to exploit the pixel-level
high-resolution information. Note that our task is differ-
ent with pixel-wise disparity estimation problem where the
result might encounter either discontinuity at ill-posed re-
gions (SGM [10]), or oversmooth at edge areas (CNN based
methods [29, 12, 2]). We only solve the disparity of the
3D bounding box center while using the dense object patch,
i.e., we use plenty of pixel measurements to solve one single
variable.

Treating the object as a regular-shaped cube, we know
the depth relation between each pixel with the center of 3D

bounding box solved from Sect. 4. To exclude the pixel
belonging to the background or other objects, we define a
valid RoI as the region is between the left-right boundary
keypoints and lies in the bottom halves of the 3D box since
the bottom halves of vehicles fits the 3D box more tightly
(See Fig. 1). For a pixel located at the normalized coordi-
nate (ui, vi) in the valid RoI of the left image, the photo-
metric error can be defined as:

ei =
���Il(ui, vi) � Ir(ui � b

z+�zi
, vi)

��� , (3)

where we use Il, Ir to denote the 3-channels RGB vector of
left and right image respectively; �zi = zi � z the depth
differences of pixel i with the 3D box center; and b the base-
line length. z is the only objective variable we want to solve.
We use bilinear interpolation to get sub-pixel value on the
right image. The total matching cost is defined as the Sum
of Squared Difference (SSD) over all pixels in the valid RoI:

E =
PN

i=0 ei. (4)

The center depth z can be solved by minimizing the total
matching cost E, we can enumerate the depth efficiently to
find a depth that minimizes the cost. We initially enumerate
50 depth values around the initial value with 0.5-meter in-
terval to get a rough depth and finally enumerate 20 depth
values around the rough depth with 0.05-meter interval to
get the accurately aligned depth. Afterwards, we rectify
the entire 3D box using our 3D box estimator by fixing the
aligned depth (See Table. 6). Consider the object RoI as a
geometric-constraint entirety, our dense alignment method
naturally avoids the discontinuity and ill-posed problems in
stereo depth estimation, and is robust to intensity variations
and brightness dominant since each pixel in the valid RoI
will contribute to the object depth estimation. Note that this
method is efficient and can be a light-weight plug-in mod-
ule for any image-based 3D detection to achieve depth rec-
tifying. Although the 3D object does not fit the 3D cube
rigorously, relative depth errors caused by the shape varia-
tion are much more trivial than the global depth. Therefore
our geometry-constraint dense alignment provides accurate
depth estimation of object center.

6. Implementation Details
Network. As implemented in [25], we use five scale an-
chors of {32, 64, 128, 126, 512} with three ratios {0.5, 1,
2}. The original image is resized to 600 pixels in the shorter
side. For Stereo RPN, we have 1024 input channels in the
final classification and regression layer instead of 512 layers
in the implementation [19] due to the concatenation of the
left and right feature maps. Similarly, we have 512 input
channels in the R-CNN regress head. The inference time
of Stereo R-CNN for one stereo pair is around 0.28s on the
Titan Xp GPU.

Take advantage of left and right images.

3HUVSHFWLYH
.H\SRLQWV

[

]
%RXQGDU\
.H\SRLQWV

�'�6HPDQWLF�.H\SRLQWV

3HUVSHFWLYH
.H\SRLQWV

%RXQGDU\
.H\SRLQWV

Figure 4. Illustration of 3D semantic keypoints, the 2D perspective
keypoint, and boundary keypoints.

RoI with left GT boxes is higher than 0.5, meanwhile the
IoU between right RoI with the corresponding right GT box
is also higher than 0.5. A left-right RoI pair is considered as
background if the maximum IoU for either the left RoI or
the right RoI lies in the [0.1, 0.5) interval. For foreground
RoI pairs, we assign regression targets by calculating off-
sets between the left RoI with the left GT box, and offsets
between the right RoI with the corresponding right GT box.
We still use the same �v,�h for left and right RoIs. For
dimension prediction, we simply regress the offset between
the ground-truth dimension with a pre-set dimension prior.

