
Neural-ILT: Migrating ILT to Neural Networks for Mask

Printability and Complexity Co-optimization

Bentian Jiang1, Lixin Liu1, Yuzhe Ma1, Hang Zhang2, Bei Yu1 and

Evangeline F.Y. Young1

1 CSE Dept., The Chinese University of Hong Kong
2ECE Dept., Cornell University

2

Speaker Biography

▪ Bentian Jiang is currently pursuing a Ph.D. degree with
the Dept. of Computer Science and Engineering, The
Chinese University of Hong Kong, under the supervision
of Prof. Evangeline F.Y. Young.

▪ He is a recipient of several prizes in renowned EDA
contests including the CAD Contests at ICCAD 2018
and ISPD 2018, 2019, 2020.

▪ His research interests include

▪ Design for manufacturability

▪ Physical design

http://www.cse.cuhk.edu.hk/~btjiang/
http://www.cse.cuhk.edu.hk/~fyyoung/

3

Outline

▪ Introduction and Background

▪ Neural-ILT Algorithm

▪ Result Visualization and Discussion

4

Outline

▪ Introduction and Background

▪ Neural-ILT Algorithm

▪ Result Visualization and Discussion

5

Background

Lithography

▪ Use light to transfer a geometric pattern
from a photomask to a light-sensitive
photoresist on the wafer

▪ Mismatch between lithography system and
device feature sizes

Optical proximity correction (OPC)

▪ OPC compensates the printing errors by
modifying the mask layouts

▪ Compact lithography simulation model
(designed to learn the printing effects) can
guide the model-based OPC processes

† F. Schellenberg, "A little light magic [optical lithography]," in IEEE Spectrum, vol. 40, no. 9, pp. 34-39, Sept. 2003, doi: 10.1109/MSPEC.2003.1228007.

Figure sources from F. Schellenberg†

6

Inverse Lithography Technology (ILT)

▪ Forward lithography simulation can mimic the mask printing effects on wafer
▪ Given the desired target pattern 𝐙𝑡, optimized mask 𝐌
▪ Forward Lithography simulation produce the corresponding wafer image

𝐙 = 𝑓(𝐌 ; 𝐏nom)

▪ ILT correction tries to find the optimum mask 𝐌opt

▪ Features
▪ Ill-posed: no explicit closed-form solution for 𝑓−1(⋅ ; 𝐏nom)
▪ Numerical: gradient descent to update the on-mask pixels iteratively

▪ Pros: best possible overall process window [1] [2] for 193i layers and EUV

▪ Cons: drastically computational overhead, unmanageable mask writing time

7

Motivations

▪ Tremendous demands

▪ Quality: best possible process window obtainable for 193i and EUV layers [1] [2]

▪ Manufacturability: unmanageable mask writing times of ideal ILT curvilinear shapes affect high-
volume yields

▪ Affordability: the still increasing computational overhead

▪ Goals

▪ A purely learning-based end-to-end ILT solution

▪ The satisfactory mask printing shapes

▪ Breakthrough reduction on computational overhead

▪ Significant improvement on mask shape complexity

▪ …

▪ A learning-scheme with performance guarantee

8

Outline

▪ Introduction and Background

▪ Neural-ILT Algorithm

▪ Result Visualization and Discussion

9

Why Neural Network – Analogy

▪ What kind of container is need for end-to-end ILT correction process

▪ Layout image in, mask image out

▪ Iterative process

▪ Update an “object” (mask here) iteratively by gradient descent

▪ Does it sound like the training procedure of an auto-encoder network?

