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Vision-Based Object Detection

Classification Localization

» output: class label P> output: bounding box in image

Object Detection:

> class label [
» bounding box in image, represented as vector (x, y, w, h)
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Vision-Based Object Detection
Region Proposal Network (RPN)

Objectness scores  Bounding box regression

| 2k scores | | 4k coordinates | <@mm  kanchorboxes

cls layer \ ' reg layer .

256-d |:|

' intermediate layer

sliding window:

conv feature map

> Generate k boxes, regress label scores and coordinates for the k boxes.
> Use some metrics (e.g., loU) to measure the qualities of boxes.
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Vision-Based Object Detection

Faster R-CNN

Vision-based object detection model.

classifier
o

.
Region Proposal Network

feature maps
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Stereo-Based Vision System

A typical stereo-based multi-task object detection model
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Right Image +———Single Branch——

+——Sibling Branches —

» Two sibling branches (e.g., RPN modules) which use left and right images as inputs.

» A single branch conducts a regression task, e.g. predict viewpoint. Sometimes there
are several independent single branches.
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Stereo-Based Vision System

> Take advantage of left and right images to detect cars.
» Conduct multiple 3D regression tasks based on the joint detection results.

~ 2.7 3D-2D Projection

’ 3D Bounding Box
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Take advantage of left and right images.

Multiple stereo-based tasks.
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Adversarial Attacks

> Vision-based systems suffer from image perturbations (noises, dark light, signs, etc.).
» Deep learning models are vulnerable to these perturbations.

P> The security risk is especially dangerous for 3D object detection in autonomous driving.
> Adversarial attacks have been widely studied to simulate these perturbations.

» Two typical and widely used attack methods: Fast Gradient Sign Method (FGSM) and
Projected Gradient Descent (PGD).

7/21



Generate Adversarial Images

Fast Gradient Sign Method (FGSM)

» Direction of gradient: sign(V, L(6, x,y)), with loss function L(6, x, y).

» Generates new input image with constrained perturbation ¢:

X =x+8§=x+¢e-sign(Vy L(0,x,y)),
s.t. [|0]] <e.
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Generate Adversarial Images

@

Fast Gradient Sign Method (FGSM)

» Direction of gradient: sign(V, L(6,x,y)), with loss function L(0, x, y).
» Generates new input image with constrained perturbation ¢:

X =x+08=x+e-sign(V, L(0,x,y)),
st 6] < e.

Projected Gradient Descent (PGD)

> Contains several attack steps:

xipr = | [ (o + a - sign(Vi L(6, x,))) 2)
x+S
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Adversarial Training
Traditional Training Method

» The typical form of most adversarial training algorithms involve training of target model
on adversarial images.

P> Adversarial training methods perform the following min-max training strategy shown as
below:
meinmgix L(x+6,0;y), s.t. ||d], <,

where || - ||, is the £,-norm.
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Adversarial Training
Traditional Training Method

» The typical form of most adversarial training algorithms involve training of target model
on adversarial images.
P> Adversarial training methods perform the following min-max training strategy shown as

below:
meinmgix L(x+9,6;y), s.t. [|0]|, <,

where || - ||, is the £,-norm.

Stereo-based Training method

n%in max L(x; + 6, x, + 9,,0;),

1,0r

st [ailly < € 110, < e

where x; and x, represent left and right images, and §; and d, represent the perturbations
on the left and right images respectively.
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Stereo-Based Regularizer

For sibling branches

>

| 2
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Let fi(-) and f,(-) denote the features learned from left and right images.

Distance between left and right
images:

d (xa; %) = [[fixa) = fr(x)[ln-

Distance between two images with
perturbations:

I:I Left Box
I:] Right Box

d (xi+61, x,+6,) = |[fi(xi+00) —f+ (048, || n-
Add a margin m to reinforce the optimization of the distance function.

d (xi,xr) = |[fi(x) = fr(xr) + ml[n,
d (xl -+ 51,Xr -+ (5r) = |[fl(x1 -+ 51) —fr(xr + (5r) + m||,,



Stereo-Based Regularizer

For sibling branches

P> The distance after attacks should be close to the original distance:

L, = | d (xl + 51,)6,4—5,-) —d (xl,x,) |
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Stereo-Based Regularizer

For sibling branches

P> The distance after attacks should be close to the original distance:

Ly = |d (x;+ 01,% + 0,) — d (x1,%,) |.
For single branch

> The left and right features are used as the joint inputs:

