Floorplanning and Topology Generation for
Application-Specific Network-on-Chip

Bei Yu'! Sheqin Dong' Song Chen? Satoshi GOTO?

"Department of Computer Science & Technology
Tsinghua University, Beijing, China

2Graduate School of IPS
Waseda University, Kitakyushu, Japan

2010.01.20

Bei Yu Floorplanning & Topology Generation for NoCs



Outline

Outline

@ Introduction
@ Previous Works
@ Problem Formulation

9 Topology Synthesis Algorithm
@ Partition Driven Floorplanning
@ Switches and Network Interfaces Insertion
@ Energy Aware Path Allocation

Q Experimental Results

Bei Yu Floorplanning & Topology Generation for NoCs



Introduction

Previous Works
Problem Formulation

Network-on-Chip

@ Solution to global communication challenges
@ Alternative to Bus communication architectures
@ Better modularity
@ Lower power consumption
@ Scalability
@ Regular NoCs and Application-Specific NoCs
@ Network components:

@ Switch
@ Network Interface (NI)
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Introduction Previous Works

Problem Formulation

Regular or Application-Specific Topology

@ Regular Topology
@ Task Scheduling and Mapping problem
@ Application-Specific Topology?
@ Irregular core sizes
@ Different communication flow requirements
© Reducing energy by reducing hop count and switch count
© Possibly higher performance
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Problem Formulation

Regular or Application-Specific Topology

@ Regular Topology
@ Task Scheduling and Mapping problem
@ Application-Specific Topology?
@ Irregular core sizes
@ Different communication flow requirements
© Reducing energy by reducing hop count and switch count

© Possibly higher performance
Focus on Application-Specific Topology Generation!

S=Switch
NI NI NI
vo— L [ sram
Node Node Node INJ|
SDRAM
M el
|
NI INT INT "’éLf
1a
sk |\ Y
Node Node Node S |5
s HNI
NI NI N} c NI
—SRAM
D cPU
Node Node Node

Bei Yu Floorplanning & Topology Generation for NoCs



Introduction Previous Works

Problem Formulation

Previous Works

—K.Srinivasan et al. TVLSI 06:
@ Used fixed floorplan as optimization starting point
@ Switch at corners of cores
—Murali et al. ICCADO06:
@ Two steps topology generation procedure using min-cut partitioner
@ Greedy based path allocation assignment
—Chan & Parameswaran, ASPDACO08:
@ lterative refinement strategy
@ supports both packet-switched networks and point to point connections
—Murali et al. ASPDACO09:
@ Synthesis approach for 3D NoC
@ LP based switch position computation
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Introduction Previous Works

Problem Formulation

Motivations

In previous works:
@ Partition w/o physical information
@ Fail to consider area consumption of NI and Switch
In our works:
@ Integrate partition into floorplanning phase
@ Consider Switches and NI area consumption
@ Min-Cost-Flow algorithm to insert NI
@ Effective paths allocation to minimize power consumption
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Introduction Previous Works

Problem Formulation

Problem Formulation

()
Input: @ 0

@ asetof ncores C={ci,co,...,Cn}-
@ switches number m.

@ core communication graph(CCG). @’e

@ network components power model.

Output: an NoC topology satisfying CCG: Core Communication Graph.
@ minimize area consumption.
@ minimize the communication energy.
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Introduction Previous Works

Problem Formulation

Synthesis Algorithm

@ Obtain min-cut partitions of CCG @ 0
s2

@ Communication Requirement & /
@ Distances between cores

@ Cores in a cluster share a switch @’
@ Switch Communication Graph(SCG) ()
@ Path Allocation on SCG

@ Minimize power consumption
@ Minimize hop-count
@ Satisfy width constraints Q

[

SC
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Partition Driven Floorplanning
Algorithm Switches and Network Interfaces Insertion
Energy Aware Path Allocation

Overview of Algorithm

Floorplanning
Core v
i Generate new floorplan
v
Partition Ge'nerate floorplan with partitions.