Keypoint Prediction. Besides stereo boxes and view-
point angle, we notice that the 3D box corner which pro-
jected in the box middle can provide more rigorous con-
straints to the 3D box estimation. As Fig. 4 presents, we de-
fine four 3D semantic keypoints which indicate four corners
at the bottom of the 3D bounding box. There is only one 3D
semantic keypoint can be visibly projected to the box mid-
dle (instead of left or right edges). We define the projection
of this semantic keypoint as perspective keypoint. We show
how the perspective keypoint contributes to the 3D box es-
timation in Sect. 4 and Table. 5. We also predict two bound-
ary keypoints which serve as simple alternatives to instance
mask for regular-shaped objects. Only the region between
two boundary keypoints belongs to the current object and
will be used for the further dense alignment (See Sect. 5).

We predict the keypoint as proposed in Mask R-CNN
[8]. Only the left feature map is used for keypoint predic-
tion. We feed the 14 ⇥ 14 RoI aligned feature maps to six
sequential 256-d 3 ⇥ 3 convolution layers as illustrated in
Fig. 1, each followed by a ReLU layer. A 2 ⇥ 2 deconvolu-
tion layer is used to upsample the output scale to 28 ⇥ 28.
We notice that only u coordinate of the keypoints provide
additional information besides the 2D box. To relax the
task, we sum the height channel in the 6 ⇥ 28 ⇥ 28 out-
put to produce 6 ⇥ 28 prediction. As a result, each col-
umn in the RoI feature will be aggregated and contribute
to the keypoint prediction. The first four channels repre-

sent the probability that each of four semantic keypoints is
projected to the corresponding u location. The other two
channels represent the probability of each u lies in the left
and right boundary respectively. Note that only one of four
3D keypoints can be visibly projected to the 2D box middle,
thereby softmax is applied to the 4⇥28 output to encourage
that one exclusive semantic keypoint is projected to a single
location. This strategy avoids the probable confusion of per-
spective keypoint type (corresponding to which of semantic
keypoints). For the left and right boundary keypoints, we
apply softmax on the 1 ⇥ 28 outputs respectively.

During training, we minimize the cross-entropy loss over
4 ⇥ 28 softmax output for perspective keypoint prediction.
Only a single location in the 4⇥ 28 output is labeled as per-
spective keypoint target. We omit the case where no 3D se-
mantic keypoint is visibly projected in the box middle (e.g.,
truncation and orthographic projection cases). For bound-
ary keypoints, we minimize the cross-entropy loss over two
1 ⇥ 28 softmax outputs independently. Each foreground
RoI will be assigned the left and right boundary keypoints
according to the occlusion relations between GT boxes.

4. 3D Box Estimation
In this section, we solve a coarse 3D bounding box

by utilizing the sparse keypoint and 2D box information.
States of the 3D bounding box can be represented by x =
{x, y, z, ✓}, which denotes the 3D center position and hor-
izontal orientation respectively. Given the left-right 2D
boxes, perspective keypoint, and regressed dimensions, the
3D box can be solved by minimize the reprojection error
of 2D boxes and the keypoint. As detailed in Fig. 5, we
extract seven measurements from stereo boxes and perspec-
tive keypoints: z = {ul, vt, ur, vb, u

0
l, u

0
r, up}, which rep-

resent left, top, right, bottom edges of the left 2D box, left,
right edges of the right 2D box, and the u coordinate of the
perspective keypoint. Each measurement is normalized by
camera intrinsic for simplifying representation. Given the
perspective keypoint, the correspondences between 3D box
corners and 2D box edges can be inferred (See dotted lines
in Fig. 5). Inspired from [17], we formulate the 3D-2D re-
lations by projection transformations. In such a viewpoint
in Fig. 5:

vt = (y � h
2)/(z � w

2 sin✓ � l
2cos✓),

ul = (x � w
2 cos✓ � l

2sin✓)/(z + w
2 sin✓ � l

2cos✓),

up = (x + w
2 cos✓ � l

2sin✓)/(z � w
2 sin✓ � l

2cos✓),

. . .

u0
r = (x � b + w

2 cos✓ + l
2sin✓)/(z � w

2 sin✓ + l
2cos✓).