▪ Encoder + decoder -> Image in, image out

▪ Iteratively update neurons of each layer by gradient descent

Schema of a basic Autoencoder

By Michela Massi - Own work, CC BY-SA 4.0,

https://commons.wikimedia.org/w/index.php?curi

d=80177333

10

Starting from Scratch

▪ Let us start Neural-ILT with a basic image-to-image translation task

▪ Given the sets of

▪ Input target layouts 𝒵t = {𝐙t,1, 𝐙t,2, 𝐙t,3, … , 𝐙t,𝑛}

▪ Corresponding ILT synthesized mask set ℳ∗ = {𝐌1
∗, 𝐌2

∗ , 𝐌3
∗ , … ,𝐌𝑛

∗ }

▪ The training procedure (supervised) of the UNet is to minimize the objective:

11

Untrustworthy Quality of Prediction

▪ Big trouble – Untrustworthy predict quality

▪ Exists inevitable prediction loss which is not acceptable

▪ On-neural-network ILT correction is needed to ensure performance

▪ Our solution: cast ILT as an unsupervised neural-network training procedure

(a) Target layouts.

Wafer images generated by:

(b) Target layouts

(c) UNet direct prediction

(d) ILT synthesized masks

12

Overview of Neural-ILT

▪ 3 sub-units:

▪ A pre-trained UNet for performing layout-to-mask translation

▪ An ILT correction layer for minimizing inverse lithography loss

▪ A mask complexity refinement layer for removing redundant complex features

▪ Core engine:

▪ CUDA-based lithography simulator (a partially coherent imaging model)

13

Challenges on Runtime Bottleneck

▪ Main computational overhead of ILT correction lies in mask litho-simulation

▪ Multiple rounds of litho-simulation (per layout, per iteration) are indispensable for
guiding the ILT correction

▪ First critical challenge is to integrate a fast-enough lithography simulator into our
Neural-ILT framework

14

GPU-based Litho-Simulator

▪ Partially coherent imaging system for lithography model 𝑓(𝐌; 𝐏nom)
▪ Given the mask 𝐌, litho-sim model parameters 𝜔𝑘 , 𝒉𝑘, wafer image 𝐙 can be calculated as

▪ CUDA: perfect for parallelization + demands of AI toolkits integration

▪ 96% reduction in litho-simulation time

▪ 97% reduction in PVBand calculation time

▪ Compatible with popular toolkits: PyTorch, TensorFLow, etc…

15

ILT Correction Layer

▪ ILT correction is essentially minimizing the images difference by gradient descent

▪ Gradient of 𝐿ilt with respect to mask ഥ𝐌 (𝐌 = sigmoid(ഥ𝐌)) can be derived as

▪ where 𝐙t is target pattern, 𝐙 is wafer image, 𝐌 is mask, 𝜔𝑘 , 𝒉𝑘 are litho-sim model parameters

16

ILT Correction Layer

▪ ILT Correction Layer Implementation

▪ Forward to calculate the ilt loss with respect to
network prediction and target layout

▪ Backward to calculate the gradient mask to
update the UNet neurons

▪ Extremely fast with our GPU-based
lithography simulator

▪ Directly used as a successor layer of other
neural networks (expressed in PyTorch)

Fo
rw

ar
d

B
ac

kw
ar

d

17

Complexity Refinement Layer

▪ ILT synthesized masks

▪ Non-rectangular complex shapes

▪ Not manufacturing-friendly

▪ Complex features

▪ Isolated curvilinear stains

▪ Edge glitches

▪ Redundant contours

▪ Goals

▪ Eliminate the redundant/complex features

▪ Maintain competitive mask printability

18

Complexity Refinement Layer

▪ Complex features are distributed around/on the original patterns

▪ Observe that, those features

▪ Help to improve printability under nominal process condition

▪ Not printed under min (𝐏min) / nominal (𝐏nom) process conditions

▪ But usually printed under max process condition (𝐏max)

▪ Cause area variations between

▪ 𝐙in = 𝑓(𝐌;𝐏min) and 𝐙out = 𝑓(𝐌;𝐏max)

▪ Loss function:

▪ Gradient:

19

Neural-ILT

▪ 3 sub-units:

▪ A pre-trained UNet for performing layout-to-mask translation

▪ An ILT correction layer for minimizing lithography loss

▪ A mask complexity refinement layer for removing redundant complex features

▪ The on-neural-network ILT correction is essentially an unsupervised training
procedure of Neural-ILT with following objective