Yes c3

Post-Floorplanning

c4

Switches Insertion c2

c1
v

Network Interfaces Insertion

Y

Path Allocation

Optimized Floorplan
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Overview of Algorithm

Floorplanning

Cpre i
e Generate new floorplan

CCG — v

Partition Insert Switches.

Yes c3 !

s2

Post-Floorplanning ls1
( c4
Switches Insertion o1 c2
v
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L]

Path Allocation

Optimized Floorplan
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Overview of Algorithm

Floorplanning

Core i

G
e Generate new floorplan
CccG — v
Partition Insert NI with Min-Cost Flow Algorithm
Yes C3 NI
s2 NI—‘
Post-Floorplanning NINIfs
c4
Switches Insertion c c2
(] /
Network Interfaces Insértion
L]

Path Allocation

Optimized Floorplan
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Overview of Algorithm

Floorplanning

Cpre i
e Generate new floorplan
ccG ¥ _ .
Dynamic Programming based
Partition Path Allocation.
Yes C3 NI
_ s2 NI—‘
Post-Floorplanning NINIfs
c4
Switches Insertion c c2
v
Network Interfaces Insertion
L]

Path Allocation -

Optimized Floorplan
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Partition Driven Floorplanning
Algorithm Switches and Network Interfaces Insertion
Energy Aware Path Allocation

Partition Driven Floorplanning

@ Traditionally, partition before floorplanning
(-)Lose physical information
@ In our work

@ Integrate partition into floorplanning
@ Cores with larger communication incline to one cluster
@ Minimize interconnect power consumption

@ Define new edge weight w,’j in CCG:

W Wi © oo x mean_dis
P maxw disjj

@ Using CBL' as topological representation
e Record white space information

'X. Hong et al, IEEE Transaction on CAS 2004.
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Switches Insertion

After floorplanning stage
@ Each cluster has a minimal bounding box. c3

@ Heuristical method to insert switches:

@ Switch initially in the center of
bounding box.

@ Partition the white space into grids.

© Sort switches.

© |Insert switches in grids one by one.

@ In cluster py, cost of insert switch k to grid g:

c4

c1 c2

COStgk = Z wjj X (dng/ + disgj),Ve,-/ € E
i

Choose free grid with smallest Cost.
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Switches Insertion

After floorplanning stage

@ Each cluster has a minimal bounding box. c3
@ Heuristical method to insert switches: -
s1 S.
@ Switch initially in the center of o &
. c1 C
bounding box.

@ Partition the white space into grids.
© Sort switches.
© |Insert switches in grids one by one.

@ In cluster py, cost of insert switch k to grid g:

COStgk = Z wjj X (dng/ + disgj),Ve,-/ € E
i

Choose free grid with smallest Cost.
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Switches Insertion

After floorplanning stage

7110
@ Each cluster has a minimal bounding box. c3 %%
@ Heuristical method to insert switches: 1]2f3]4 2
o . & & c4
@ Switch initially in the center of 2
c1 C

bounding box.
@ Partition the white space into grids.
© Sort switches.
© |Insert switches in grids one by one.

@ In cluster py, cost of insert switch k to grid g:

COStgk = Z wjj X (dng/ + disgj),Ve,-/ € E
i

Choose free grid with smallest Cost.
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Switches Insertion

After floorplanning stage -
@ Each cluster has a minimal bounding box. c3 gg

@ Heuristical method to insert switches: 1]2]3]s1

@ Switch initially in the center of
bounding box.

@ Partition the white space into grids.

© Sort switches.

© |Insert switches in grids one by one.

@ In cluster py, cost of insert switch k to grid g:

2 | c4
cl c2

COStgk = Z wjj X (dng/ + disgj),Ve,-/ € E
i

Choose free grid with smallest Cost.
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Switches Insertion

After floorplanning stage
@ Each cluster has a minimal bounding box. c3 6

~
o

[e]

@ Heuristical method to insert switches: 1]2]3]s1

@ Switch initially in the center of
bounding box.