(1)
We use b to denote the baseline length of the stereo cam-
era, and w, h, l for regressed dimensions. There are to-

Multiple stereo-based tasks.

6 / 21

Adversarial Attacks

I Vision-based systems suffer from image perturbations (noises, dark light, signs, etc.).

I Deep learning models are vulnerable to these perturbations.

I The security risk is especially dangerous for 3D object detection in autonomous driving.

I Adversarial attacks have been widely studied to simulate these perturbations.

I Two typical and widely used attack methods: Fast Gradient Sign Method (FGSM) and
Projected Gradient Descent (PGD).

7 / 21

Generate Adversarial Images
Fast Gradient Sign Method (FGSM)

I Direction of gradient: sign(∇x L(θ, x, y)), with loss function L(θ, x, y).
I Generates new input image with constrained perturbation δ:

x′ = x + δ = x + ε · sign(∇x L(θ, x, y)),
s.t. ‖δ‖ ≤ ε. (1)

Projected Gradient Descent (PGD)

I Contains several attack steps:

xt+1 =
∏

x+S
(xt + α · sign(∇x L(θ, x, y))) (2)

8 / 21

Generate Adversarial Images
Fast Gradient Sign Method (FGSM)

I Direction of gradient: sign(∇x L(θ, x, y)), with loss function L(θ, x, y).
I Generates new input image with constrained perturbation δ:

x′ = x + δ = x + ε · sign(∇x L(θ, x, y)),
s.t. ‖δ‖ ≤ ε. (1)

Projected Gradient Descent (PGD)

I Contains several attack steps:

xt+1 =
∏

x+S
(xt + α · sign(∇x L(θ, x, y))) (2)

8 / 21

Adversarial Training
Traditional Training Method

I The typical form of most adversarial training algorithms involve training of target model
on adversarial images.

I Adversarial training methods perform the following min-max training strategy shown as
below:

min
θ

max
δ

L(x + δ, θ; y), s.t. ‖δ‖p ≤ ε,

where ‖ · ‖p is the `p-norm.

Stereo-based Training method

min
θ

max
δl,δr

L(xl + δl, xr + δr, θ; y),

s.t. ‖δl‖p ≤ ε, ‖δr‖p ≤ ε
where xl and xr represent left and right images, and δl and δr represent the perturbations
on the left and right images respectively.

9 / 21

Adversarial Training
Traditional Training Method

I The typical form of most adversarial training algorithms involve training of target model
on adversarial images.

I Adversarial training methods perform the following min-max training strategy shown as
below:

min
θ

max
δ

L(x + δ, θ; y), s.t. ‖δ‖p ≤ ε,

where ‖ · ‖p is the `p-norm.

Stereo-based Training method

min
θ

max
δl,δr

L(xl + δl, xr + δr, θ; y),

s.t. ‖δl‖p ≤ ε, ‖δr‖p ≤ ε
where xl and xr represent left and right images, and δl and δr represent the perturbations
on the left and right images respectively.

9 / 21

Stereo-Based Regularizer
For sibling branches

I Let fl(·) and fr(·) denote the features learned from left and right images.

I Distance between left and right
images:

d (xl, xr) = ‖fl(xl)− fr(xr)‖n.

I Distance between two images with
perturbations:

d (xl+δl, xr+δr) = ‖fl(xl+δl)−fr(xr+δr)‖n.

Left Box

Right Box

I Add a margin m to reinforce the optimization of the distance function.

d (xl, xr) = ‖fl(xl)− fr(xr) + m‖n,
d (xl + δl, xr + δr) = ‖fl(xl + δl)− fr(xr + δr) + m‖n.