L, = Hfm(xl + 617xr + 5r) _fm(xlaxr)Hn-
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Stereo-Based Regularizer

For sibling branches

P> The distance after attacks should be close to the original distance:

Ly = |d (x;+ 01,% + 0,) — d (x1,%,) |.
For single branch

> The left and right features are used as the joint inputs:

L, = Hfm(xl + 617xr + 5r) _fm(xlaxr)Hn-

New obijective function

L=L,+L,+ Ly,

where L, is the original objective function.
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Local Smoothness Optimization

Adversarial Robustness through Local Linearization

> Encourage the loss to behave linearly in the vicinity of training data.
P> Approximate the loss function by its linear Taylor expansion in a small neighborhood.

> Take fi(-) as an example, the first-order Taylor remainder /(e x;) is given by :

hi(e,xi) = || iV filxr) + filxi + 1) — fi(x1) — 6V, fi(xr) |-

» Define 7;(x;, €) as the maximum of 7 (e, x;):

vi(€,x;) = max (e, xp). (3)
(&) lloillp<e (&)
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Local Smoothness Optimization

Relaxation of regularizers

» According to the triangle inequality, ||f;(x; + 0;) — fi(x1)||,. is further relaxed to be:

| fixr =+ 61) — filxa) Nln = 61V fi(xr) + filxa + 01) — fi(xr) — 61V fi(x1) |
<oV fiGxr) ln + || filxr =+ 01) = filxt) — 61V filxr) [|n
<[ 6V filxa) Nln + vilxa, €),
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Local Smoothness Optimization

Relaxation of regularizers

P According to the triangle inequality,

Ifi(x; + 61) — fi(x1)]| is further relaxed to be:

| fixr =+ 61) — filxa) Nln = 61V fi(xr) + filxa + 01) — fi(xr) — 61V fi(x1) |
<oV fiGxr) ln + || filxr =+ 01) = filxt) — 61V filxr) [|n
<[ 6V filxa) Nln + vilxa, €),

» Accordingly, the regularization term L, is relaxed as:

Ly = [ [fix + 61) = fr(vr + 6,) + mlln = |[fio) = fr(r) + mll |
< | filoar +00) = fr(a) [l + | fier + 67) = fr(xr) [l
<0V fiGe) A e, 20) + 11 0,V () [l + (€, %),

where (e, x1) = max |5, <e fu(e, x1) and . (e, x,) = maxs, |, <e hr(€, %)
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Local Smoothness Optimization
Relaxation of regularizers

» The regularization term for the single branch is relaxed as:

L = || fn (1 + 01, % + 07) — fn(X1,%,) [
< || 5lvx1fm(xlaxr) + 5rvx,fm(xl7xr) Hn + ’Ym(ﬁ,xl,xr)y

where 7,,(€, x;, x,) is the maximum of the high-order remainder Ay, (€, x;, x;).
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Local Smoothness Optimization

Relaxation of regularizers

» The regularization term for the single branch is relaxed as:

Lo = || f (1 + 01, + 67) — fn(x1, %) |l
< || 5lvx1fm(xlaxr) + 5rvxrfm(xlyxr) Hn + ’7m(€7xlaxr)a

where 7,,(€, x;, x,) is the maximum of the high-order remainder Ay, (€, x;, x;).

» They are defined as follows:

P (€, %1, %) = || fin (X0 4 61, % + 67) — fon (X1, )
- 5lvx1fm(xlaxr) - 6rvxrfm(xlvxr) “m

’Ym(faxl,xr) == hm(eaxlax}’)'

max
lloillp<e,ll6x]lp<e.
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Local Smoothness Optimization

Objective Function

» The Taylor remainders defined above is combined as:

L, = h[(G,X[) + hr<€axr) + hm(G,XZ,Xr).
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Local Smoothness Optimization

Objective Function
» The Taylor remainders defined above is combined as:

L, = h[(G,xl) + hr(e,xr) + hm(e,xl,xr).

» The first-order gradient terms are combined as:

Ly = || 6V filx1) |ln + [| 6V, fr(xr) [|n
+ || 5lvx1fm(xlaxr) + 5rvxrfm(xl)xr) Hn
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Local Smoothness Optimization

Objective Function

» The Taylor remainders defined above is combined as:

Ly = hy(e,x1) + hy(€,x,) 4+ hm(€, x1, xp).

