2020 INTERNATIONAL c |
CONFERENCE ON n /
COMPUTER-AIDED n

DESIGN

Neural-1LT: Migrating ILT to Neural Networks for Mask

Printability and Complexity Co-optimization

Bentian Jiang?!, Lixin Liut, Yuzhe Mal, Hang Zhang?, Bei Yu! and
Evangeline F.Y. Young?

1 CSE Dept., The Chinese University of Hong Kong
2ECE Dept., Cornell University

Speaker Biography

= Bentian Jiang is currently pursuing a Ph.D. degree with
the Dept. of Computer Science and Engineering, The
Chinese University of Hong Kong, under the supervision
of Prof. Evangeline F.Y. Young.

» He iIs a recipient of several prizes in renowned EDA
contests including the CAD Contests at ICCAD 2018
and ISPD 2018, 2019, 2020.

= His research interests include
» Design for manufacturability
= Physical design

http://www.cse.cuhk.edu.hk/~btjiang/
http://www.cse.cuhk.edu.hk/~fyyoung/

Outline

= [ntroduction and Background

= Neural-ILT Algorithm

= Result Visualization and Discussion

Outline

= [ntroduction and Background

= Neural-ILT Algorithm

= Result Visualization and Discussion

Background

Mask (without optical Mask (with optical

: proximity correction) Light proximity correction)
Lithography | b

= Use light to transfer a geometric pattern \v/|<

from a photomask to a light-sensitive

photoresist on the wafer -

= Mismatch between lithography system and Focusing ——
device feature sizes

Optical proximity correction (OPC)

= OPC compensates the printing errors by
modifying the mask layouts

= Compact lithography simulation model
(designed to learn the printing effects) can
guide the model-based OPC processes

circuit
pattern

Figure sources from F. Schellenberg?

t F. Schellenberg, "A little light magic [optical lithography]," in IEEE Spectrum, vol. 40, no. 9, pp. 34-39, Sept. 2003, doi: 10.1109/MSPEC.2003.1228007.

Inverse Lithography Technology (ILT)

» Forward lithography simulation can mimic the mask printing effects on wafer

= Given the desired target pattern Z,, optimized mask M
= Forward Lithography simulation produce the corresponding wafer image

Z=f(M;Pyom)

= ILT correction tries to find the optimum mask M
Mopt = f_l(Zt§ Pnom)

= Features
= |ll-posed: no explicit closed-form solution for f~1(- ; Pyom)
= Numerical: gradient descent to update the on-mask pixels iteratively
= Pros: best possible overall process window [1] [2] for 193i layers and EUV
= Cons: drastically computational overhead, unmanageable mask writing time

Motivations

* Tremendous demands
= Quality: best possible process window obtainable for 193i and EUV layers [1] [2]

= Manufacturability: unmanageable mask writing times of ideal ILT curvilinear shapes affect high-
volume yields

= Affordability: the still increasing computational overhead

= Goals

= A purely learning-based end-to-end ILT solution
» The satisfactory mask printing shapes
= Breakthrough reduction on computational overhead
= Significant improvement on mask shape complexity

= A learning-scheme with performance guarantee

Outline

= [ntroduction and Background

= Neural-ILT Algorithm

= Result Visualization and Discussion

Why Neural Network — Analogy

» What kind of container is need for end-to-end ILT correction process
= Layout image in, mask image out
= |terative process
= Update an “object” (mask here) iteratively by gradient descent

» Does it sound like the training procedure of an auto-encoder network?

= Encoder + decoder ->Image in, image out ENCODER £~ m e ,
= |teratively update neurons of each layer by gradient descent

Schema of a basic Autoencoder

By Michela Massi - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curi
d=80177333

Starting from Scratch

= | et us start Neural-ILT with a basic image-to-image translation task

» Given the sets of
= |nput target layouts Z, = {Z1,Z5,Z3, ..., Z¢ }
= Corresponding ILT synthesized mask set M* = {Mj, M5, M3, ..., My}

» The training procedure (supervised) of the UNet is to minimize the objective:

Input layout i U-Net ! Output mask

W — argmin A||6(Z; w) — M*||2 [i/_(\, ¥
w — —{/ / :
| Lo | !
i 14 !

10

Untrustworthy Quality of Prediction

* Big trouble — Untrustworthy predict quality

(a) Target layouts.