10 / 21

Stereo-Based Regularizer
For sibling branches

I The distance after attacks should be close to the original distance:

Lb = | d (xl + δl, xr + δr)− d (xl, xr) |.

For single branch

I The left and right features are used as the joint inputs:

Lm = ‖fm(xl + δl, xr + δr)− fm(xl, xr)‖n.

New objective function

L = Lo + Lb + Lm,

where Lo is the original objective function.

11 / 21

Stereo-Based Regularizer
For sibling branches

I The distance after attacks should be close to the original distance:

Lb = | d (xl + δl, xr + δr)− d (xl, xr) |.

For single branch

I The left and right features are used as the joint inputs:

Lm = ‖fm(xl + δl, xr + δr)− fm(xl, xr)‖n.

New objective function

L = Lo + Lb + Lm,

where Lo is the original objective function.

11 / 21

Stereo-Based Regularizer
For sibling branches

I The distance after attacks should be close to the original distance:

Lb = | d (xl + δl, xr + δr)− d (xl, xr) |.

For single branch

I The left and right features are used as the joint inputs:

Lm = ‖fm(xl + δl, xr + δr)− fm(xl, xr)‖n.

New objective function

L = Lo + Lb + Lm,

where Lo is the original objective function.
11 / 21

Local Smoothness Optimization
Adversarial Robustness through Local Linearization

I Encourage the loss to behave linearly in the vicinity of training data.

I Approximate the loss function by its linear Taylor expansion in a small neighborhood.

I Take fl(·) as an example, the first-order Taylor remainder hl(ε, xl) is given by :

hl(ε, xl) = ‖ δl∇xl fl(xl) + fl(xl + δl)− fl(xl)− δl∇xl fl(xl) ‖n.

I Define γl(xl, ε) as the maximum of hl(ε, xl):

γl(ε, xl) = max
‖δl‖p≤ε

hl(ε, xl). (3)

12 / 21

Local Smoothness Optimization
Relaxation of regularizers

I According to the triangle inequality, ‖fl(xl + δl)− fl(xl)‖n is further relaxed to be:

‖ fl(xl + δl)− fl(xl) ‖n ≈‖ δl∇xl fl(xl) + fl(xl + δl)− fl(xl)− δl∇xl fl(xl) ‖n
≤‖ δl∇xl fl(xl) ‖n + ‖ fl(xl + δl)− fl(xl)− δl∇xl fl(xl) ‖n
≤‖ δl∇xl fl(xl) ‖n + γl(xl, ε),

I Accordingly, the regularization term Lb is relaxed as:

Lb = | ‖fl(xl + δl)− fr(xr + δr) + m‖n − ‖fl(xl)− fr(xr) + m‖n |
≤ ‖ fl(xl + δl)− fr(xl) ‖n + ‖ fl(xr + δr)− fr(xr) ‖n
≤ ‖ δl∇xl fl(xl) ‖n + γl(ε, xl) + ‖ δr∇xr fr(xr) ‖n + γr(ε, xr),

where γl(ε, xl) = max‖δl‖p≤ε hl(ε, xl) and γr(ε, xr) = max‖δr‖p≤ε hr(ε, xr).

13 / 21

Local Smoothness Optimization
Relaxation of regularizers

I According to the triangle inequality, ‖fl(xl + δl)− fl(xl)‖n is further relaxed to be:

‖ fl(xl + δl)− fl(xl) ‖n ≈‖ δl∇xl fl(xl) + fl(xl + δl)− fl(xl)− δl∇xl fl(xl) ‖n
≤‖ δl∇xl fl(xl) ‖n + ‖ fl(xl + δl)− fl(xl)− δl∇xl fl(xl) ‖n
≤‖ δl∇xl fl(xl) ‖n + γl(xl, ε),

I Accordingly, the regularization term Lb is relaxed as:

Lb = | ‖fl(xl + δl)− fr(xr + δr) + m‖n − ‖fl(xl)− fr(xr) + m‖n |
≤ ‖ fl(xl + δl)− fr(xl) ‖n + ‖ fl(xr + δr)− fr(xr) ‖n
≤ ‖ δl∇xl fl(xl) ‖n + γl(ε, xl) + ‖ δr∇xr fr(xr) ‖n + γr(ε, xr),

where γl(ε, xl) = max‖δl‖p≤ε hl(ε, xl) and γr(ε, xr) = max‖δr‖p≤ε hr(ε, xr).