» The first-order gradient terms are combined as:

Ly = || 6V filx1) |ln + [| 6V, fr(xr) [|n
+ || 5lvx1fm(xlaxr) + 5rvxrfm(xl’xr) Hn

» Finally, together with the original loss function L,, the optimization objective is defined
as:

min |L, = L, + Ly + [max L]
0 o1, Or

stlléll, < e [16:0 <.
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Experimental Settings

» Benchmark: KITTI vehicle dataset (Easy, Moderate, and Hard) x.
> Stereo-based object detection model: Stereo R-CNN 7.
» Adversarial attack methods: FGSM and PGD.

» Baseline defense method: direct adversarial training with FGSM and PGD.

x*Menze, Moritz, and Andreas Geiger. "Object scene flow for autonomous vehicles." CVPR, 2015.
tP. Li, X. Chen, and S. Shen. "Stereo r-cnn based 3d object detection for autonomous driving." CVPR, 2019.
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Experimental Results

Adversarial Attacks

Table: Statistical Results of Adversarial Attacks

APy (%) § AOS (%) AP3q (%) € APy (%) |
Easy Moderate Hard | Easy Moderate Hard | Easy Moderate Hard | Easy Moderate Hard

No Attack 99.28 91.09 78.62 ‘ 98.42 89.43 76.94 | 54.10 34.44 28.15 ‘ 68.24 46.84 39.34

Model

FGSM, e€=0.7 | 88.29 76.45 62.39 | 87.54 7411 60.36 | 40.52 32.94 27.56 | 15.52 12.19 10.05
FGSM, e=2 | 76.82 60.49 49.67 | 74.73 57.84 47.35 | 26.21 21.35 16.81 | 13.64 7.7 6.14

PGD, e€=0.7 | 69.55 58.94 48.04 | 66.72 56.04 4559 | 22.52 18.88 15.32 | 7.02 5.53 4.29
PGD, e€=2 53.01 43.11 34.21 | 51.48 40.23 31.80 | 9.60 7.61 6.23 | 3.82 222 1.95

1AP»q: the average detection precision of the 2D bounding box.
AOS: the average orientation similarity of the joint 3D detection.
QAP3q: the average detection precision of the 3D bounding box.
| APyy: the average localization precision of bird’s eye view.
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Experimental Results

Defense Results

> Attack via FGSM and PGD.
» Defend via our method (SmoothStereo) and direct adversarial training.

Table: Statistical Results of Adversarial Defenses

APy (%)
Easy Moderate Hard

AOS (%)
Easy Moderate Hard

AP3q4 (%)
Easy Moderate Hard

APy (%)

Testing Images ‘ Defense Method ‘ Easy Moderate Hard

Direct + FGSM | 87.58 81.54 71.53 | 87.25 80.11 62.42 | 41.95 30.62 28.89 | 21.57 19.62 16.56

FGSM, €=0.7

SmoothStereo | 55.29 49.38 41.92 | 53.47 47.27 40.60 | 18.11 12.42 9.43 6.82 4.52 3.94

SmoothStereo | 88.38 8274  73.94 ‘ 88.89 81.87  63.63 ‘ 4551  31.01 2661 ‘ 2450 20.88  18.26

FGSM. e_o |Direct + FGSM|8473 7082  57.90 [ 8413  69.19  5561[40.15 3057 2442|1621 1303 1054
r = SmoothStereo | 85.95  72.64  61.22 | 81.65 74.83  60.00 | 41.43 3163 2379 | 1825 1476 1253
pGD, c_pq | Direct + PGD | 7337 6182 5666|7304 6046 5004|2747 2008 1874|1377  7.10 9.30
T SmoothStereo | 75.67 6158  59.73 | 73.43 6227 52.82 | 24.88  20.90 16.99 | 1244 11.73  9.46
bGD. c—2 ‘ Direct + PGD ‘ 54.46 4911  40.44 ‘ 53.37  46.23  38.07 ‘ 1439 10.38 9.32 ‘ 5.84 4.65 3.29

18/21



Examples of results on FGSM attacks. The images from upper left to lower right are: ground-truth, FGSM
attack with ¢ = 2, defense via direct adversarial training, and defense via our SmoothStereo.
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Example of results on PGD attacks. The images from upper left to lower right are: ground-truth, PGD attack
with € = 2, defense via direct adversarial training, and defense via our SmoothStereo.
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