Wafer images generated by:
(b) Target layouts

(c) UNet direct prediction
(d) ILT synthesized masks

(a) (b) (c) (d)

= Exists inevitable prediction loss which is not acceptable

» On-neural-network ILT correction is needed to ensure performance
= Qur solution: cast ILT as an unsupervised neural-network training procedure

11

Overview of Neural-ILT

= 3 sub-units:

= A pre-trained UNet for performing layout-to-mask translation

= An ILT correction layer for minimizing inverse lithography loss

= A mask complexity refinement layer for removing redundant complex features
= Core engine:

= CUDA-based lithography simulator (a partially coherent imaging model)

On-Neural-Network ILT Correction Phase
__
1 UNet i 2
1) X OLix @)

I oM /
—_ I
1
Ly
_________ ————==—==—==========!
. unnItannuyr A1 0, IETTEEEEEEEE T T T EEEEEE -
Y 3!
W ' L
Input layout #) Coarsen Mask :i cplx |
oo L 1
""""""""""""""""""""""""""""""""""") """'I: achlx !
I
m Conv+ReLu |f7 Max Pooling m L‘psamplemILT Correction ﬂ(‘ omplexity Refinement | oM E
|

Challenges on Runtime Bottleneck

= Main computational overhead of ILT correction lies in mask litho-simulation

= Multiple rounds of litho-simulation (per layout, per iteration) are indispensable for
guiding the ILT correction

= First critical challenge is to integrate a fast-enough lithography simulator into our
Neural-ILT framework

13

GPU-based Litho-Simulator

= Partially coherent imaging system for lithography model f(M; P,om)
= Given the mask M, litho-sim model parameters wy,, h;, wafer image Z can be calculated as

N? 1, if W(x,y) = Iy
I(x,y) =) o M(x,y) ® hy(x,)| Z(x,y) = { 0, if I(x,y) <1
k:1 b] 1‘y fh

= CUDA: perfect for parallelization + demands of Al toolkits integration
» 96% reduction in litho-simulation time
= 979% reduction in PVVBand calculation time
= Compatible with popular toolkits: PyTorch, TensorFLow, etc...

—_—
n
1

Conventional Litho-Conv
CUDA-based Litho-Conv

Runtime (s)
>

()]
1

-

Litho-Silmulation PVB-Callculation

ILT Correction Layer

= [LT correction is essentially minimizing the images difference by gradient descent

m—ZZ — Z(x,y))"

z=1y=1

= Gradient of L;;, with respect to mask M (M = sigmoid(M)) can be derived as

Ly 1, M
—v X (Z — 7)Y~ O —
oM (t) M oM

=yOp0z x {(HP @ [(Z-Z) ' 0Zo (1-2Z) 0 (M&HY)]
+ HIPY @ [((Z-Z) 1oZo(1-Z)o (M®H)]}
OMO (1-M)

= where Z; is target pattern, Z is wafer image, M is mask, wy, h;, are litho-sim model parameters

15

ILT Correction Layer

= [LT Correction Layer Implementation

= Forward to calculate the ilt loss with respect to
network prediction and target layout

= Backward to calculate the gradient mask to
update the UNet neurons

= Extremely fast with our GPU-based
lithography simulator

= Directly used as a successor layer of other
neural networks (expressed in PyTorch)

Forward

Backward

Algorithm 2 ILT Correction Layer Forward and Backward

Input: Masks M, M, target layout Z;, kernels H, H*, weights .

ol

10:
11:
12:

13:

. function Forward(M, H, w)
I,Z «— CUDA_LITHO(M, H, @, 1.0, SIMULATION);
Lyt +— ||Z—Zt||¥; >y = 4 in forward
return Lithography loss L;;;
. function Backward(M,M,H, H*, @) =08y =4,0, =50
I,Z <« CUDA_LITHO(M, H, w, 1.0, SIMULATION);
£ — l+exp(—921><(l—lm])’ M 1+exp{—]9Mxrﬂ};
Define common term as T, gradient left term as G, gra-
dient right term as Gg;
Te— (Z-Z)V 1eZo(1-2):
G; « T © CUDA_LITHO(M, H*, @, 1.0, CONVOLVE);
Gp <« T © CUDA_LITHO(M, H, @, 1.0, CONVOLVE);
24l yOp 67 x [CUDA_LITHO(Gy. HUP, », 1.0, Con-
VOLVE) + CUDA_ LITHO(Gg, (HUP)* @, 1.0, CONVOLVE)]
oMo(1-M); » Cgmpute Equation (5) using Algorithm 1
dLiy .