@ Partition the white space into grids.

© Sort switches.

© |Insert switches in grids one by one.

@ In cluster py, cost of insert switch k to grid g:

c4
cl c2

COStgk = Z wjj X (dng/ + disgj),Ve,-/ € E
i

Choose free grid with smallest Cost.
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Network Interfaces Insertion

@ For each core, construct /-bounding box ~<—1-box of c3
@ Insert NI in /-bounding box 3 1
@ Construct network graph G* = (V*, E*): s s s2]s

S

c4
Network Graph
C1 c2
@ V* = {s,t} UNIU Grids.
@ E” = {(s, nix)|nik € NI} U {(nik, gj)|Vg; €
CG} U{(9;; t)lg; € Grids}.
@ Capacities:
C(S, nik) = 17 C(nik,gj) = 17 C(rl7 t) —1.
@ Cost:
F(s, nit) = 0, F(gj, t) = 0; F(nix, gj) = Fiq.

@ Min-cost flow algorithm, polynomial time.
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Network Interfaces Insertion

@ For each core, construct /-bounding box
@ Insert NI in /[-bounding box
@ Construct network graph G* = (V*, E*):

Network Graph

@ V* = {s,t} UNIU Grids.

@ E” = {(s, nix)|nik € NI} U {(nik, gj)|Vg; €
CG} U{(9;; t)lg; € Grids}.

@ Capacities:
C(S, nik) = 17 C(nik,gj) = 17 C(rl7 t) —1.

@ Cost:
F(s, nit) = 0, F(gj, t) = 0; F(nix, gj) = Fiq.

@ Min-cost flow algorithm, polynomial time.

710
c3 INI3NI4|
IS2N12)
12 Ni1ls1
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Energy Aware Path Allocation

Solve once is enough? No!
@ Consider Power Consumption.
@ Path with minimal power
consumption may change.
Simple example:
@ Two flows: (s1 — s3),(s2 — s3).
@ Solve (s1 — s3) first.

@ First,
o shortest path from s2 to s3 is
s1 — s3.
@ After flow (s1 — s3):

@ shortest path from s2 to s3 is
s1 — s4 — s3.

ti:power fromito j
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Energy Aware Path Allocation

Solve once is enough? No!
@ Consider Power Consumption. tepower from i to
@ Path with minimal power %
consumption may change.
Simple example:
@ Two flows: (s1 — s3),(s2 — s3).
@ Solve (s1 — s3) first.

@ First,
o shortest path from s2 to s3 is
s1 — s3.
@ After flow (s1 — s3):

@ shortest path from s2 to s3 is
s1 — s4 — s3.

t2=2->4
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Energy Aware Path Allocation

Solve once is enough? No!
@ Consider Power Consumption.
@ Path with minimal power
consumption may change.
Simple example:
@ Two flows: (s1 — s3),(s2 — s3).
@ Solve (s1 — s3) first.

@ First,
o shortest path from s2 to s3 is
s1 — s3.
@ After flow (s1 — s3):

@ shortest path from s2 to s3 is
s1 — s4 — s3.
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Energy Aware Path Allocation

@ disy(i, d): distance from node i to d
@ dise(i,j, d): distance i to d using e;

DP based method to find paths:

. P A . lig, j=d
dise(i, j, d) = { tj + disn(j, d), otherwise

Find initial paths.