13 / 21

Local Smoothness Optimization

Relaxation of regularizers

I The regularization term for the single branch is relaxed as:

Lm = ‖ fm(xl + δl, xr + δr)− fm(xl, xr) ‖n
≤ ‖ δl∇xl fm(xl, xr) + δr∇xr fm(xl, xr) ‖n + γm(ε, xl, xr),

where γm(ε, xl, xr) is the maximum of the high-order remainder hm(ε, xl, xr).

I They are defined as follows:

hm(ε, xl, xr) = ‖ fm(xl + δl, xr + δr)− fm(xl, xr)

− δl∇xl fm(xl, xr)− δr∇xr fm(xl, xr) ‖n,
γm(ε, xl, xr) = max

‖δl‖p≤ε,‖δr‖p≤ε.
hm(ε, xl, xr).

14 / 21

Local Smoothness Optimization

Relaxation of regularizers

I The regularization term for the single branch is relaxed as:

Lm = ‖ fm(xl + δl, xr + δr)− fm(xl, xr) ‖n
≤ ‖ δl∇xl fm(xl, xr) + δr∇xr fm(xl, xr) ‖n + γm(ε, xl, xr),

where γm(ε, xl, xr) is the maximum of the high-order remainder hm(ε, xl, xr).
I They are defined as follows:

hm(ε, xl, xr) = ‖ fm(xl + δl, xr + δr)− fm(xl, xr)

− δl∇xl fm(xl, xr)− δr∇xr fm(xl, xr) ‖n,
γm(ε, xl, xr) = max

‖δl‖p≤ε,‖δr‖p≤ε.
hm(ε, xl, xr).

14 / 21

Local Smoothness Optimization
Objective Function

I The Taylor remainders defined above is combined as:

Lh = hl(ε, xl) + hr(ε, xr) + hm(ε, xl, xr).

I The first-order gradient terms are combined as:

L∇ = ‖ δl∇xl fl(xl) ‖n + ‖ δr∇xr fr(xr) ‖n
+ ‖ δl∇xl fm(xl, xr) + δr∇xr fm(xl, xr) ‖n

I Finally, together with the original loss function Lo, the optimization objective is defined
as:

min
θ

[
La = Lo + L∇ + [max

δl, δr
Lh]

]

s.t. ‖δl‖p ≤ ε, ‖δr‖p ≤ ε,

15 / 21

Local Smoothness Optimization
Objective Function

I The Taylor remainders defined above is combined as:

Lh = hl(ε, xl) + hr(ε, xr) + hm(ε, xl, xr).

I The first-order gradient terms are combined as:

L∇ = ‖ δl∇xl fl(xl) ‖n + ‖ δr∇xr fr(xr) ‖n
+ ‖ δl∇xl fm(xl, xr) + δr∇xr fm(xl, xr) ‖n

I Finally, together with the original loss function Lo, the optimization objective is defined
as:

min
θ

[
La = Lo + L∇ + [max

δl, δr
Lh]

]

s.t. ‖δl‖p ≤ ε, ‖δr‖p ≤ ε,

15 / 21

Local Smoothness Optimization
Objective Function

I The Taylor remainders defined above is combined as:

Lh = hl(ε, xl) + hr(ε, xr) + hm(ε, xl, xr).

I The first-order gradient terms are combined as:

L∇ = ‖ δl∇xl fl(xl) ‖n + ‖ δr∇xr fr(xr) ‖n
+ ‖ δl∇xl fm(xl, xr) + δr∇xr fm(xl, xr) ‖n

I Finally, together with the original loss function Lo, the optimization objective is defined
as:

min
θ

[
La = Lo + L∇ + [max

δl, δr
Lh]

]

s.t. ‖δl‖p ≤ ε, ‖δr‖p ≤ ε,
15 / 21

Experimental Settings

I Benchmark: KITTI vehicle dataset (Easy, Moderate, and Hard) ∗.