return Gradient ==

16

Complexity Refinement Layer

= |LT synthesized masks
= Non-rectangular complex shapes
» Not manufacturing-friendly

= Complex features
= |solated curvilinear stains
= Edge glitches
= Redundant contours

= Goals
= Eliminate the redundant/complex features
= Maintain competitive mask printability

——————

--- Edge Glitch

(@) Before Refinement

Mask Shot

=== Isolated Stain
=== Redundant Shape

(b) After Refinement

17

Complexity Refinement Layer

= Complex features are distributed around/on the original patterns

= Observe that, those features
= Help to improve printability under nominal process condition
* Not printed under min (Pp,j,) / nominal (P,,y) process conditions
= But usually printed under max process condition (Pp,.x)

= Cause area variations between
" Zin = f(M» Pmin) and Lowt = f(M: Pmax)

. 5 o)
= | oss function: Leplx = ||Zin — Zow|3- .
ge Glitch
Mask Shot
[| G d t OL 1 (e===———mmaaee, === Isolated Stain
cplx / / N - Redundant Shane
radient. —8NI/} — 92 % (Zin — Zout) O (Zin — Ziout) :r“~ Redundant Shape

18

Neural-I1LT

= 3 sub-units:
= A pre-trained UNet for performing layout-to-mask translation
= An ILT correction layer for minimizing lithography loss
= A mask complexity refinement layer for removing redundant complex features

* The on-neural-network ILT correction is essentially an unsupervised training
procedure of Neural-ILT with following objective
Mask Wafer
Lt

N

w = argmin « || f(d(Z;; W); Prom) — Z¢|[5 +

5l|f(€b(zt§ W); Puin) — f(gb(Zt;w);PmaX)H%

W

chlx

Target pattern Target pattern

19

All In One Network

» End-to-end ILT correction with purely learning-based techniques

= Directly generate the masks after ILT without any additional rigorous refinement on
the network output

On-Neural-Network ILT Correction Phase : Neural-ILT at Convergence
1

/ | > : ii oM i: _, Fine-Grained __
_— N g " Neural-ILT
et il 1l

A o(wh)

jmEsssssssss=s 1
1! ! ' .
/ i ():: Conventional ILT
| 1
: il I h L |
| UL cplx
. |
--- } OLcpix E I — ILT ——
| — " Engine
m Conv+ReLu i Max Pooling@ Upsample m ILT C 01'1'ecrionm Complexity Refinement : JdM H
Sy ——— 11

Retrain Backbone with Domain Knowledge

= Original ILT synthesized training dataset usually consist of numerous complex features
= \We use a Neural-ILT to purify the original training instances

= Use the refined dataset to re-train the UNet with the cycle 10ss L,

Leyele = [|0(Zi; W) — M2 + 0| £ (6(Zt; W); Poom) — 24| [

Domain knowledge of the partially coherent imaging model is introduced into the network training
ILT is ill-posed, term with domain knowledge serves as a regularization term

Guide the re-trained network ¢(-; w) gradually converged along a domain-specified direction
Obtain better initial solution and hence achieve faster convergence

21

Outline

= Result Visualization and Discussion

22

Results

Benchmarks ‘ ILT ‘ PGAN-OPC ‘ Neural-ILT

ID Area (nm?) ‘ TAT (s) Ly (nm?) PVB (nm?) #shots ‘ TAT (s) Ls (nm?) PVB (nm?) # shots ‘ TAT (s) L, (nm%) PVB (nm?) # shots
casel 215344 1280 49893 65534 2478 358 52570 56267 931 13.57 50795 63695 743
case?2 169280 381 50369 48230 704 368 42253 50822 692 14.37 36969 60232 571
case3 213504 1123 81007 108608 2319 368 83663 04498 1048 9,72 94447 85358 701
cased 82560 1271 20044 28285 1165 377 19965 28957 386 10.40 17420 32287 209
cases 281958 1120 44656 58835 1836 369 44733 50328 950 10.04 42337 65536 631
caseb 286234 391 57375 48739 993 364 46062 52845 836 11.11 39601 59247 745
case’? 229149 406 37221 43490 577 377 26438 47981 515 9.67 25424 50109 354
case8 128544 388 19782 22846 504 383 17690 23564 286 11.81 15588 25826 467
case9 317581 1138 55399 66331 2045 383 56125 65417 1087 9.68 52304 68650 653
casel0 102400 387 24381 18097 380 366 9990 19893 338 11.46 10153 22443 423

Average - 788.5 44012.7 50899.5 1300.10 371.3 39948.9 49957.2 706.90 11.18 38504 53338 558.7

- 1.000 1.000 1.000 1.000 0.471 0.911 0.993 0.544 0.014 0.875 1.048 0.430

Ratio

Comparing to SOTA (academia) ILT [4.