Label dise(i, [, 7).

disn(i,d) = { % o o
M5 =)= Y ming dise(i, k,d), otherwise

@ run time is bounded by O(|V| - |E|)
@ if dise(i, ], d) = disa(i, d), then path(i, d) = j.
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Update Paths

1: //Update when t; change to (t; + At);
2: tij «— (t,'j + At);

3: queue g.push(e;j);

4: while g is not empty do

5. e« q.pop();

6: dise(a, b, d) « tu + disn(b, d);

7:  if PATH[4][d] = b then

8: Find k € Post(a)? to minimize 7

disn(k, d) + ta; .

o: disn(a, d) — disn(K, d) + ta; Ej?;fhpstise >
10: path(a, d) «— k; o ’

11: g-push(epa), Vp € Pre(a)®; ST,

12:  end if

13: end while

aPost(a) = {w|Vvk € V & ex € E}
bPre(a) = {vk|Vvk € V & exs € E}
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Experimental Results

Experimental Setup

—Power Model:
@ Switch power model
ports [ 2 [ 38 [ 4 [ 5 6 [ 7 [ 8 |

[ (pJbit) | 0.22 | 0.33 | 044 | 055 % 0.66 | 0.78 | 0.90 |
@ Interconnect power model

[ length(mm) [ 1 T 4 8 [ 12 [ 16 |

[ _(pJbit) | 06 | 24 | 48 | 7.2 | 96 |
Benchmark V# | E#
_Benchmark: G1 MPEG4 12 13
. G2 MWD 12 | 12
@ Bertozzi et al. (G1, G2, G3) o3 VOPD CREEY)
@ Srinivasan et al. TVLSI06 (G4, G4 263decmp3dec 14 15
G5, G6) G5 | 263encmpadec | 12 | 12
@ Murali et al. ASPDACO09 (G7) G6 | mp3encmp3dec | 13 | 13
G7 D_38_tvopd 38 | 47
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Experimental Results

The Consumption Between the PBF and the PDF:

Part# Power(mW) Hops W.S(%) Time(s)

PBF ours BF ours PBF ours ours

Gi 3 259 16.0 1.17 1.0 12.25 16.43 13.86
4 24.3 141 1.25 1.041 7.63 16.43 15.07

G2 g 3.05 3.08 1.33 1.33 12.22 11.82 13.37
4 3.19 3.02 1.25 1.25 12.22 12.22 15.46

G3 3 7.43 6.12 1.0 1.0 12.16 13.54 14.54
4 7.62 6.59 1.0 1.15 1217 13.85 17.32

G4 3 4.96 3.92 1.0 1.0 14.24 13.44 23.78
4 7.86 4.35 1.25 1.0 13.59 14.50 24.96

G5 3 24.7 19.2 1.0 1.0 6.06 8.82 13.19
4 58.6 19.2 1.0 1.0 9.58 9.58 15.42

Gé 3 8.4 4.4 1.0 1.0 15.23 17.60 20.29
4 11.2 8.6 1.0 1.0 15.23 15.24 21.0

G7 3 12.7 8.2 1.33 1.33 15.1 245 92.7
4 12.3 6.8 1.44 1.4 14.7 22.60 104.0

Avg = 15.16 8.83 1.14 1.11 12.31 13.92 28.93

Diff - = -41.8% = -2.6% - - =
@ PBF: similar to Murali ICCADO06, Partition Before Floorplanning.
PDF: our methods, Partition Driven Floorplanning.

@ Can save 41.8% of power and 2.6% of hops number.
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Experimental Results(cont.)

263encmp3dec (4 clusters): mp3encmp3dec (3 clusters):
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Experimental Results

Experimental Results(cont.)

263encmp3dec (4 clusters): mp3encmp3dec (3 clusters):

4060

@hi hty communicating cores
places close to each other.
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Experimental Results(cont.)

@ Effectiveness of Path Update Algorithm:

V# Flow# Update# Run Time(s) Diff
DSP ours
t.01 20 34 20 0.024 0.008 -66.7%
.02 100 130 30 0.604 0.016 -97.4%
.03 300 457 50 20.35 0.08 -99.6%

@ DSP: re-solves all distances by Dijkstra’s Shortest Path Algorithm.
Ours: effective path update algorithm.

@ Larger graph, more effective.
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Experimental Results

Conclusion

In our works:
@ Intgrate partition into floorplanning phase
@ Consider Switches and NI area consumption
@ Min-Cost-Flow algorithm to insert NI
@ Effective paths allocation to minimize power consumption
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