Mask Wafer

20

All in One Network

▪ End-to-end ILT correction with purely learning-based techniques

▪ Directly generate the masks after ILT without any additional rigorous refinement on
the network output

21

Retrain Backbone with Domain Knowledge

▪ Original ILT synthesized training dataset usually consist of numerous complex features

▪ We use a Neural-ILT to purify the original training instances

▪ Use the refined dataset to re-train the UNet with the cycle loss 𝐿𝑐𝑦𝑐𝑙𝑒

▪ Domain knowledge of the partially coherent imaging model is introduced into the network training

▪ ILT is ill-posed, term with domain knowledge serves as a regularization term

▪ Guide the re-trained network 𝜙(· ; w) gradually converged along a domain-specified direction

▪ Obtain better initial solution and hence achieve faster convergence

22

Outline

▪ Introduction and Background

▪ Neural-ILT Algorithm

▪ Result Visualization and Discussion

23

Results

Comparing to SOTA (academia) ILT [4] / PGAN-OPC [5]

▪ On ICCAD 2013 benchmarks

▪ 70x, 30x TAT speedup

▪ 12.3%, 3.4% squared L2 error reduction

▪ 67%, 21% mask fracturing shot count reduction

24

Results

(a) ILT, (b) PGAN-OPC, (c) Neural-ILT

(1) ILT output mask, use 2045 shots

to accurately replicate the mask

(2) Neural-ILT output mask, use 653

shots to accurately replicate the mask

25

Animation: Neural-ILT vs. Conventional ILT

ILT correction process

Runtime = 1280 secs

Neural-ILT correction process

Runtime = 13.57 secs

Learning rate (stepsize)

▪ Neural-ILT is decreasing

from 1e-3

▪ Convectional ILT is

decreasing from 1.0

Mask

Wafer

Mask

Wafer

26

Solution after 20 iterations

Better Initial Solution and Convergence

▪ The initial solution of Neural-ILT has much better printability (smaller image errors)

▪ May lead to faster and better convergence

Initial Solution

Mask

Wafer

Mask

Wafer

Mask

Wafer

Mask

Wafer

27

Why Neural Network – Empirical Observation

▪ GPU-ILT v.s. Neural-ILT, Neural-ILT enjoys

▪ Higher searching efficiency: less ILT iterations (i.e., 100 vs. 40)

▪ Smooth and fine-grained search: much smaller learning rate (i.e., 1.0 vs. 0.001)

▪ Larger searching space: better overall quality (i.e, 9% better printability, 51% less shots counts)

▪ Reserved inverse lithography function

▪ Original ILT loses every internal steps except the final Mopt

▪ Converged Neural-ILT is indeed an (approximated) inverse lithography function 𝑓−1(⋅ ; ⋅) for the
given target layout

End

29

Reference

[1] R. Pearman, J. Ungar, N. Shirali, A. Shendre, M. Niewczas, L. Pang, and A.
Fujimura, “How curvilinear mask patterning will enhance the EUV process window: a
study using rigorous wafer+ mask dual simulation,” in Proc. SPIE, vol. 11178, 2019

[2] K. Hooker, B. Kuechler, A. Kazarian, G. Xiao, and K. Lucas, “ILT
optimization of EUV masks for sub-7nm lithography,” in Proc. SPIE, vol. 10446, 2017

[3] B. Jiang, X. Zhang, R. Chen, G. Chen, P. Tu, W. Li, E. F. Young, and
B. Yu, “Fit: Fill insertion considering timing,” in Proc. DAC, 2019, p.221

[4] J.-R. Gao, X. Xu, B. Yu, and D. Z. Pan, “MOSAIC: Mask optimizing solution with
process window aware inverse correction,” in Proc. DAC, 2014, pp. 52:1–52:6

[5] H. Yang, S. Li, Y. Ma, B. Yu, and E. F. Young, “GAN-OPC: Mask optimization with
lithography-guided generative adversarial nets,” in Proc. DAC, 2018, pp. 131:1–131:6