On ICCAD 2013 benchmarks
70x, 30x TAT speedup
12.3%, 3.4% squared L2 error reduction
67%, 21% mask fracturing shot count reduction

/ PGAN-OPC [5]

23

(a)

(b)

(©)

Results

=

o
V=1

)

!:!

J

(1) ILT output mask, use 2045 shots
to accurately replicate the mask

ain
!

PR gy

(@) ILT, (b) PGAN-OPC, (c) Neural-ILT

ﬁ-lif fll‘wﬂﬂ‘f’

Tz: | }
5{ id —J"} 7
R I

(2) Neural-ILT output mask, use 653
shots to accurately replicate the mask

Learning rate (stepsize)

Animation: Neural-ILT vs. Conventional ILT

Neural-ILT is decreasing
from le-3

Convectional ILT is
decreasing from 1.0

L'

Mask

I

Target pattern

Neural-ILT correction process

Runtime = 13.57 secs

Wafer

Target pattern

i

Mask

lteration = 01

ILT correction process

Runtime = 1280 secs

Wafer

lteration = 01

25

Better Initial Solution and Convergence

Initial Solution Solution after 20 iterations
3= = 3=t &
end, — | ~y |
Mask .L - Mask _' l Mask ’L = Mask ¥
| Yoy | - ™1 S=mat. 08
feration = G lteration = 02 Iteration = 21 iteration = 20
Neural-ILT correction process ILT correction process Neural-ILT correction process ILT correction process
Runtime = 13.57 secs Runtime = 1280 secs Runtime = 13.57 secs Runtime = 1280 secs
Wafer Wafer Wafer Wafer

Iteration = 01 Iteration = 02) iteration = 20
Ilteration = 21

* The initial solution of Neural-ILT has much better printability (smaller image errors)

» May lead to faster and better convergence
26

Why Neural Network — Empirical Observation

» GPU-ILT v.s. Neural-ILT, Neural-ILT enjoys

= Higher searching efficiency: less ILT iterations (i.e., 100 vs. 40)
= Smooth and fine-grained search: much smaller learning rate (i.e., 1.0 vs. 0.001)
= Larger searching space: better overall quality (i.e, 9% better printability, 51% less shots counts)

= Reserved inverse lithography function
= Original ILT loses every internal steps except the final M

= Converged Neural-ILT is indeed an (approximated) inverse lithography function f~1(-; -) for the
given target layout

A B C D | E

B

A B C D E

(a) Direct mask fracturing [20] results of GPU-ILT synthesized masks on benchmarks A-E.

(b) Direct mask fracturing [20] results of Neural-ILT synthesized masks on benchmarks A-E. 2 7

Reference

[1] R. Pearman, J. Ungar, N. Shirali, A. Shendre, M. Niewczas, L. Pang, and A.
Fujimura, “How curvilinear mask patterning will enhance the EUV process window: a
study using rigorous wafer+ mask dual simulation,” in Proc. SPIE, vol. 11178, 2019

[2] K. Hooker, B. Kuechler, A. Kazarian, G. Xiao, and K. Lucas, “ILT
optimization of EUV masks for sub-7nm hthography,” in Proc. SPIE vol. 10446, 2017

3] B. Jiang, X. Zhang, R. Chen, G. Chen, P. Tu, W. L1, E. F. Young, and
B. Yu, “Fit: Fill insertion con31der1ng tlmmg,” in Proc. DAC, 2019, p.221

4] J.-R. Gao, X. Xu, B. Yu, and D. Z. Pan, “MOSAIC: Mask optimizing solution with
process window aware inverse correction, ” in Proc. DAC, 2014, pp. 52:1-52:6

5] H. Yang, S. Li, Y. Ma, B. Yu, and E. F. Young, “GAN-OPC: Mask optimization with
ithography- gulded generative adversarial nets,” in Proc. DAC, 2018, pp. 131:1-131:6

29