I Stereo-based object detection model: Stereo R-CNN †.

I Adversarial attack methods: FGSM and PGD.

I Baseline defense method: direct adversarial training with FGSM and PGD.

∗Menze, Moritz, and Andreas Geiger. "Object scene flow for autonomous vehicles." CVPR, 2015.
†P. Li, X. Chen, and S. Shen. "Stereo r-cnn based 3d object detection for autonomous driving." CVPR, 2019.

16 / 21

Experimental Results

Adversarial Attacks

Table: Statistical Results of Adversarial Attacks

Model AP2d (%) ‡ AOS (%) AP3d (%) ¶ APbv (%) ‖
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

No Attack 99.28 91.09 78.62 98.42 89.43 76.94 54.10 34.44 28.15 68.24 46.84 39.34

FGSM, ε = 0.7 88.29 76.45 62.39 87.54 74.11 60.36 40.52 32.94 27.56 15.52 12.19 10.05
FGSM, ε = 2 76.82 60.49 49.67 74.73 57.84 47.35 26.21 21.35 16.81 13.64 7.7 6.14

PGD, ε = 0.7 69.55 58.94 48.04 66.72 56.04 45.59 22.52 18.88 15.32 7.02 5.53 4.29
PGD, ε = 2 53.01 43.11 34.21 51.48 40.23 31.80 9.60 7.61 6.23 3.82 2.22 1.95

‡AP2d: the average detection precision of the 2D bounding box.
AOS: the average orientation similarity of the joint 3D detection.

¶AP3d: the average detection precision of the 3D bounding box.
‖APbv: the average localization precision of bird’s eye view.

17 / 21

Experimental Results
Defense Results

I Attack via FGSM and PGD.
I Defend via our method (SmoothStereo) and direct adversarial training.

Table: Statistical Results of Adversarial Defenses

Testing Images Defense Method AP2d (%) AOS (%) AP3d (%) APbv (%)
Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

FGSM, ε = 0.7 Direct + FGSM 87.58 81.54 71.53 87.25 80.11 62.42 41.95 30.62 28.89 21.57 19.62 16.56
SmoothStereo 88.38 82.74 73.94 88.89 81.87 63.63 45.51 31.01 26.61 24.50 20.88 18.26

FGSM, ε = 2 Direct + FGSM 84.73 70.82 57.90 84.13 69.19 55.61 40.15 30.57 24.42 16.21 13.03 10.54
SmoothStereo 85.95 72.64 61.22 81.65 74.83 60.00 41.43 31.63 23.79 18.25 14.76 12.53

PGD, ε = 0.7 Direct + PGD 73.37 61.82 56.66 73.04 60.46 50.04 27.47 20.08 18.74 13.77 7.10 9.30
SmoothStereo 75.67 61.58 59.73 73.43 62.27 52.82 24.88 20.90 16.99 12.44 11.73 9.46

PGD, ε = 2 Direct + PGD 54.46 49.11 40.44 53.37 46.23 38.07 14.39 10.38 9.32 5.84 4.65 3.29
SmoothStereo 55.29 49.38 41.92 53.47 47.27 40.60 18.11 12.42 9.43 6.82 4.52 3.94

18 / 21

Experimental Results

Examples of results on FGSM attacks. The images from upper left to lower right are: ground-truth, FGSM
attack with ε = 2, defense via direct adversarial training, and defense via our SmoothStereo.

19 / 21

Experimental Results

Example of results on PGD attacks. The images from upper left to lower right are: ground-truth, PGD attack
with ε = 2, defense via direct adversarial training, and defense via our SmoothStereo.

20 / 21

Thank You

21 / 21

	Stereo-Based Vision System
	Counteracting Adversarial Attacks

